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Supervised machine learning is the search for algorithms that reason from externally supplied instances 
to produce general hypotheses, which then make predictions about future instances. In other words, the 
goal of supervised learning is to build a concise model of the distribution of class labels in terms of 
predictor features. The resulting classifier is then used to assign class labels to the testing instances 
where the values of the predictor features are known, but the value of the class label is unknown. This 
paper describes various supervised machine learning classification techniques. Of course, a single 
article cannot be a complete review of all supervised machine learning classification algorithms (also 
known induction classification algorithms), yet we hope that the references cited will cover the major 
theoretical issues, guiding the researcher in interesting research directions and suggesting possible bias 
combinations that have yet to be explored. 
Povzetek: Podan je pregled metod strojnega učenja. 

1 Introduction 
There are several applications for Machine Learning 
(ML), the most significant of which is data mining. 
People are often prone to making mistakes during 
analyses or, possibly, when trying to establish 
relationships between multiple features. This makes it 
difficult for them to find solutions to certain problems. 
Machine learning can often be successfully applied to 
these problems, improving the efficiency of systems and 
the designs of machines. 
Every instance in any dataset used by machine learning 
algorithms is represented using the same set of features. 
The features may be continuous, categorical or binary. If 
instances are given with known labels (the corresponding 
correct outputs) then the learning is called supervised 
(see Table 1), in contrast to unsupervised learning, where 
instances are unlabeled. By applying these unsupervised 
(clustering) algorithms, researchers hope to discover 
unknown, but useful, classes of items (Jain et al., 1999). 
Another kind of machine learning is reinforcement 
learning (Barto & Sutton, 1997). The training 
information provided to the learning system by the 
environment (external trainer) is in the form of a scalar 
reinforcement signal that constitutes a measure of how 
well the system operates. The learner is not told which 
actions to take, but rather must discover which actions 
yield the best reward, by trying each action in turn. 

Numerous ML applications involve tasks that can be 
set up as supervised. In the present paper, we have 
concentrated on the techniques necessary to do this. In 
particular, this work is concerned with classification 
problems in which the output of instances admits only 
discrete, unordered values. 
 

 
Table 1. Instances with known labels (the corresponding 
correct outputs) 

 
We have limited our references to recent refereed 
journals, published books and conferences. In addition, 
we have added some references regarding the original 
work that started the particular line of research under 
discussion. A brief review of what ML includes can be 
found in (Dutton & Conroy, 1996). De Mantaras and 
Armengol (1998) also presented a historical survey of 
logic and instance based learning classifiers. The reader 
should be cautioned that a single article cannot be a 
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comprehensive review of all classification learning 
algorithms. Instead, our goal has been to provide a 
representative sample of existing lines of research in 
each learning technique. In each of our listed areas, there 
are many other papers that more comprehensively detail 
relevant work.  
Our next section covers wide-ranging issues of 
supervised machine learning such as data pre-processing 
and feature selection. Logical/Symbolic techniques are 
described in section 3, whereas perceptron-based 
techniques are analyzed in section 4. Statistical 
techniques for ML are covered in section 5. Section 6 
deals with instance based learners, while Section 7 deals 
with the newest supervised ML technique—Support 
Vector Machines (SVMs). In section 8, some general 
directions are given about classifier selection. Finally, the 
last section concludes this work. 
 

2 General issues of supervised 
learning algorithms 

Inductive machine learning is the process of learning 
a set of rules from instances (examples in a training set), 
or more generally speaking, creating a classifier that can 
be used to generalize from new instances. The process of 
applying supervised ML to a real-world problem is 
described in Figure 1. 

Problem

Data pre-processing

Definition of
training set

Algorithm
selection

Training

Evaluation
with test set

OK? Classifier
Yes

Identification
of required

data

Parameter tuning

No

 
Figure 1. The process of supervised ML 
 
The first step is collecting the dataset. If a requisite 

expert is available, then s/he could suggest which fields 
(attributes, features) are the most informative. If not, then 
the simplest method is that of “brute-force,” which 
means measuring everything available in the hope that 
the right (informative, relevant) features can be isolated. 
However, a dataset collected by the “brute-force” method 
is not directly suitable for induction. It contains in most 
cases noise and missing feature values, and therefore 
requires significant pre-processing (Zhang et al., 2002).  

The second step is the data preparation and data pre-
processiong. Depending on the circumstances, 
researchers have a number of methods to choose from to 
handle missing data (Batista & Monard, 2003). Hodge & 
Austin (2004) have recently introduced a survey of 
contemporary techniques for outlier (noise) detection. 
These researchers have identified the techniques’ 
advantages and disadvantages. Instance selection is not 
only used to handle noise but to cope with the 
infeasibility of learning from very large datasets. 
Instance selection in these datasets is an optimization 
problem that attempts to maintain the mining quality 
while minimizing the sample size (Liu and Motoda, 
2001). It reduces data and enables a data mining 
algorithm to function and work effectively with very 
large datasets. There is a variety of procedures for 
sampling instances from a large dataset (Reinartz, 2002).  

Feature subset selection is the process of identifying 
and removing as many irrelevant and redundant features 
as possible (Yu & Liu, 2004). This reduces the 
dimensionality of the data and enables data mining 
algorithms to operate faster and more effectively.  The 
fact that many features depend on one another often 
unduly influences the accuracy of supervised ML 
classification models. This problem can be addressed by 
constructing new features from the basic feature set 
(Markovitch & Rosenstein, 2002). This technique is 
called feature construction/transformation. These newly 
generated features may lead to the creation of more 
concise and accurate classifiers. In addition, the 
discovery of meaningful features contributes to better 
comprehensibility of the produced classifier, and a better 
understanding of the learned concept. 

2.1 Algorithm selection 
The choice of which specific learning algorithm we 

should use is a critical step. Once preliminary testing is 
judged to be satisfactory, the classifier (mapping from 
unlabeled instances to classes) is available for routine 
use. The classifier’s evaluation is most often based on 
prediction accuracy (the percentage of correct prediction 
divided by the total number of predictions). There are at 
least three techniques which are used to calculate a 
classifier’s accuracy. One technique is to split the 
training set by using two-thirds for training and the other 
third for estimating performance. In another technique, 
known as cross-validation, the training set is divided into 
mutually exclusive and equal-sized subsets and for each 
subset the classifier is trained on the union of all the 
other subsets. The average of the error rate of each subset 
is therefore an estimate of the error rate of the classifier. 
Leave-one-out validation is a special case of cross 
validation. All test subsets consist of a single instance. 
This type of validation is, of course, more expensive 
computationally, but useful when the most accurate 
estimate of a classifier’s error rate is required. 

If the error rate evaluation is unsatisfactory, we must 
return to a previous stage of the supervised ML process 
(as detailed in Figure 1). A variety of factors must be 
examined: perhaps relevant features for the problem are 
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not being used, a larger training set is needed, the 
dimensionality of the problem is too high, the selected 
algorithm is inappropriate or parameter tuning is needed. 
Another problem could be that the dataset is imbalanced 
(Japkowicz & Stephen, 2002). 

A common method for comparing supervised ML 
algorithms is to perform statistical comparisons of the 
accuracies of trained classifiers on specific datasets. If 
we have sufficient supply of data, we can sample a 
number of training sets of size N, run the two learning 
algorithms on each of them, and estimate the difference 
in accuracy for each pair of classifiers on a large test set. 
The average of these differences is an estimate of the 
expected difference in generalization error across all 
possible training sets of size N, and their variance is an 
estimate of the variance of the classifier in the total set. 
Our next step is to perform paired t-test to check the null 
hypothesis that the mean difference between the 
classifiers is zero. This test can produce two types of 
errors. Type I error is the probability that the test rejects 
the null hypothesis incorrectly (i.e. it finds a “significant” 
difference although there is none). Type II error is the 
probability that the null hypothesis is not rejected, when 
there actually is a difference. The test’s Type I error will 
be close to the chosen significance level. 

In practice, however, we often have only one dataset 
of size N and all estimates must be obtained from this 
sole dataset. Different training sets are obtained by sub-
sampling, and the instances not sampled for training are 
used for testing. Unfortunately this violates the 
independence assumption necessary for proper 
significance testing. The consequence of this is that Type 
I errors exceed the significance level. This is problematic 
because it is important for the researcher to be able to 
control Type I errors and know the probability of 
incorrectly rejecting the null hypothesis. Several heuristic 
versions of the t-test have been developed to alleviate 
this problem (Dietterich, 1998), (Nadeau and Bengio, 
2003). 

Ideally, we would like the test’s outcome to be 
independent of the particular partitioning resulting from 
the randomization process, because this would make it 
much easier to replicate experimental results published in 
the literature. However, in practice there is always 
certain sensitivity to the partitioning used. To measure 
replicability we need to repeat the same test several times 
on the same data with different random partitionings —
usually ten repetitions— and count how often the 
outcome is the same (Bouckaert, 2003). 

Supervised classification is one of the tasks most 
frequently carried out by so-called Intelligent Systems. 
Thus, a large number of techniques have been developed 
based on Artificial Intelligence (Logical/Symbolic 
techniques), Perceptron-based techniques and Statistics 
(Bayesian Networks, Instance-based techniques). In next 
sections, we will focus on the most important supervised 
machine learning techniques, starting with 
logical/symbolic algorithms. 

3 Logic based algorithms 
 
In this section we will concentrate on two groups of 

logical (symbolic) learning methods: decision trees and 
rule-based classifiers. 

3.1 Decision trees 
Murthy (1998) provided an overview of work in 

decision trees and a sample of their usefulness to 
newcomers as well as practitioners in the field of 
machine learning. Thus, in this work, apart from a brief 
description of decision trees, we will refer to some more 
recent works than those in Murthy’s article as well as 
few very important articles that were published earlier. 
Decision trees are trees that classify instances by sorting 
them based on feature values. Each node in a decision 
tree represents a feature in an instance to be classified, 
and each branch represents a value that the node can 
assume. Instances are classified starting at the root node 
and sorted based on their feature values. Figure 2 is an 
example of a decision tree for the training set of Table 2. 

 

at1

at2 No No

Yes at3 at4

No Yes No

a3

Yes

b3

a2 b2 c2

a4 b4

a1 b1 c1

 
Figure 2. A decision tree 

 
at1 at2 at3 at4 Class 
a1 a2 a3 a4 Yes 
a1 a2 a3 b4 Yes 
a1 b2 a3 a4 Yes 
a1 b2 b3 b4 No 
a1 c2 a3 a4 Yes 
a1 c2 a3 b4 No 
b1 b2 b3 b4 No 
c1 b2 b3 b4 No 

Table 2. Training Set 
 

Using the decision tree depicted in Figure 2 as an 
example, the instance 〈at1 = a1, at2 = b2, at3 = a3, at4 = 
b4〉 would sort to the nodes: at1, at2, and finally at3, 
which would classify the instance as being positive 



252 Informatica 31 (2007) 249–268  S.B. Kotsiantis 

(represented by the values “Yes”). The problem of 
constructing optimal binary decision trees is an NP-
complete problem and thus theoreticians have searched 
for efficient heuristics for constructing near-optimal 
decision trees. 

The feature that best divides the training data would 
be the root node of the tree. There are numerous methods 
for finding the feature that best divides the training data 
such as information gain (Hunt et al., 1966) and gini 
index (Breiman et al., 1984). While myopic measures 
estimate each attribute independently, ReliefF algorithm 
(Kononenko, 1994) estimates them in the context of 
other attributes. However, a majority of studies have 
concluded that there is no single best method (Murthy, 
1998). Comparison of individual methods may still be 
important when deciding which metric should be used in 
a particular dataset. The same procedure is then repeated 
on each partition of the divided data, creating sub-trees 
until the training data is divided into subsets of the same 
class.  

Figure 3 presents a general pseudo-code for building 
decision trees. 

 
Check for base cases 
 For each attribute a 

Find the feature that best 
divides the training data such 
as information gain from 
splitting on a 

Let a best be the attribute with the 
highest normalized information gain 

Create a decision node node that 
splits on a_best 

Recurse on the sub-lists obtained by 
splitting on a best and add those 
nodes as children of node 

Figure 3. Pseudo-code for building a decision tree  

A decision tree, or any learned hypothesis h, is said to 
overfit training data if another hypothesis h′ exists that 
has a larger error than h when tested on the training data, 
but a smaller error than h when tested on the entire 
dataset. There are two common approaches that decision 
tree induction algorithms can use to avoid overfitting 
training data: i) Stop the training algorithm before it 
reaches a point at which it perfectly fits the training data, 
ii) Prune the induced decision tree. If the two trees 
employ the same kind of tests and have the same 
prediction accuracy, the one with fewer leaves is usually 
preferred. Breslow & Aha (1997) survey methods of tree 
simplification to improve their comprehensibility.  

The most straightforward way of tackling overfitting 
is to pre-prune the decision tree by not allowing it to 
grow to its full size. Establishing a non-trivial 
termination criterion such as a threshold test for the 
feature quality metric can do that. Decision tree 
classifiers usually employ post-pruning techniques that 
evaluate the performance of decision trees, as they are 
pruned by using a validation set. Any node can be 
removed and assigned the most common class of the 
training instances that are sorted to it. A comparative 
study of well-known pruning methods is presented in 
(Elomaa, 1999). Elomaa (1999) concluded that there is 

no single best pruning method. More details, about not 
only postprocessing but also about preprocessing of 
decision tree algorithms can be fould in (Bruha, 2000). 

Even though the divide-and-conquer algorithm is 
quick, efficiency can become important in tasks with 
hundreds of thousands of instances. The most time-
consuming aspect is sorting the instances on a numeric 
feature to find the best threshold t. This can be expedited 
if possible thresholds for a numeric feature are 
determined just once, effectively converting the feature 
to discrete intervals, or if the threshold is determined 
from a subset of the instances. Elomaa & Rousu (1999) 
stated that the use of binary discretization with C4.5 
needs about the half training time of using C4.5 multi-
splitting. In addition, according to their experiments, 
multi-splitting of numerical features does not carry any 
advantage in prediction accuracy over binary splitting.  

Decision trees are usually univariate since they use 
splits based on a single feature at each internal node. 
Most decision tree algorithms cannot perform well with 
problems that require diagonal partitioning. The division 
of the instance space is orthogonal to the axis of one 
variable and parallel to all other axes. Therefore, the 
resulting regions after partitioning are all hyper-
rectangles. However, there are a few methods that 
construct multivariate trees. One example is Zheng’s 
(1998), who improved the classification accuracy of the 
decision trees by constructing new binary features with 
logical operators such as conjunction, negation, and 
disjunction. In addition, Zheng (2000) created at-least M-
of-N features. For a given instance, the value of an at-
least M-of-N representation is true if at least M of its 
conditions is true of the instance, otherwise it is false. 
Gama and Brazdil (1999) combined a decision tree with 
a linear discriminant for constructing multivariate 
decision trees. In this model, new features are computed 
as linear combinations of the previous ones. 

Decision trees can be significantly more complex 
representation for some concepts due to the replication 
problem. A solution is using an algorithm to implement 
complex features at nodes in order to avoid replication. 
Markovitch and Rosenstein (2002) presented the FICUS 
construction algorithm, which receives the standard input 
of supervised learning as well as a feature representation 
specification, and uses them to produce a set of generated 
features. While FICUS is similar in some aspects to other 
feature construction algorithms, its main strength is its 
generality and flexibility. FICUS was designed to 
perform feature generation given any feature 
representation specification complying with its general 
purpose grammar.   

The most well-know algorithm in the literature for 
building decision trees is the C4.5 (Quinlan, 1993). C4.5 
is an extension of Quinlan's earlier ID3 algorithm 
(Quinlan, 1979). One of the latest studies that compare 
decision trees and other learning algorithms has been 
done by (Tjen-Sien Lim et al. 2000). The study shows 
that C4.5 has a very good combination of error rate and 
speed. In 2001, Ruggieri presented an analytic evaluation 
of the runtime behavior of the C4.5 algorithm, which 
highlighted some efficiency improvements. Based on this 
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analytic evaluation, he implemented a more efficient 
version of the algorithm, called EC4.5. He argued that 
his implementation computed the same decision trees as 
C4.5 with a performance gain of up to five times. 

C4.5 assumes that the training data fits in memory, 
thus, Gehrke et al. (2000) proposed Rainforest, a 
framework for developing fast and scalable algorithms to 
construct decision trees that gracefully adapt to the 
amount of main memory available. It is clear that in most 
decision tree algorithms; a substantial effort is “wasted” 
in the building phase on growing portions of the tree that 
are subsequently pruned in the pruning phase. Rastogi & 
Shim (2000) proposed PUBLIC, an improved decision 
tree classifier that integrates the second “pruning” phase 
with the initial “building” phase. In PUBLIC, a node is 
not expanded during the building phase, if it is 
determined that the node will be pruned during the 
subsequent pruning phase.  

Olcay and Onur (2007) show how to parallelize C4.5 
algorithm in three ways: (i) feature based, (ii) node based 
(iii) data based manner. Baik and Bala (2004) presented 
preliminary work on an agent-based approach for the 
distributed learning of decision trees. 

To sum up, one of the most useful characteristics of 
decision trees is their comprehensibility. People can 
easily understand why a decision tree classifies an 
instance as belonging to a specific class. Since a decision 
tree constitutes a hierarchy of tests, an unknown feature 
value during classification is usually dealt with by 
passing the example down all branches of the node where 
the unknown feature value was detected, and each branch 
outputs a class distribution. The output is a combination 
of the different class distributions that sum to 1. The 
assumption made in the decision trees is that instances 
belonging to different classes have different values in at 
least one of their features. Decision trees tend to perform 
better when dealing with discrete/categorical features. 

3.2 Learning set of rules 
 
Decision trees can be translated into a set of rules by 

creating a separate rule for each path from the root to a 
leaf in the tree (Quinlan, 1993). However, rules can also 
be directly induced from training data using a variety of 
rule-based algorithms. Furnkranz (1999) provided an 
excellent overview of existing work in rule-based 
methods.  

Classification rules represent each class by 
disjunctive normal form (DNF). A k-DNF expression is 
of the form: (X1∧X2∧…∧Xn) ∨ (Xn+1∧Xn+2∧…X2n) ∨ …∨ 
(X(k-1)n+1∧X(k-1)n+2∧…∧Xkn), where k is the number of 
disjunctions, n is the number of conjunctions in each 
disjunction, and Xn is defined over the alphabet X1, X2,…, 
Xj ∪ ~X1, ~X2, …,~Xj. The goal is to construct the 
smallest rule-set that is consistent with the training data. 
A large number of learned rules is usually a sign that the 
learning algorithm is attempting to “remember” the 
training set, instead of discovering the assumptions that 
govern it. A separate-and-conquer algorithm (covering 
algorithms) search for a rule that explains a part of its 

training instances, separates these instances and 
recursively conquers the remaining instances by learning 
more rules, until no instances remain. In Figure 4, a 
general pseudo-code for rule learners is presented.  

The difference between heuristics for rule learning 
and heuristics for decision trees is that the latter evaluate 
the average quality of a number of disjointed sets (one 
for each value of the feature that is tested), while rule 
learners only evaluate the quality of the set of instances 
that is covered by the candidate rule. More advanced rule 
learners differ from this simple pseudo-code mostly by 
adding additional mechanisms to prevent over-fitting of 
the training data, for instance by stopping the 
specialization process with the use of a quality measure 
or by generalizing overly specialized rules in a separate 
pruning phase (Furnkranz, 1997). 

 
On presentation of training examples 

training examples: 
1. Initialise rule set to a default 

(usually empty, or a rule assigning all 
objects to the most common class). 

2. Initialise examples to either all 
available examples or all examples not 
correctly handled by rule set. 

3. Repeat  
(a) Find best, the best rule with 

respect to examples. 
(b) If such a rule can be found 

i. Add best to rule set. 
ii. Set examples to all 
examples    not handled 
correctly by rule set. 

until no rule best can be found 
(for instance, because no 
examples remain). 

Figure 4. Pseudocode for rule learners 

It is therefore important for a rule induction system 
to generate decision rules that have high predictability or 
reliability. These properties are commonly measured by a 
function called rule quality. A rule quality measure is 
needed in both the rule induction and classification 
processes such as J-measure (Smyth and Goodman, 
1990). In rule induction, a rule quality measure can be 
used as a criterion in the rule specification and/or 
generalization process. In classification, a rule quality 
value can be associated with each rule to resolve 
conflicts when multiple rules are satisfied by the example 
to be classified. An and Cercone (2000) surveyed a 
number of statistical and empirical rule quality measures. 
Furnkranz and Flach (2005) provided an analysis of the 
behavior of separate-and-conquer or covering rule 
learning algorithms by visualizing their evaluation 
metrics. When using unordered rule sets, conflicts can 
arise between the rules, i.e., two or more rules cover the 
same example but predict different classes. Lindgren 
(2004) has recently given a survey of methods used to 
solve this type of conflict. 

RIPPER is a well-known rule-based algorithm 
(Cohen, 1995). It forms rules through a process of 
repeated growing and pruning. During the growing phase 
the rules are made more restrictive in order to fit the 
training data as closely as possible. During the pruning 
phase, the rules are made less restrictive in order to avoid 
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overfitting, which can cause poor performance on unseen 
instances. RIPPER handles multiple classes by ordering 
them from least to most prevalent and then treating each 
in order as a distinct two-class problem. Other 
fundamental learning classifiers based on decision rules 
include the AQ family (Michalski and Chilausky, 1980) 
and CN2 (Clark and Niblett, 1989). Bonarini (2000) gave 
an overview of fuzzy rule-based classifiers. Fuzzy logic 
tries to improve classification and decision support 
systems by allowing the use of overlapping class 
definitions. 

Furnkranz (2001) investigated the use of round robin 
binarization (or pairwise classification) as a technique for 
handling multi-class problems with separate and conquer 
rule learning algorithms. The round robin binarization 
transforms a c-class problem into c(c-1)/2 two-class 
problems <i,j>, one for each set of classes {i,j}, i= 1 ... c-
1, j = i+1 ...c. The binary classifier for problem <i,j> is 
trained with examples of classes i and j, whereas 
examples of classes k ≠ i,j are ignored for this problem. 
A crucial point, of course, is determining how to decode 
the predictions of the pairwise classifiers for a final 
prediction. Furnkranz (2001) implemented a simple 
voting technique: when classifying a new example, each 
of the learned base classifiers determines to which of its 
two classes the example is more likely to belong to. The 
winner is assigned a point, and in the end, the algorithm 
predicts the class that has accumulated the most points. 
His experimental results show that, in comparison to 
conventional, ordered or unordered binarization, the 
round robin approach may yield significant gains in 
accuracy without risking a poor performance. 

There are numerous other rule-based learning 
algorithms. Furnkranz (1999) referred to most of them. 
The PART algorithm infers rules by repeatedly 
generating partial decision trees, thus combining the two 
major paradigms for rule generation − creating rules 
from decision trees and the separate-and-conquer rule-
learning technique. Once a partial tree has been build, a 
single rule is extracted from it and for this reason the 
PART algorithm avoids postprocessing (Frank and 
Witten, 1998). 

For the task of learning binary problems, rules are 
more comprehensible than decision trees because typical 
rule-based approaches learn a set of rules for only the 
positive class. On the other hand, if definitions for 
multiple classes are to be learned, the rule-based learner 
must be run separately for each class separately. For each 
individual class a separate rule set is obtained and these 
sets may be inconsistent (a particular instance might be 
assigned multiple classes) or incomplete (no class might 
be assigned to a particular instance). These problems can 
be solved with decision lists (the rules in a rule set are 
supposed to be ordered, a rule is only applicable when 
none of the preceding rules are applicable) but with the 
decision tree approach, they simply do not occur. 
Moreover, the divide and conquer approach (used by 
decision trees) is usually more efficient than the separate 
and conquer approach (used by rule-based algorithms). 
Separate-and-conquer algorithms look at one class at a 
time, and try to produce rules that uniquely identify the 

class. They do this independent of all the other classes in 
the training set. For this reason, for small datasets, it may 
be better to use a divide-and-conquer algorithm that 
considers the entire set at once. 

To sum up, the most useful characteristic of rule-
based classifiers is their comprehensibility. In addition, 
even though some rule-based classifiers can deal with 
numerical features, some experts propose these features 
should be discretized before induction, so as to reduce 
training time and increase classification accuracy (An 
and Cercone, 1999). Classification accuracy of rule 
learning algorithms can be improved by combining 
features (such as in decision trees) using the background 
knowledge of the user (Flach and Lavrac, 2000) or 
automatic feature construction algorithms (Markovitch 
and Rosenstein, 2002). 

4 Perceptron-based techniques 
Other well-known algorithms are based on the notion 

of perceptron (Rosenblatt, 1962). 

4.1 Single layered perceptrons 
A single layered perceptron can be briefly described 

as follows: 
If x1 through xn are input feature values and w1 

through wn are connection weights/prediction vector 
(typically real numbers in the interval [-1, 1]), then 
perceptron computes the sum of weighted inputs: 

i i
i

x w∑  and output goes through an adjustable threshold: 

if the sum is above threshold, output is 1; else it is 0. 
The most common way that the perceptron algorithm 

is used for learning from a batch of training instances is 
to run the algorithm repeatedly through the training set 
until it finds a prediction vector which is correct on all of 
the training set. This prediction rule is then used for 
predicting the labels on the test set. 

WINNOW (Littlestone & Warmuth, 1994) is based 
on the perceptron idea and updates its weights as follows. 
If prediction value y΄=0 and actual value y=1, then the 
weights are too low; so, for each feature such that xi=1, 
wi=wi·α, where α is a number greater than 1, called the 
promotion parameter. If prediction value y΄= 1 and 
actual value y=0, then the weights were too high; so, for 
each feature xi = 1, it decreases the corresponding weight 
by setting wi=wi·β, where 0<β<1, called the demotion 
parameter. Generally, WINNOW is an example of an 
exponential update algorithm. The weights of the 
relevant features grow exponentially but the weights of 
the irrelevant features shrink exponentially. For this 
reason, it was experimentally proved (Blum, 1997) that 
WINNOW can adapt rapidly to changes in the target 
function (concept drift). A target function (such as user 
preferences) is not static in time. In order to enable, for 
example, a decision tree algorithm to respond to changes, 
it is necessary to decide which old training instances 
could be deleted. A number of algorithms similar to 
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WINNOW have been developed, such as those by Auer 
& Warmuth (1998).  

Freund & Schapire (1999) created a newer 
algorithm, called voted-perceptron, which stores more 
information during training and then uses this elaborate 
information to generate better predictions about the test 
data. The information it maintains during training is the 
list of all prediction vectors that were generated after 
each and every mistake. For each such vector, it counts 
the number of iterations it “survives” until the next 
mistake is made; Freund & Schapire refer to this count as 
the “weight” of the prediction vector. To calculate a 
prediction the algorithm computes the binary prediction 
of each one of the prediction vectors and combines all 
these predictions by means of a weighted majority vote. 
The weights used are the survival times described above.  

To sum up, we have discussed perceptron-like linear 
algorithms with emphasis on their superior time 
complexity when dealing with irrelevant features. This 
can be a considerable advantage when there are many 
features, but only a few relevant ones. Generally, all 
perceptron-like linear algorithms are anytime online 
algorithms that can produce a useful answer regardless of 
how long they run (Kivinen, 2002). The longer they run, 
the better the result they produce. Finally, perceptron-like 
methods are binary, and therefore in the case of multi-
class problem one must reduce the problem to a set of 
multiple binary classification problems. 

4.2 Multilayered perceptrons  
Perceptrons can only classify linearly separable sets 

of instances. If a straight line or plane can be drawn to 
seperate the input instances into their correct categories, 
input instances are linearly separable and the perceptron 
will find the solution. If the instances are not linearly 
separable learning will never reach a point where all 
instances are classified properly. Multilayered 
Perceptrons (Artificial Neural Networks) have been 
created to try to solve this problem (Rumelhart et al., 
1986). Zhang (2000) provided an overview of existing 
work in Artificial Neural Networks (ANNs). Thus, in this 
study, apart from a brief description of the ANNs we will 
mainly refer to some more recent articles. A multi-layer 
neural network consists of large number of units 
(neurons) joined together in a pattern of connections 
(Figure 5). Units in a net are usually segregated into three 
classes: input units, which receive information to be 
processed; output units, where the results of the 
processing are found; and units in between known as 
hidden units. Feed-forward ANNs (Figure 5) allow 
signals to travel one way only, from input to output.  

Figure 5. Feed-forward ANN 

First, the network is trained on a set of paired data to 
determine input-output mapping. The weights of the 
connections between neurons are then fixed and the 
network is used to determine the classifications of a new 
set of data.   

During classification the signal at the input units 
propagates all the way through the net to determine the 
activation values at all the output units. Each input unit 
has an activation value that represents some feature 
external to the net. Then, every input unit sends its 
activation value to each of the hidden units to which it is 
connected. Each of these hidden units calculates its own 
activation value and this signal are then passed on to 
output units. The activation value for each receiving unit 
is calculated according to a simple activation function. 
The function sums together the contributions of all 
sending units, where the contribution of a unit is defined 
as the weight of the connection between the sending and 
receiving units multiplied by the sending unit's activation 
value. This sum is usually then further modified, for 
example, by adjusting the activation sum to a value 
between 0 and 1 and/or by setting the activation value to 
zero unless a threshold level for that sum is reached. 

Generally, properly determining the size of the 
hidden layer is a problem, because an underestimate of 
the number of neurons can lead to poor approximation 
and generalization capabilities, while excessive nodes 
can result in overfitting and eventually make the search 
for the global optimum more difficult. An excellent 
argument regarding this topic can be found in (Camargo 
& Yoneyama, 2001). Kon & Plaskota (2000) also studied 
the minimum amount of neurons and the number of 
instances necessary to program a given task into feed-
forward neural networks.  

ANN depends upon three fundamental aspects, input 
and activation functions of the unit, network architecture 
and the weight of each input connection. Given that the 
first two aspects are fixed, the behavior of the ANN is 
defined by the current values of the weights. The weights 
of the net to be trained are initially set to random values, 
and then instances of the training set are repeatedly 
exposed to the net. The values for the input of an 
instance are placed on the input units and the output of 
the net is compared with the desired output for this 
instance. Then, all the weights in the net are adjusted 
slightly in the direction that would bring the output 
values of the net closer to the values for the desired 
output. There are several algorithms with which a 
network can be trained (Neocleous & Schizas, 2002). 
However, the most well-known and widely used learning 
algorithm to estimate the values of the weights is the 
Back Propagation (BP) algorithm. Generally, BP 
algorithm includes the following six steps: 
1. Present a training sample to the neural network.  
2. Compare the network's output to the desired output 

from that sample. Calculate the error in each output 
neuron.  

3. For each neuron, calculate what the output should 
have been, and a scaling factor, how much lower or 
higher the output must be adjusted to match the 
desired output. This is the local error.  
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4. Adjust the weights of each neuron to lower the local 
error.  

5. Assign "blame" for the local error to neurons at the 
previous level, giving greater responsibility to 
neurons connected by stronger weights.  

6. Repeat the steps above on the neurons at the 
previous level, using each one's "blame" as its error. 

With more details, the general rule for updating 
weights is: ijji OW ηδ=∆  where: 

• η is a positive number (called learning rate), which 
determines the step size in the gradient descent 
search. A large value enables back propagation to 
move faster to the target weight configuration but it 
also increases the chance of its never reaching this 
target.  

• Oi is the output computed by neuron i  
• ))(1( jjjjj OTOO −−=δ  for the output neurons, 

where Tj the wanted output for the neuron j and 
• kj

k
kjjj WOO ∑−= δδ )1(  for the internal 

(hidden) neurons 
The back propagation algorithm will have to perform 

a number of weight modifications before it reaches a 
good weight configuration. For n training instances and 
W weights, each repetition/epoch in the learning process 
takes O(nW) time; but in the worst case, the number of 
epochs can be exponential to the number of inputs. For 
this reason, neural nets use a number of different 
stopping rules to control when training ends. The four 
most common stopping rules are: i) Stop after a specified 
number of epochs, ii) Stop when an error measure 
reaches a threshold, iii) Stop when the error measure has 
seen no improvement over a certain number of epochs, 
iv) Stop when the error measure on some of the data that 
has been sampled from the training data (hold-out set, 
validation set) is more than a certain amount than the 
error measure on the training set (overfitting). 

Feed-forward neural networks are usually trained by 
the original back propagation algorithm or by some 
variant. Their greatest problem is that they are too slow 
for most applications. One of the approaches to speed up 
the training rate is to estimate optimal initial weights 
(Yam & Chow, 2001). Another method for training 
multilayered feedforward ANNs is Weight-elimination 
algorithm that automatically derives the appropriate 
topology and therefore avoids also the problems with 
overfitting  (Weigend et al., 1991). Genetic algorithms 
have been used to train the weights of neural networks 
(Siddique and Tokhi, 2001) and to find the architecture 
of neural networks (Yen and Lu, 2000). There are also 
Bayesian methods in existence which attempt to train 
neural networks. Vivarelli & Williams (2001) compare 
two Bayesian methods for training neural networks. A 
number of other techniques have emerged recently which 
attempt to improve ANNs training algorithms by 
changing the architecture of the networks as training 
proceeds. These techniques include pruning useless 
nodes or weights (Castellano et al. 1997), and 

constructive algorithms, where extra nodes are added as 
required (Parekh et al. 2000).  

4.3 Radial Basis Function (RBF) networks 
ANN learning can be achieved, among others, 

through i) synaptic weight modification, ii) network 
structure modifications (creating or deleting neurons or 
synaptic connections), iii) use of suitable attractors or 
other suitable stable state points, iv) appropriate choice 
of activation functions. Since back-propagation training 
is a gradient descending process, it may get stuck in local 
minima in this weight-space. It is because of this 
possibility that neural network models are characterized 
by high variance and unsteadiness. 

Radial Basis Function (RBF) networks have been 
also widely applied in many science and engineering 
fields (Robert and Howlett, 2001). An RBF network is a 
three-layer feedback network, in which each hidden unit 
implements a radial activation function and each output 
unit implements a weighted sum of hidden units outputs. 
Its training procedure is usually divided into two stages. 
First, the centers and widths of the hidden layer are 
determined by clustering algorithms. Second, the weights 
connecting the hidden layer with the output layer are 
determined by Singular Value Decomposition (SVD) or 
Least Mean Squared (LMS) algorithms. The problem of 
selecting the appropriate number of basis functions 
remains a critical issue for RBF networks. The number of 
basis functions controls the complexity and the 
generalization ability of RBF networks. RBF networks 
with too few basis functions cannot fit the training data 
adequately due to limited flexibility. On the other hand, 
those with too many basis functions yield poor 
generalization abilities since they are too flexible and 
erroneously fit the noise in the training data.  

Even though multilayer neural networks and decision 
trees are two very different techniques for the purpose of 
classification, some researchers (Eklund & Hoang, 
2002), (Tjen-Sien Lim et al. 2000) have performed some 
empirical comparative studies. Some of the general 
conclusions drawn in that work are:  
i) neural networks are usually more able to easily 

provide incremental learning than decision trees 
(Saad, 1998), even though there are some 
algorithms for incremental learning of decision 
trees such as (Utgoff et al, 1997) and 
(McSherry, 1999). Incremental decision tree 
induction techniques result in frequent tree 
restructuring when the amount of training data 
is small, with the tree structure maturing as the 
data pool becomes larger.  

ii) training time for a neural network is usually 
much longer than training time for decision 
trees.  

iii) neural networks usually perform as well as 
decision trees, but seldom better. 

 
To sum up, ANNs have been applied to many real-

world problems but still, their most striking disadvantage 
is their lack of ability to reason about their output in a 
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way that can be effectively communicated. For this 
reason many researchers have tried to address the issue 
of improving the comprehensibility of neural networks, 
where the most attractive solution is to extract symbolic 
rules from trained neural networks. Setiono and Leow 
(2000) divided the activation values of relevant hidden 
units into two subintervals and then found the set of 
relevant connections of those relevant units to construct 
rules. More references can be found in (Zhou, 2004), an 
excellent survey. However, it is also worth mentioning 
that Roy (2000) identified the conflict between the idea 
of rule extraction and traditional connectionism. In detail, 
the idea of rule extraction from a neural network involves 
certain procedures, specifically the reading of parameters 
from a network, which is not allowed by the traditional 
connectionist framework that these neural networks are 
based on. 

5 Statistical learning algorithms 
Conversely to ANNs, statistical approaches are 

characterized by having an explicit underlying 
probability model, which provides a probability that an 
instance belongs in each class, rather than simply a 
classification. Linear discriminant analysis (LDA) and 
the related Fisher's linear discriminant are simple 
methods used in statistics and machine learning to find 
the linear combination of features which best separate 
two or more classes of object (Friedman, 1989). LDA 
works when the measurements made on each observation 
are continuous quantities. When dealing with categorical 
variables, the equivalent technique is Discriminant 
Correspondence Analysis (Mika et al., 1999).  

Maximum entropy is another general technique for 
estimating probability distributions from data. The over-
riding principle in maximum entropy is that when 
nothing is known, the distribution should be as uniform 
as possible, that is, have maximal entropy. Labeled 
training data is used to derive a set of constraints for the 
model that characterize the class-specific expectations for 
the distribution. Csiszar (1996) provides a good tutorial 
introduction to maximum entropy techniques. 

Bayesian networks are the most well known 
representative of statistical learning algorithms. A 
comprehensive book on Bayesian networks is Jensen’s 
(1996). Thus, in this study, apart from our brief 
description of Bayesian networks, we mainly refer to 
more recent works.  

5.1.1 Naive Bayes classifiers 
Naive Bayesian networks (NB) are very simple 

Bayesian networks which are composed of directed 
acyclic graphs with only one parent (representing the 
unobserved node) and several children (corresponding to 
observed nodes) with a strong assumption of 
independence among child nodes in the context of their 
parent (Good, 1950).Thus, the independence model 
(Naive Bayes) is based on estimating (Nilsson, 1965): 

R= ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

|| |

| | |
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r
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Comparing these two probabilities, the larger 
probability indicates that the class label value that is 
more likely to be the actual label (if R>1: predict i else 
predict j). Cestnik et al (1987) first used the Naive Bayes 
in ML community. Since the Bayes classification 
algorithm uses a product operation to compute the 
probabilities P(X, i), it is especially prone to being 
unduly impacted by probabilities of 0. This can be 
avoided by using Laplace estimator or m-esimate, by 
adding one to all numerators and adding the number of 
added ones to the denominator (Cestnik, 1990). 

The assumption of independence among child nodes 
is clearly almost always wrong and for this reason naive 
Bayes classifiers are usually less accurate that other more 
sophisticated learning algorithms (such ANNs). 
However, Domingos & Pazzani (1997) performed a 
large-scale comparison of the naive Bayes classifier with 
state-of-the-art algorithms for decision tree induction, 
instance-based learning, and rule induction on standard 
benchmark datasets, and found it to be sometimes 
superior to the other learning schemes, even on datasets 
with substantial feature dependencies.  

The basic independent Bayes model has been 
modified in various ways in attempts to improve its 
performance. Attempts to overcome the independence 
assumption are mainly based on adding extra edges to 
include some of the dependencies between the features, 
for example (Friedman et al. 1997). In this case, the 
network has the limitation that each feature can be 
related to only one other feature. Semi-naive Bayesian 
classifier is another important attempt to avoid the 
independence assumption. (Kononenko, 1991), in which 
attributes are partitioned into groups and it is assumed 
that xi is conditionally independent of xj if and only if 
they are in different groups. 

The major advantage of the naive Bayes classifier is 
its short computational time for training. In addition, 
since the model has the form of a product, it can be 
converted into a sum through the use of logarithms - with 
significant consequent computational advantages. If a 
feature is numerical, the usual procedure is to discretize 
it during data pre-processing (Yang & Webb, 2003), 
although a researcher can use the normal distribution to 
calculate probabilities (Bouckaert, 2004). 

5.2 Bayesian Networks 
A Bayesian Network (BN) is a graphical model for 

probability relationships among a set of variables 
(features) (see Figure 6). The Bayesian network structure 
S is a directed acyclic graph (DAG) and the nodes in S 
are in one-to-one correspondence with the features X. 
The arcs represent casual influences among the features 
while the lack of possible arcs in S encodes conditional 
independencies. Moreover, a feature (node) is 
conditionally independent from its non-descendants 
given its parents (X1 is conditionally independent from X2 
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given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of 
X1, X2, X3). 

 
Figure 6. The structure of a Bayes Network 

Typically, the task of learning a Bayesian network 
can be divided into two subtasks: initially, the learning of 
the DAG structure of the network, and then the 
determination of its parameters. Probabilistic parameters 
are encoded into a set of tables, one for each variable, in 
the form of local conditional distributions of a variable 
given its parents. Given the independences encoded into 
the network, the joint distribution can be reconstructed 
by simply multiplying these tables. Within the general 
framework of inducing Bayesian networks, there are two 
scenarios: known structure and unknown structure. 

In the first scenario, the structure of the network is 
given (e.g. by an expert) and assumed to be correct. Once 
the network structure is fixed, learning the parameters in 
the Conditional Probability Tables (CPT) is usually 
solved by estimating a locally exponential number of 
parameters from the data provided (Jensen, 1996). Each 
node in the network has an associated CPT that describes 
the conditional probability distribution of that node given 
the different values of its parents.  

In spite of the remarkable power of Bayesian 
Networks, they have an inherent limitation. This is the 
computational difficulty of exploring a previously 
unknown network. Given a problem described by n 
features, the number of possible structure hypotheses is 
more than exponential in n. If the structure is unknown, 
one approach is to introduce a scoring function (or a 
score) that evaluates the “fitness” of networks with 
respect to the training data, and then to search for the 
best network according to this score. Several researchers 
have shown experimentally that the selection of a single 
good hypothesis using greedy search often yields 
accurate predictions (Heckerman et al. 1999), 
(Chickering, 2002). In Figure 7 there is a pseudo-code 
for training BNs. 

Within the score & search paradigm, another 
approach uses local search methods in the space of 
directed acyclic graphs, where the usual choices for 
defining the elementary modifications (local changes) 
that can be applied are arc addition, arc deletion, and arc 
reversal. Acid and de Campos (2003) proposed a new 
local search method, restricted acyclic partially directed 
graphs, which uses a different search space and takes 
account of the concept of equivalence between network 
structures. In this way, the number of different 
configurations of the search space is reduced, thus 
improving efficiency. 

 

Initialize an empty Bayesian network 
G containing n nodes (i.e., a BN with n 
nodes but no edges) 
1. Evaluate the score of G: Score(G) 
2. G’ = G 
3. for i = 1 to n do 
4. for j = 1 to n do 
5. if i • j then 
6. if there is no edge between the

nodes i and j in G• then 
7. Modify G’ by adding an edge between 

the nodes i and j in G• such that i 
is a parent of j: (i • j) 

8. if the resulting G’ is a DAG then 
9. if (Score(G’) > Score(G)) then 
10. G = G’ 
11. end if 
12. end if 
13. end if 
14. end if 
15. G’ = G 
16. end for 
17. end for 

Figure 7. Pseudo-code for training BN  

 A BN structure can be also found by learning the 
conditional independence relationships among the 
features of a dataset. Using a few statistical tests (such as 
the Chi-squared and mutual information test), one can 
find the conditional independence relationships among 
the features and use these relationships as constraints to 
construct a BN. These algorithms are called CI-based 
algorithms or constraint-based algorithms. Cowell (2001) 
has shown that for any structure search procedure based 
on CI tests, an equivalent procedure based on 
maximizing a score can be specified. 

A comparison of scoring-based methods and CI-
based methods is presented in (Heckerman et al., 1999). 
Both of these approaches have their advantages and 
disadvantages. Generally speaking, the dependency 
analysis approach is more efficient than the search & 
scoring approach for sparse networks (networks that are 
not densely connected). It can also deduce the correct 
structure when the probability distribution of the data 
satisfies certain assumptions. However, many of these 
algorithms require an exponential number of CI tests and 
many high order CI tests (CI tests with large condition-
sets). Yet although the search & scoring approach may 
not find the best structure due to its heuristic nature, it 
works with a wider range of probabilistic models than the 
dependency analysis approach. Madden (2003) compared 
the performance of a number of Bayesian Network 
Classifiers. His experiments demonstrated that very 
similar classification performance can be achieved by 
classifiers constructed using the different approaches 
described above. 

The most generic learning scenario is when the 
structure of the network is unknown and there is missing 
data. Friedman & Koller (2003) proposed a new 
approach for this task and showed how to efficiently 
compute a sum over the exponential number of networks 
that are consistent with a fixed order over networks. 

Using a suitable version of any of the model types 
mentioned in this review, one can induce a Bayesian 
Network from a given training set. A classifier based on 
the network and on the given set of features X1,X2, ... Xn, 
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returns the label c, which maximizes the posterior 
probability p(c | X1, X2, ... Xn).  

Bayesian multi-nets allow different probabilistic 
dependencies for different values of the class node 
(Jordan, 1998). This suggests that simple BN classifiers 
should work better when there is a single underlying 
model of the dataset and multi-net classifier should work 
better when the underlying relationships among the 
features are very different for different classes (Cheng 
and Greiner, 2001).  

The most interesting feature of BNs, compared to 
decision trees or neural networks, is most certainly the 
possibility of taking into account prior information about 
a given problem, in terms of structural relationships 
among its features. This prior expertise, or domain 
knowledge, about the structure of a Bayesian network 
can take the following forms: 
1. Declaring that a node is a root node, i.e., it has no 

parents. 
2. Declaring that a node is a leaf node, i.e., it has no 

children. 
3. Declaring that a node is a direct cause or direct 

effect of another node. 
4. Declaring that a node is not directly connected to 

another node. 
5. Declaring that two nodes are independent, given a 

condition-set. 
6. Providing partial nodes ordering, that is, declare that 

a node appears earlier than another node in the 
ordering. 

7. Providing a complete node ordering. 
A problem of BN classifiers is that they are not 

suitable for datasets with many features (Cheng et al., 
2002). The reason for this is that trying to construct a 
very large network is simply not feasible in terms of time 
and space. A final problem is that before the induction, 
the numerical features need to be discretized in most 
cases. 

6 Instance-based learning 
Another category under the header of statistical 

methods is Instance-based learning. Instance-based 
learning algorithms are lazy-learning algorithms 
(Mitchell, 1997), as they delay the induction or 
generalization process until classification is performed. 
Lazy-learning algorithms require less computation time 
during the training phase than eager-learning algorithms 
(such as decision trees, neural and Bayes nets) but more 
computation time during the classification process. One 
of the most straightforward instance-based learning 
algorithms is the nearest neighbour algorithm. Aha 
(1997) and De Mantaras and Armengol (1998) presented 
a review of instance-based learning classifiers. Thus, in 
this study, apart from a brief description of the nearest 
neighbour algorithm, we will refer to some more recent 
works. 

k-Nearest Neighbour (kNN) is based on the principle 
that the instances within a dataset will generally exist in 
close proximity to other instances that have similar 
properties (Cover and Hart, 1967). If the instances are 

tagged with a classification label, then the value of the 
label of an unclassified instance can be determined by 
observing the class of its nearest neighbours. The kNN 
locates the k nearest instances to the query instance and 
determines its class by identifying the single most 
frequent class label. In Figure 8, a pseudo-code example 
for the instance base learning methods is illustrated. 

 
procedure InstanceBaseLearner(Testing 
Instances) 

for each testing instance  
{ 
find the k most nearest instances of 
the training set according to a 
distance metric 
Resulting Class= most frequent class 
label of the k nearest instances 
} 

Figure 8. Pseudo-code for instance-based learners 

In general, instances can be considered as points 
within an n-dimensional instance space where each of the 
n-dimensions corresponds to one of the n-features that 
are used to describe an instance. The absolute position of 
the instances within this space is not as significant as the 
relative distance between instances. This relative distance 
is determined by using a distance metric. Ideally, the 
distance metric must minimize the distance between two 
similarly classified instances, while maximizing the 
distance between instances of different classes. Many 
different metrics have been presented. The most 
significant ones are presented in Table 3. 
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Table 3. Approaches to define the distance between 
instances (x and y) 

For more accurate results, several algorithms use 
weighting schemes that alter the distance measurements 
and voting influence of each instance. A survey of 
weighting schemes is given by (Wettschereck et al., 
1997). 

The power of kNN has been demonstrated in a 
number of real domains, but there are some reservations 
about the usefulness of kNN, such as: i) they have large 
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storage requirements, ii) they are sensitive to the choice 
of the similarity function that is used to compare 
instances, iii) they lack a principled way to choose k, 
except through cross-validation or similar, 
computationally-expensive technique (Guo et al. 2003).  

The choice of k affects the performance of the kNN 
algorithm. Consider the following reasons why a k-
nearest neighbour classifier might incorrectly classify a 
query instance: 
• When noise is present in the locality of the query 

instance, the noisy instance(s) win the majority vote, 
resulting in the incorrect class being predicted. A 
larger k could solve this problem. 

• When the region defining the class, or fragment of 
the class, is so small that instances belonging to the 
class that surrounds the fragment win the majority 
vote. A smaller k could solve this problem. 
Wettschereck et al. (1997) investigated the behavior 

of the kNN in the presence of noisy instances. The 
experiments showed that the performance of kNN was 
not sensitive to the exact choice of k when k was large. 
They found that for small values of k, the kNN algorithm 
was more robust than the single nearest neighbour 
algorithm (1NN) for the majority of large datasets tested. 
However, the performance of the kNN was inferior to 
that achieved by the 1NN on small datasets (<100 
instances). 

Okamoto and Yugami (2003) represented the 
expected classification accuracy of k-NN as a function of 
domain characteristics including the number of training 
instances, the number of relevant and irrelevant 
attributes, the probability of each attribute, the noise rate 
for each type of noise, and k. They also explored the 
behavioral implications of the analyses by presenting the 
effects of domain characteristics on the expected 
accuracy of k-NN and on the optimal value of k for 
artificial domains. 

The time to classify the query instance is closely 
related to the number of stored instances and the number 
of features that are used to describe each instance. Thus, 
in order to reduce the number of stored instances, 
instance-filtering algorithms have been proposed (Kubat 
and Cooperson, 2001). Brighton & Mellish (2002) found 
that their ICF algorithm and RT3 algorithm (Wilson & 
Martinez, 2000) achieved the highest degree of instance 
set reduction as well as the retention of classification 
accuracy: they are close to achieving unintrusive storage 
reduction. The degree to which these algorithms perform 
is quite impressive: an average of 80% of cases are 
removed and classification accuracy does not drop 
significantly. One other choice in designing a training set 
reduction algorithm is to modify the instances using a 
new representation such as prototypes (Sanchez et al., 
2002).  

Breiman (1996) reported that the stability of nearest 
neighbor classifiers distinguishes them from decision 
trees and some kinds of neural networks. A learning 
method is termed "unstable" if small changes in the 
training-test set split can result in large changes in the 
resulting classifier.  

As we have already mentioned, the major 
disadvantage of instance-based classifiers is their large 
computational time for classification. A key issue in 
many applications is to determine which of the available 
input features should be used in modeling via feature 
selection (Yu & Liu, 2004), because it could improve the 
classification accuracy and scale down the required 
classification time. Furthermore, choosing a more 
suitable distance metric for the specific dataset can 
improve the accuracy of instance-based classifiers.  

7 Support Vector Machines  
Support Vector Machines (SVMs) are the newest 

supervised machine learning technique (Vapnik, 1995). 
An excellent survey of SVMs can be found in (Burges, 
1998), and a more recent book is by (Cristianini & 
Shawe-Taylor, 2000). Thus, in this study apart from a 
brief description of SVMs we will refer to some more 
recent works and the landmark that were published 
before these works. SVMs revolve around the notion of a 
“margin”—either side of a hyperplane that separates two 
data classes. Maximizing the margin and thereby creating 
the largest possible distance between the separating 
hyperplane and the instances on either side of it has been 
proven to reduce an upper bound on the expected 
generalisation error.  

If the training data is linearly separable, then a pair 
),( bw  exists such that 

Nb

Pb

ii
T

ii
T

∈−≤+

∈≥+

xxw

xxw

 allfor  ,1

 allfor  ,1
 

with the decision rule given by 
)sgn()(, bf T

b += xwxw  where w is termed the 

weight vector and b  the bias (or b−  is termed the 
threshold).  

 It is easy to show that, when it is possible to linearly 
separate two classes, an optimum separating hyperplane 
can be found by minimizing the squared norm of the 
separating hyperplane. The minimization can be set up as 
a convex quadratic programming (QP) problem:  

.,,1,1)( subject to
2
1)( Minimize 2

,

liby i
T

i

b
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=Φ
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ww
w (1) 

In the case of linearly separable data, once the 
optimum separating hyperplane is found, data points that 
lie on its margin are known as support vector points and 
the solution is represented as a linear combination of 
only these points (see Figure 9). Other data points are 
ignored. 
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Figure 9. Maximum Margin 

Therefore, the model complexity of an SVM is 
unaffected by the number of features encountered in the 
training data (the number of support vectors selected by 
the SVM learning algorithm is usually small). For this 
reason, SVMs are well suited to deal with learning tasks 
where the number of features is large with respect to the 
number of training instances. 

A general pseudo-code for SVMs is illustrated in 
Figure 10.  

 
1) Introduce positive Lagrange 
multipliers, one for each of the 
inequality constraints (1). This 
gives Lagrangian: 

( ) ∑∑
==

+−⋅−≡
N

i
i

N

i
iiiP bwxywL

11

2

2
1 αα  

2) Minimize PL  with respect to w, 
b. This is a convex quadratic 
programming problem. 

3) In the solution, those points 

for which 0>iα  are called “support 

vectors” 

Figure 10. Pseudo-code for SVMs 

Even though the maximum margin allows the SVM 
to select among multiple candidate hyperplanes, for 
many datasets, the SVM may not be able to find any 
separating hyperplane at all because the data contains 
misclassified instances. The problem can be addressed by 
using a soft margin that accepts some misclassifications 
of the training instances (Veropoulos et al. 1999). This 
can be done by introducing positive slack variables 

Nii ,...,1, =ξ  in the constraints, which then become: 
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Thus, for an error to occur the corresponding iξ  must 

exceed unity, so ∑i iξ  is an upper bound on the number 

of training errors. In this case the Lagrangian is: 
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where the iµ  are the Lagrange multipliers introduced to 

enforce positivity of the iξ .  
Nevertheless, most real-world problems involve non-

separable data for which no hyperplane exists that 
successfully separates the positive from negative 
instances in the training set. One solution to the 
inseparability problem is to map the data onto a higher-
dimensional space and define a separating hyperplane 
there. This higher-dimensional space is called the 
transformed feature space, as opposed to the input space 
occupied by the training instances. 

With an appropriately chosen transformed feature 
space of sufficient dimensionality, any consistent training 
set can be made separable. A linear separation in 
transformed feature space corresponds to a non-linear 
separation in the original input space. Mapping the data 
to some other (possibly infinite dimensional) Hilbert 
space H as .: HRd →Φ  Then the training algorithm 
would only depend on the data through dot products in 
H, i.e. on functions of the form )()( ji xx Φ⋅Φ . If there 
were a “kernel function” K such 
that )()(),( jiji xxxxK Φ⋅Φ= , we would only need 
to use K in the training algorithm, and would never need 
to explicitly determine Φ . Thus, kernels are a special 
class of function that allow inner products to be 
calculated directly in feature space, without performing 
the mapping described above (Scholkopf et al. 1999). 
Once a hyperplane has been created, the kernel function 
is used to map new points into the feature space for 
classification. 

The selection of an appropriate kernel function is 
important, since the kernel function defines the 
transformed feature space in which the training set 
instances will be classified. Genton (2001) described 
several classes of kernels, however, he did not address 
the question of which class is best suited to a given 
problem. It is common practice to estimate a range of 
potential settings and use cross-validation over the 
training set to find the best one. For this reason a 
limitation of SVMs is the low speed of the training. 
Selecting kernel settings can be regarded in a similar way 
to choosing the number of hidden nodes in a neural 
network. As long as the kernel function is legitimate, a 
SVM will operate correctly even if the designer does not 
know exactly what features of the training data are being 
used in the kernel-induced transformed feature space. 

Some popular kernels are the following: 
(1) ( )PyxyxK 1),( +⋅= ,  

(2) 
22 2

),(
σyx

eyxK
−−

= ,  

(3) ( )PyxyxK δκ −⋅= tanh),(   
Training the SVM is done by solving Nth 

dimensional QP problem, where N is the number of 
samples in the training dataset. Solving this problem in 
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standard QP methods involves large matrix operations, as 
well as time-consuming numerical computations, and is 
mostly very slow and impractical for large problems. 
Sequential Minimal Optimization (SMO) is a simple 
algorithm that can, relatively quickly, solve the SVM QP 
problem without any extra matrix storage and without 
using numerical QP optimization steps at all (Platt, 
1999). SMO decomposes the overall QP problem into QP 
sub-problems. Keerthi and Gilbert (2002) suggested two 
modified versions of SMO that are significantly faster 
than the original SMO in most situations.  

Finally, the training optimization problem of the 
SVM necessarily reaches a global minimum, and avoids 
ending in a local minimum, which may happen in other 
search algorithms such as neural networks. However, the 
SVM methods are binary, thus in the case of multi-class 
problem one must reduce the problem to a set of multiple 
binary classification problems. Discrete data presents 
another problem, although with suitable rescaling good 
results can be obtained. 

8 Discussion 
Supervised machine learning techniques are 

applicable in numerous domains. A number of ML 
application oriented papers can be found in (Saitta and 
Neri, 1998) and (Witten and Frank, 2005). Below, we 
present our conclusions about the use of each technique. 
Discussions of all the pros and cons of each individual 
algorithms and empirical comparisons of various bias 
options are beyond the scope of this paper; as the choice 
of algorithm always depends on the task at hand. 
However, we hope that the following remarks can help 
practitioners not to select a wholly inappropriate 
algorithm for their problem. 

Generally, SVMs and neural networks tend to 
perform much better when dealing with multi-
dimensions and continuous features. On the other hand, 
logic-based systems tend to perform better when dealing 
with discrete/categorical features. For neural network 
models and SVMs, a large sample size is required in 
order to achieve its maximum prediction accuracy 
whereas NB may need a relatively small dataset. 

SVMs are binary algorithm, thus we made use of 
error-correcting output coding (ECOC), or, in short, the 
output coding approach, to reduce a multi-class problem 
to a set of multiple binary classification problems 
(Crammer & Singer, 2002). Output coding for multi-
class problems is composed of two stages. In the training 
stage, we construct multiple independent binary 
classifiers, each of which is based on a different partition 
of the set of the labels into two disjointed sets. In the 
second stage, the classification part, the predictions of 
the binary classifiers are combined to extend a prediction 
on the original label of a test instance. 

There is general agreement that k-NN is very 
sensitive to irrelevant features: this characteristic can be 
explained by the way the algorithm works. Moreover, the 
presence of irrelevant features can make neural network 
training very inefficient, even impractical. 

Bias measures the contribution to error of the central 
tendency of the classifier when trained on different data 
(Bauer & Kohavi, 1999). Variance is a measure of the 
contribution to error of deviations from the central 
tendency. Learning algorithms with a high-bias profile 
usually generate simple, highly constrained models 
which are quite insensitive to data fluctuations, so that 
variance is low. Naive Bayes is considered to have high 
bias, because it assumes that the dataset under 
consideration can be summarized by a single probability 
distribution and that this model is sufficient to 
discriminate between classes. On the contrary, 
algorithms with a high-variance profile can generate 
arbitrarily complex models which fit data variations more 
readily. Examples of high-variance algorithms are 
decision trees, neural networks and SVMs. The obvious 
pitfall of high-variance model classes is overfitting. 

Most decision tree algorithms cannot perform well 
with problems that require diagonal partitioning. The 
division of the instance space is orthogonal to the axis of 
one variable and parallel to all other axes. Therefore, the 
resulting regions after partitioning are all 
hyperrectangles. The ANNs and the SVMs perform well 
when multicollinearity is present and a nonlinear 
relationship exists between the input and output features. 

Lazy learning methods require zero training time 
because the training instance is simply stored. Naive 
Bayes methods also train very quickly since they require 
only a single pass on the data either to count frequencies 
(for discrete variables) or to compute the normal 
probability density function (for continuous variables 
under normality assumptions). Univariate decision trees 
are also reputed to be quite fast—at any rate, several 
orders of magnitude faster than neural networks and 
SVMs. 

Naive Bayes requires little storage space during both 
the training and classification stages: the strict minimum 
is the memory needed to store the prior and conditional 
probabilities. The basic kNN algorithm uses a great deal 
of storage space for the training phase, and its execution 
space is at least as big as its training space. On the 
contrary, for all non-lazy learners, execution space is 
usually much smaller than training space, since the 
resulting classifier is usually a highly condensed 
summary of the data. Moreover, Naive Bayes and the 
kNN can be easily used as incremental learners whereas 
rule algorithms cannot. Naive Bayes is naturally robust to 
missing values since these are simply ignored in 
computing probabilities and hence have no impact on the 
final decision. On the contrary, kNN and neural networks 
require complete records to do their work. 

Moreover, kNN is generally considered intolerant of 
noise; its similarity measures can be easily distorted by 
errors in attribute values, thus leading it to misclassify a 
new instance on the basis of the wrong nearest neighbors. 
Contrary to kNN, rule learners and most decision trees 
are considered resistant to noise because their pruning 
strategies avoid overfitting the data in general and noisy 
data in particular. 

What is more, the number of model or runtime 
parameters to be tuned by the user is an indicator of an 
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algorithm’s ease of use. As expected, neural networks 
and SVMs have more parameters than the remaining 
techniques. The basic kNN has usually only a single 
parameter (k) which is relatively easy to tune. 

Logic-based algorithms are all considered very easy 
to interpret, whereas neural networks and SVMs have 
notoriously poor interpretability. k-NN is also considered 
to have very poor interpretability because an unstructured 
collection of training instances is far from readable, 
especially if there are many of them. While 
interpretability concerns the typical classifier generated 
by a learning algorithm, transparency refers to whether 
the principle of the method is easily understood. A 
particularly eloquent case is that of k-NN; while the 
resulting classifier is not quite interpretable, the method 
itself is quite transparent because it appeals to the 
intuition of human users, who spontaneously reason in a 
similar manner. Similarly, Naive Bayes' is very 

transparent, as it is easily grasped by users like 
physicians who find that probabilistic explanations 
replicate their way of diagnosing (Kononenko, 1993). 
Similarly, Naive Bayes' explanations in terms of the sum 
of information gains is very transparent, as it is easily 
grasped by users like physicians who find that 
explanations replicate their way of diagnosing 
(Kononenko, 1993). 

Finally, decision trees and NB generally have 
different operational profiles, when one is very accurate 
the other is not and vice versa. On the contrary, decision 
trees and rule classifiers have a similar operational 
profile. SVM and ANN have also a similar operational 
profile. No single learning algorithm can uniformly 
outperform other algorithms over all datasets. Features of 
learning techniques are compared in Table 4 (from 
evidence of existing empirical and theoretical studies). 

 
 Decision 

Trees 
Neural 
Networks 

Naïve 
Bayes 

kNN SVM Rule-
learners 

Accuracy in general ** *** * ** **** ** 
Speed of learning with 
respect to number of 
attributes and the number of 
instances 

*** * **** **** * ** 

Speed of classification **** **** **** * **** **** 
Tolerance to missing values *** * **** * ** ** 
Tolerance to irrelevant 
attributes 

*** * ** ** **** ** 

Tolerance to redundant 
attributes 

** ** * ** *** ** 

Tolerance to highly 
interdependent attributes (e.g. 
parity problems) 

** *** * * *** ** 

Dealing with 
discrete/binary/continuous 
attributes 

**** ***(not 
discrete) 

***(not 
continuous) 

***(not 
directly 
discrete) 

**(not 
discrete) 

***(not 
directly 
continuous) 

Tolerance to noise ** ** *** * ** * 
Dealing with danger of 
overfitting 

** * *** *** ** ** 

Attempts for incremental 
learning  

** *** **** **** ** * 

Explanation 
ability/transparency of 
knowledge/classifications 

**** * **** ** * **** 

Model parameter handling *** * **** *** * *** 
Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance) 

 
When faced with the decision “Which algorithm will 

be most accurate on our classification problem?”, the 
simplest approach is to estimate the accuracy of the 
candidate algorithms on the problem and select the one 
that appears to be most accurate. The concept of 
combining classifiers is proposed as a new direction for 
the improvement of the performance of individual 
classifiers. The goal of classification result integration 
algorithms is to generate more certain, precise and 
accurate system results. Numerous methods have been 
suggested for the creation of ensemble of classifiers 

(Dietterich, 2000). Although or perhaps because many 
methods of ensemble creation have been proposed, there 
is as yet no clear picture of which method is best (Villada 
and Drissi, 2002). Thus, an active area of research in 
supervised learning is the study of methods for the 
construction of good ensembles of classifiers. 
Mechanisms that are used to build ensemble of classifiers 
include: i) using different subsets of training data with a 
single learning method, ii) using different training 
parameters with a single training method (e.g., using 
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different initial weights for each neural network in an 
ensemble) and iii) using different learning methods. 

9 Conclusions 
This paper describes the best-known supervised 

techniques in relative detail. We should remark that our 
list of references is not a comprehensive list of papers 
discussing supervised methods: our aim was to produce a 
critical review of the key ideas, rather than a simple list 
of all publications which had discussed or made use of 
those ideas. Despite this, we hope that the references 
cited cover the major theoretical issues, and provide 
access to the main branches of the literature dealing with 
such methods, guiding the researcher in interesting 
research directions. 

The key question when dealing with ML 
classification is not whether a learning algorithm is 
superior to others, but under which conditions a 
particular method can significantly outperform others on 
a given application problem. Meta-learning is moving in 
this direction, trying to find functions that map datasets 
to algorithm performance (Kalousis and Gama, 2004). To 
this end, meta-learning uses a set of attributes, called 
meta-attributes, to represent the characteristics of 
learning tasks, and searches for the correlations between 
these attributes and the performance of learning 
algorithms. Some characteristics of learning tasks are: 
the number of instances, the proportion of categorical 
attributes, the proportion of missing values, the entropy 
of classes, etc. Brazdil et al. (2003) provided an 
extensive list of information and statistical measures for 
a dataset.  

After a better understanding of the strengths and 
limitations of each method, the possibility of integrating 
two or more algorithms together to solve a problem 
should be investigated. The objective is to utilize the 
strengthes of one method to complement the weaknesses 
of another. If we are only interested in the best possible 
classification accuracy, it might be difficult or impossible 
to find a single classifier that performs as well as a good 
ensemble of classifiers. Despite the obvious advantages, 
ensemble methods have at least three weaknesses. The 
first weakness is increased storage as a direct 
consequence of the requirement that all component 
classifiers, instead of a single classifier, need to be stored 
after training. The total storage depends on the size of 
each component classifier itself and the size of the 
ensemble (number of classifiers in the ensemble). The 
second weakness is increased computation because in 
order to classify an input query, all component classifiers 
(instead of a single classifier) must be processed. The last 
weakness is decreased comprehensibility. With 
involvement of multiple classifiers in decision-making, it 
is more difficult for non-expert users to perceive the 
underlying reasoning process leading to a decision. A 
first attempt for extracting meaningful rules from 
ensembles was presented in (Wall et al, 2003). 

For all these reasons, the application of ensemble 
methods is suggested only if we are only interested in the 
best possible classification accuracy. Another time-

consuming attempt that tried to increase the classification 
accuracy without decreasing comprehensibility is the 
wrapper feature selection procedure (Guyon & Elissee, 
2003). Theoretically, having more features should result 
in more discriminating power. However, practical 
experience with machine learning algorithms has shown 
that this is not always the case. Wrapper methods wrap 
the feature selection around the induction algorithm to be 
used, using cross-validation to predict the benefits of 
adding or removing a feature from the feature subset 
used. 

Finally, many researchers in machine learning are 
accustomed to dealing with flat files and algorithms that 
run in minutes or seconds on a desktop platform. For 
these researchers, 100,000 instances with two dozen 
features is the beginning of the range of “very large” 
datasets. However, the database community deals with 
gigabyte databases. Of course, it is unlikely that all the 
data in a data warehouse would be mined simultaneously. 
Most of the current learning algorithms are 
computationally expensive and require all data to be 
resident in main memory, which is clearly untenable for 
many realistic problems and databases. An orthogonal 
approach is to partition the data, avoiding the need to run 
algorithms on very large datasets. Distributed machine 
learning involves breaking the dataset up into subsets, 
learning from these subsets concurrently and combining 
the results (Basak and Kothari, 2004). Distributed agent 
systems can be used for this parallel execution of 
machine learning processes (Klusch et al., 2003). Non-
parallel machine learning algorithms can still be applied 
on local data (relative to the agent) because information 
about other data sources is not necessary for local 
operations. It is the responsibility of agents to integrate 
the information from numerous local sources in 
collaboration with other agents.   
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