
 Informatica 31 (2007) 249-268 249

Supervised Machine Learning: A Review of Classification
Techniques
S. B. Kotsiantis
Department of Computer Science and Technology
University of Peloponnese, Greece
End of Karaiskaki, 22100 , Tripolis GR.
Tel: +30 2710 372164
Fax: +30 2710 372160
E-mail: sotos@math.upatras.gr

Overview paper

Keywords: classifiers, data mining techniques, intelligent data analysis, learning algorithms

Received: July 16, 2007

Supervised machine learning is the search for algorithms that reason from externally supplied instances
to produce general hypotheses, which then make predictions about future instances. In other words, the
goal of supervised learning is to build a concise model of the distribution of class labels in terms of
predictor features. The resulting classifier is then used to assign class labels to the testing instances
where the values of the predictor features are known, but the value of the class label is unknown. This
paper describes various supervised machine learning classification techniques. Of course, a single
article cannot be a complete review of all supervised machine learning classification algorithms (also
known induction classification algorithms), yet we hope that the references cited will cover the major
theoretical issues, guiding the researcher in interesting research directions and suggesting possible bias
combinations that have yet to be explored.
Povzetek: Podan je pregled metod strojnega učenja.

1 Introduction
There are several applications for Machine Learning
(ML), the most significant of which is data mining.
People are often prone to making mistakes during
analyses or, possibly, when trying to establish
relationships between multiple features. This makes it
difficult for them to find solutions to certain problems.
Machine learning can often be successfully applied to
these problems, improving the efficiency of systems and
the designs of machines.
Every instance in any dataset used by machine learning
algorithms is represented using the same set of features.
The features may be continuous, categorical or binary. If
instances are given with known labels (the corresponding
correct outputs) then the learning is called supervised
(see Table 1), in contrast to unsupervised learning, where
instances are unlabeled. By applying these unsupervised
(clustering) algorithms, researchers hope to discover
unknown, but useful, classes of items (Jain et al., 1999).
Another kind of machine learning is reinforcement
learning (Barto & Sutton, 1997). The training
information provided to the learning system by the
environment (external trainer) is in the form of a scalar
reinforcement signal that constitutes a measure of how
well the system operates. The learner is not told which
actions to take, but rather must discover which actions
yield the best reward, by trying each action in turn.

Numerous ML applications involve tasks that can be
set up as supervised. In the present paper, we have
concentrated on the techniques necessary to do this. In
particular, this work is concerned with classification
problems in which the output of instances admits only
discrete, unordered values.

Table 1. Instances with known labels (the corresponding
correct outputs)

We have limited our references to recent refereed
journals, published books and conferences. In addition,
we have added some references regarding the original
work that started the particular line of research under
discussion. A brief review of what ML includes can be
found in (Dutton & Conroy, 1996). De Mantaras and
Armengol (1998) also presented a historical survey of
logic and instance based learning classifiers. The reader
should be cautioned that a single article cannot be a

250 Informatica 31 (2007) 249–268 S.B. Kotsiantis

comprehensive review of all classification learning
algorithms. Instead, our goal has been to provide a
representative sample of existing lines of research in
each learning technique. In each of our listed areas, there
are many other papers that more comprehensively detail
relevant work.
Our next section covers wide-ranging issues of
supervised machine learning such as data pre-processing
and feature selection. Logical/Symbolic techniques are
described in section 3, whereas perceptron-based
techniques are analyzed in section 4. Statistical
techniques for ML are covered in section 5. Section 6
deals with instance based learners, while Section 7 deals
with the newest supervised ML technique—Support
Vector Machines (SVMs). In section 8, some general
directions are given about classifier selection. Finally, the
last section concludes this work.

2 General issues of supervised
learning algorithms

Inductive machine learning is the process of learning
a set of rules from instances (examples in a training set),
or more generally speaking, creating a classifier that can
be used to generalize from new instances. The process of
applying supervised ML to a real-world problem is
described in Figure 1.

Problem

Data pre-processing

Definition of
training set

Algorithm
selection

Training

Evaluation
with test set

OK? Classifier
Yes

Identification
of required

data

Parameter tuning

No

Figure 1. The process of supervised ML

The first step is collecting the dataset. If a requisite

expert is available, then s/he could suggest which fields
(attributes, features) are the most informative. If not, then
the simplest method is that of “brute-force,” which
means measuring everything available in the hope that
the right (informative, relevant) features can be isolated.
However, a dataset collected by the “brute-force” method
is not directly suitable for induction. It contains in most
cases noise and missing feature values, and therefore
requires significant pre-processing (Zhang et al., 2002).

The second step is the data preparation and data pre-
processiong. Depending on the circumstances,
researchers have a number of methods to choose from to
handle missing data (Batista & Monard, 2003). Hodge &
Austin (2004) have recently introduced a survey of
contemporary techniques for outlier (noise) detection.
These researchers have identified the techniques’
advantages and disadvantages. Instance selection is not
only used to handle noise but to cope with the
infeasibility of learning from very large datasets.
Instance selection in these datasets is an optimization
problem that attempts to maintain the mining quality
while minimizing the sample size (Liu and Motoda,
2001). It reduces data and enables a data mining
algorithm to function and work effectively with very
large datasets. There is a variety of procedures for
sampling instances from a large dataset (Reinartz, 2002).

Feature subset selection is the process of identifying
and removing as many irrelevant and redundant features
as possible (Yu & Liu, 2004). This reduces the
dimensionality of the data and enables data mining
algorithms to operate faster and more effectively. The
fact that many features depend on one another often
unduly influences the accuracy of supervised ML
classification models. This problem can be addressed by
constructing new features from the basic feature set
(Markovitch & Rosenstein, 2002). This technique is
called feature construction/transformation. These newly
generated features may lead to the creation of more
concise and accurate classifiers. In addition, the
discovery of meaningful features contributes to better
comprehensibility of the produced classifier, and a better
understanding of the learned concept.

2.1 Algorithm selection
The choice of which specific learning algorithm we

should use is a critical step. Once preliminary testing is
judged to be satisfactory, the classifier (mapping from
unlabeled instances to classes) is available for routine
use. The classifier’s evaluation is most often based on
prediction accuracy (the percentage of correct prediction
divided by the total number of predictions). There are at
least three techniques which are used to calculate a
classifier’s accuracy. One technique is to split the
training set by using two-thirds for training and the other
third for estimating performance. In another technique,
known as cross-validation, the training set is divided into
mutually exclusive and equal-sized subsets and for each
subset the classifier is trained on the union of all the
other subsets. The average of the error rate of each subset
is therefore an estimate of the error rate of the classifier.
Leave-one-out validation is a special case of cross
validation. All test subsets consist of a single instance.
This type of validation is, of course, more expensive
computationally, but useful when the most accurate
estimate of a classifier’s error rate is required.

If the error rate evaluation is unsatisfactory, we must
return to a previous stage of the supervised ML process
(as detailed in Figure 1). A variety of factors must be
examined: perhaps relevant features for the problem are

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 251

not being used, a larger training set is needed, the
dimensionality of the problem is too high, the selected
algorithm is inappropriate or parameter tuning is needed.
Another problem could be that the dataset is imbalanced
(Japkowicz & Stephen, 2002).

A common method for comparing supervised ML
algorithms is to perform statistical comparisons of the
accuracies of trained classifiers on specific datasets. If
we have sufficient supply of data, we can sample a
number of training sets of size N, run the two learning
algorithms on each of them, and estimate the difference
in accuracy for each pair of classifiers on a large test set.
The average of these differences is an estimate of the
expected difference in generalization error across all
possible training sets of size N, and their variance is an
estimate of the variance of the classifier in the total set.
Our next step is to perform paired t-test to check the null
hypothesis that the mean difference between the
classifiers is zero. This test can produce two types of
errors. Type I error is the probability that the test rejects
the null hypothesis incorrectly (i.e. it finds a “significant”
difference although there is none). Type II error is the
probability that the null hypothesis is not rejected, when
there actually is a difference. The test’s Type I error will
be close to the chosen significance level.

In practice, however, we often have only one dataset
of size N and all estimates must be obtained from this
sole dataset. Different training sets are obtained by sub-
sampling, and the instances not sampled for training are
used for testing. Unfortunately this violates the
independence assumption necessary for proper
significance testing. The consequence of this is that Type
I errors exceed the significance level. This is problematic
because it is important for the researcher to be able to
control Type I errors and know the probability of
incorrectly rejecting the null hypothesis. Several heuristic
versions of the t-test have been developed to alleviate
this problem (Dietterich, 1998), (Nadeau and Bengio,
2003).

Ideally, we would like the test’s outcome to be
independent of the particular partitioning resulting from
the randomization process, because this would make it
much easier to replicate experimental results published in
the literature. However, in practice there is always
certain sensitivity to the partitioning used. To measure
replicability we need to repeat the same test several times
on the same data with different random partitionings —
usually ten repetitions— and count how often the
outcome is the same (Bouckaert, 2003).

Supervised classification is one of the tasks most
frequently carried out by so-called Intelligent Systems.
Thus, a large number of techniques have been developed
based on Artificial Intelligence (Logical/Symbolic
techniques), Perceptron-based techniques and Statistics
(Bayesian Networks, Instance-based techniques). In next
sections, we will focus on the most important supervised
machine learning techniques, starting with
logical/symbolic algorithms.

3 Logic based algorithms

In this section we will concentrate on two groups of

logical (symbolic) learning methods: decision trees and
rule-based classifiers.

3.1 Decision trees
Murthy (1998) provided an overview of work in

decision trees and a sample of their usefulness to
newcomers as well as practitioners in the field of
machine learning. Thus, in this work, apart from a brief
description of decision trees, we will refer to some more
recent works than those in Murthy’s article as well as
few very important articles that were published earlier.
Decision trees are trees that classify instances by sorting
them based on feature values. Each node in a decision
tree represents a feature in an instance to be classified,
and each branch represents a value that the node can
assume. Instances are classified starting at the root node
and sorted based on their feature values. Figure 2 is an
example of a decision tree for the training set of Table 2.

at1

at2 No No

Yes at3 at4

No Yes No

a3

Yes

b3

a2 b2 c2

a4 b4

a1 b1 c1

Figure 2. A decision tree

at1 at2 at3 at4 Class
a1 a2 a3 a4 Yes
a1 a2 a3 b4 Yes
a1 b2 a3 a4 Yes
a1 b2 b3 b4 No
a1 c2 a3 a4 Yes
a1 c2 a3 b4 No
b1 b2 b3 b4 No
c1 b2 b3 b4 No

Table 2. Training Set

Using the decision tree depicted in Figure 2 as an
example, the instance 〈at1 = a1, at2 = b2, at3 = a3, at4 =
b4〉 would sort to the nodes: at1, at2, and finally at3,
which would classify the instance as being positive

252 Informatica 31 (2007) 249–268 S.B. Kotsiantis

(represented by the values “Yes”). The problem of
constructing optimal binary decision trees is an NP-
complete problem and thus theoreticians have searched
for efficient heuristics for constructing near-optimal
decision trees.

The feature that best divides the training data would
be the root node of the tree. There are numerous methods
for finding the feature that best divides the training data
such as information gain (Hunt et al., 1966) and gini
index (Breiman et al., 1984). While myopic measures
estimate each attribute independently, ReliefF algorithm
(Kononenko, 1994) estimates them in the context of
other attributes. However, a majority of studies have
concluded that there is no single best method (Murthy,
1998). Comparison of individual methods may still be
important when deciding which metric should be used in
a particular dataset. The same procedure is then repeated
on each partition of the divided data, creating sub-trees
until the training data is divided into subsets of the same
class.

Figure 3 presents a general pseudo-code for building
decision trees.

Check for base cases
 For each attribute a

Find the feature that best
divides the training data such
as information gain from
splitting on a

Let a best be the attribute with the
highest normalized information gain

Create a decision node node that
splits on a_best

Recurse on the sub-lists obtained by
splitting on a best and add those
nodes as children of node

Figure 3. Pseudo-code for building a decision tree

A decision tree, or any learned hypothesis h, is said to
overfit training data if another hypothesis h′ exists that
has a larger error than h when tested on the training data,
but a smaller error than h when tested on the entire
dataset. There are two common approaches that decision
tree induction algorithms can use to avoid overfitting
training data: i) Stop the training algorithm before it
reaches a point at which it perfectly fits the training data,
ii) Prune the induced decision tree. If the two trees
employ the same kind of tests and have the same
prediction accuracy, the one with fewer leaves is usually
preferred. Breslow & Aha (1997) survey methods of tree
simplification to improve their comprehensibility.

The most straightforward way of tackling overfitting
is to pre-prune the decision tree by not allowing it to
grow to its full size. Establishing a non-trivial
termination criterion such as a threshold test for the
feature quality metric can do that. Decision tree
classifiers usually employ post-pruning techniques that
evaluate the performance of decision trees, as they are
pruned by using a validation set. Any node can be
removed and assigned the most common class of the
training instances that are sorted to it. A comparative
study of well-known pruning methods is presented in
(Elomaa, 1999). Elomaa (1999) concluded that there is

no single best pruning method. More details, about not
only postprocessing but also about preprocessing of
decision tree algorithms can be fould in (Bruha, 2000).

Even though the divide-and-conquer algorithm is
quick, efficiency can become important in tasks with
hundreds of thousands of instances. The most time-
consuming aspect is sorting the instances on a numeric
feature to find the best threshold t. This can be expedited
if possible thresholds for a numeric feature are
determined just once, effectively converting the feature
to discrete intervals, or if the threshold is determined
from a subset of the instances. Elomaa & Rousu (1999)
stated that the use of binary discretization with C4.5
needs about the half training time of using C4.5 multi-
splitting. In addition, according to their experiments,
multi-splitting of numerical features does not carry any
advantage in prediction accuracy over binary splitting.

Decision trees are usually univariate since they use
splits based on a single feature at each internal node.
Most decision tree algorithms cannot perform well with
problems that require diagonal partitioning. The division
of the instance space is orthogonal to the axis of one
variable and parallel to all other axes. Therefore, the
resulting regions after partitioning are all hyper-
rectangles. However, there are a few methods that
construct multivariate trees. One example is Zheng’s
(1998), who improved the classification accuracy of the
decision trees by constructing new binary features with
logical operators such as conjunction, negation, and
disjunction. In addition, Zheng (2000) created at-least M-
of-N features. For a given instance, the value of an at-
least M-of-N representation is true if at least M of its
conditions is true of the instance, otherwise it is false.
Gama and Brazdil (1999) combined a decision tree with
a linear discriminant for constructing multivariate
decision trees. In this model, new features are computed
as linear combinations of the previous ones.

Decision trees can be significantly more complex
representation for some concepts due to the replication
problem. A solution is using an algorithm to implement
complex features at nodes in order to avoid replication.
Markovitch and Rosenstein (2002) presented the FICUS
construction algorithm, which receives the standard input
of supervised learning as well as a feature representation
specification, and uses them to produce a set of generated
features. While FICUS is similar in some aspects to other
feature construction algorithms, its main strength is its
generality and flexibility. FICUS was designed to
perform feature generation given any feature
representation specification complying with its general
purpose grammar.

The most well-know algorithm in the literature for
building decision trees is the C4.5 (Quinlan, 1993). C4.5
is an extension of Quinlan's earlier ID3 algorithm
(Quinlan, 1979). One of the latest studies that compare
decision trees and other learning algorithms has been
done by (Tjen-Sien Lim et al. 2000). The study shows
that C4.5 has a very good combination of error rate and
speed. In 2001, Ruggieri presented an analytic evaluation
of the runtime behavior of the C4.5 algorithm, which
highlighted some efficiency improvements. Based on this

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 253

analytic evaluation, he implemented a more efficient
version of the algorithm, called EC4.5. He argued that
his implementation computed the same decision trees as
C4.5 with a performance gain of up to five times.

C4.5 assumes that the training data fits in memory,
thus, Gehrke et al. (2000) proposed Rainforest, a
framework for developing fast and scalable algorithms to
construct decision trees that gracefully adapt to the
amount of main memory available. It is clear that in most
decision tree algorithms; a substantial effort is “wasted”
in the building phase on growing portions of the tree that
are subsequently pruned in the pruning phase. Rastogi &
Shim (2000) proposed PUBLIC, an improved decision
tree classifier that integrates the second “pruning” phase
with the initial “building” phase. In PUBLIC, a node is
not expanded during the building phase, if it is
determined that the node will be pruned during the
subsequent pruning phase.

Olcay and Onur (2007) show how to parallelize C4.5
algorithm in three ways: (i) feature based, (ii) node based
(iii) data based manner. Baik and Bala (2004) presented
preliminary work on an agent-based approach for the
distributed learning of decision trees.

To sum up, one of the most useful characteristics of
decision trees is their comprehensibility. People can
easily understand why a decision tree classifies an
instance as belonging to a specific class. Since a decision
tree constitutes a hierarchy of tests, an unknown feature
value during classification is usually dealt with by
passing the example down all branches of the node where
the unknown feature value was detected, and each branch
outputs a class distribution. The output is a combination
of the different class distributions that sum to 1. The
assumption made in the decision trees is that instances
belonging to different classes have different values in at
least one of their features. Decision trees tend to perform
better when dealing with discrete/categorical features.

3.2 Learning set of rules

Decision trees can be translated into a set of rules by

creating a separate rule for each path from the root to a
leaf in the tree (Quinlan, 1993). However, rules can also
be directly induced from training data using a variety of
rule-based algorithms. Furnkranz (1999) provided an
excellent overview of existing work in rule-based
methods.

Classification rules represent each class by
disjunctive normal form (DNF). A k-DNF expression is
of the form: (X1∧X2∧…∧Xn) ∨ (Xn+1∧Xn+2∧…X2n) ∨ …∨
(X(k-1)n+1∧X(k-1)n+2∧…∧Xkn), where k is the number of
disjunctions, n is the number of conjunctions in each
disjunction, and Xn is defined over the alphabet X1, X2,…,
Xj ∪ ~X1, ~X2, …,~Xj. The goal is to construct the
smallest rule-set that is consistent with the training data.
A large number of learned rules is usually a sign that the
learning algorithm is attempting to “remember” the
training set, instead of discovering the assumptions that
govern it. A separate-and-conquer algorithm (covering
algorithms) search for a rule that explains a part of its

training instances, separates these instances and
recursively conquers the remaining instances by learning
more rules, until no instances remain. In Figure 4, a
general pseudo-code for rule learners is presented.

The difference between heuristics for rule learning
and heuristics for decision trees is that the latter evaluate
the average quality of a number of disjointed sets (one
for each value of the feature that is tested), while rule
learners only evaluate the quality of the set of instances
that is covered by the candidate rule. More advanced rule
learners differ from this simple pseudo-code mostly by
adding additional mechanisms to prevent over-fitting of
the training data, for instance by stopping the
specialization process with the use of a quality measure
or by generalizing overly specialized rules in a separate
pruning phase (Furnkranz, 1997).

On presentation of training examples

training examples:
1. Initialise rule set to a default

(usually empty, or a rule assigning all
objects to the most common class).

2. Initialise examples to either all
available examples or all examples not
correctly handled by rule set.

3. Repeat
(a) Find best, the best rule with

respect to examples.
(b) If such a rule can be found

i. Add best to rule set.
ii. Set examples to all
examples not handled
correctly by rule set.

until no rule best can be found
(for instance, because no
examples remain).

Figure 4. Pseudocode for rule learners

It is therefore important for a rule induction system
to generate decision rules that have high predictability or
reliability. These properties are commonly measured by a
function called rule quality. A rule quality measure is
needed in both the rule induction and classification
processes such as J-measure (Smyth and Goodman,
1990). In rule induction, a rule quality measure can be
used as a criterion in the rule specification and/or
generalization process. In classification, a rule quality
value can be associated with each rule to resolve
conflicts when multiple rules are satisfied by the example
to be classified. An and Cercone (2000) surveyed a
number of statistical and empirical rule quality measures.
Furnkranz and Flach (2005) provided an analysis of the
behavior of separate-and-conquer or covering rule
learning algorithms by visualizing their evaluation
metrics. When using unordered rule sets, conflicts can
arise between the rules, i.e., two or more rules cover the
same example but predict different classes. Lindgren
(2004) has recently given a survey of methods used to
solve this type of conflict.

RIPPER is a well-known rule-based algorithm
(Cohen, 1995). It forms rules through a process of
repeated growing and pruning. During the growing phase
the rules are made more restrictive in order to fit the
training data as closely as possible. During the pruning
phase, the rules are made less restrictive in order to avoid

254 Informatica 31 (2007) 249–268 S.B. Kotsiantis

overfitting, which can cause poor performance on unseen
instances. RIPPER handles multiple classes by ordering
them from least to most prevalent and then treating each
in order as a distinct two-class problem. Other
fundamental learning classifiers based on decision rules
include the AQ family (Michalski and Chilausky, 1980)
and CN2 (Clark and Niblett, 1989). Bonarini (2000) gave
an overview of fuzzy rule-based classifiers. Fuzzy logic
tries to improve classification and decision support
systems by allowing the use of overlapping class
definitions.

Furnkranz (2001) investigated the use of round robin
binarization (or pairwise classification) as a technique for
handling multi-class problems with separate and conquer
rule learning algorithms. The round robin binarization
transforms a c-class problem into c(c-1)/2 two-class
problems <i,j>, one for each set of classes {i,j}, i= 1 ... c-
1, j = i+1 ...c. The binary classifier for problem <i,j> is
trained with examples of classes i and j, whereas
examples of classes k ≠ i,j are ignored for this problem.
A crucial point, of course, is determining how to decode
the predictions of the pairwise classifiers for a final
prediction. Furnkranz (2001) implemented a simple
voting technique: when classifying a new example, each
of the learned base classifiers determines to which of its
two classes the example is more likely to belong to. The
winner is assigned a point, and in the end, the algorithm
predicts the class that has accumulated the most points.
His experimental results show that, in comparison to
conventional, ordered or unordered binarization, the
round robin approach may yield significant gains in
accuracy without risking a poor performance.

There are numerous other rule-based learning
algorithms. Furnkranz (1999) referred to most of them.
The PART algorithm infers rules by repeatedly
generating partial decision trees, thus combining the two
major paradigms for rule generation − creating rules
from decision trees and the separate-and-conquer rule-
learning technique. Once a partial tree has been build, a
single rule is extracted from it and for this reason the
PART algorithm avoids postprocessing (Frank and
Witten, 1998).

For the task of learning binary problems, rules are
more comprehensible than decision trees because typical
rule-based approaches learn a set of rules for only the
positive class. On the other hand, if definitions for
multiple classes are to be learned, the rule-based learner
must be run separately for each class separately. For each
individual class a separate rule set is obtained and these
sets may be inconsistent (a particular instance might be
assigned multiple classes) or incomplete (no class might
be assigned to a particular instance). These problems can
be solved with decision lists (the rules in a rule set are
supposed to be ordered, a rule is only applicable when
none of the preceding rules are applicable) but with the
decision tree approach, they simply do not occur.
Moreover, the divide and conquer approach (used by
decision trees) is usually more efficient than the separate
and conquer approach (used by rule-based algorithms).
Separate-and-conquer algorithms look at one class at a
time, and try to produce rules that uniquely identify the

class. They do this independent of all the other classes in
the training set. For this reason, for small datasets, it may
be better to use a divide-and-conquer algorithm that
considers the entire set at once.

To sum up, the most useful characteristic of rule-
based classifiers is their comprehensibility. In addition,
even though some rule-based classifiers can deal with
numerical features, some experts propose these features
should be discretized before induction, so as to reduce
training time and increase classification accuracy (An
and Cercone, 1999). Classification accuracy of rule
learning algorithms can be improved by combining
features (such as in decision trees) using the background
knowledge of the user (Flach and Lavrac, 2000) or
automatic feature construction algorithms (Markovitch
and Rosenstein, 2002).

4 Perceptron-based techniques
Other well-known algorithms are based on the notion

of perceptron (Rosenblatt, 1962).

4.1 Single layered perceptrons
A single layered perceptron can be briefly described

as follows:
If x1 through xn are input feature values and w1

through wn are connection weights/prediction vector
(typically real numbers in the interval [-1, 1]), then
perceptron computes the sum of weighted inputs:

i i
i

x w∑ and output goes through an adjustable threshold:

if the sum is above threshold, output is 1; else it is 0.
The most common way that the perceptron algorithm

is used for learning from a batch of training instances is
to run the algorithm repeatedly through the training set
until it finds a prediction vector which is correct on all of
the training set. This prediction rule is then used for
predicting the labels on the test set.

WINNOW (Littlestone & Warmuth, 1994) is based
on the perceptron idea and updates its weights as follows.
If prediction value y΄=0 and actual value y=1, then the
weights are too low; so, for each feature such that xi=1,
wi=wi·α, where α is a number greater than 1, called the
promotion parameter. If prediction value y΄= 1 and
actual value y=0, then the weights were too high; so, for
each feature xi = 1, it decreases the corresponding weight
by setting wi=wi·β, where 0<β<1, called the demotion
parameter. Generally, WINNOW is an example of an
exponential update algorithm. The weights of the
relevant features grow exponentially but the weights of
the irrelevant features shrink exponentially. For this
reason, it was experimentally proved (Blum, 1997) that
WINNOW can adapt rapidly to changes in the target
function (concept drift). A target function (such as user
preferences) is not static in time. In order to enable, for
example, a decision tree algorithm to respond to changes,
it is necessary to decide which old training instances
could be deleted. A number of algorithms similar to

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 255

WINNOW have been developed, such as those by Auer
& Warmuth (1998).

Freund & Schapire (1999) created a newer
algorithm, called voted-perceptron, which stores more
information during training and then uses this elaborate
information to generate better predictions about the test
data. The information it maintains during training is the
list of all prediction vectors that were generated after
each and every mistake. For each such vector, it counts
the number of iterations it “survives” until the next
mistake is made; Freund & Schapire refer to this count as
the “weight” of the prediction vector. To calculate a
prediction the algorithm computes the binary prediction
of each one of the prediction vectors and combines all
these predictions by means of a weighted majority vote.
The weights used are the survival times described above.

To sum up, we have discussed perceptron-like linear
algorithms with emphasis on their superior time
complexity when dealing with irrelevant features. This
can be a considerable advantage when there are many
features, but only a few relevant ones. Generally, all
perceptron-like linear algorithms are anytime online
algorithms that can produce a useful answer regardless of
how long they run (Kivinen, 2002). The longer they run,
the better the result they produce. Finally, perceptron-like
methods are binary, and therefore in the case of multi-
class problem one must reduce the problem to a set of
multiple binary classification problems.

4.2 Multilayered perceptrons
Perceptrons can only classify linearly separable sets

of instances. If a straight line or plane can be drawn to
seperate the input instances into their correct categories,
input instances are linearly separable and the perceptron
will find the solution. If the instances are not linearly
separable learning will never reach a point where all
instances are classified properly. Multilayered
Perceptrons (Artificial Neural Networks) have been
created to try to solve this problem (Rumelhart et al.,
1986). Zhang (2000) provided an overview of existing
work in Artificial Neural Networks (ANNs). Thus, in this
study, apart from a brief description of the ANNs we will
mainly refer to some more recent articles. A multi-layer
neural network consists of large number of units
(neurons) joined together in a pattern of connections
(Figure 5). Units in a net are usually segregated into three
classes: input units, which receive information to be
processed; output units, where the results of the
processing are found; and units in between known as
hidden units. Feed-forward ANNs (Figure 5) allow
signals to travel one way only, from input to output.

Figure 5. Feed-forward ANN

First, the network is trained on a set of paired data to
determine input-output mapping. The weights of the
connections between neurons are then fixed and the
network is used to determine the classifications of a new
set of data.

During classification the signal at the input units
propagates all the way through the net to determine the
activation values at all the output units. Each input unit
has an activation value that represents some feature
external to the net. Then, every input unit sends its
activation value to each of the hidden units to which it is
connected. Each of these hidden units calculates its own
activation value and this signal are then passed on to
output units. The activation value for each receiving unit
is calculated according to a simple activation function.
The function sums together the contributions of all
sending units, where the contribution of a unit is defined
as the weight of the connection between the sending and
receiving units multiplied by the sending unit's activation
value. This sum is usually then further modified, for
example, by adjusting the activation sum to a value
between 0 and 1 and/or by setting the activation value to
zero unless a threshold level for that sum is reached.

Generally, properly determining the size of the
hidden layer is a problem, because an underestimate of
the number of neurons can lead to poor approximation
and generalization capabilities, while excessive nodes
can result in overfitting and eventually make the search
for the global optimum more difficult. An excellent
argument regarding this topic can be found in (Camargo
& Yoneyama, 2001). Kon & Plaskota (2000) also studied
the minimum amount of neurons and the number of
instances necessary to program a given task into feed-
forward neural networks.

ANN depends upon three fundamental aspects, input
and activation functions of the unit, network architecture
and the weight of each input connection. Given that the
first two aspects are fixed, the behavior of the ANN is
defined by the current values of the weights. The weights
of the net to be trained are initially set to random values,
and then instances of the training set are repeatedly
exposed to the net. The values for the input of an
instance are placed on the input units and the output of
the net is compared with the desired output for this
instance. Then, all the weights in the net are adjusted
slightly in the direction that would bring the output
values of the net closer to the values for the desired
output. There are several algorithms with which a
network can be trained (Neocleous & Schizas, 2002).
However, the most well-known and widely used learning
algorithm to estimate the values of the weights is the
Back Propagation (BP) algorithm. Generally, BP
algorithm includes the following six steps:
1. Present a training sample to the neural network.
2. Compare the network's output to the desired output

from that sample. Calculate the error in each output
neuron.

3. For each neuron, calculate what the output should
have been, and a scaling factor, how much lower or
higher the output must be adjusted to match the
desired output. This is the local error.

256 Informatica 31 (2007) 249–268 S.B. Kotsiantis

4. Adjust the weights of each neuron to lower the local
error.

5. Assign "blame" for the local error to neurons at the
previous level, giving greater responsibility to
neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the
previous level, using each one's "blame" as its error.

With more details, the general rule for updating
weights is: ijji OW ηδ=∆ where:

• η is a positive number (called learning rate), which
determines the step size in the gradient descent
search. A large value enables back propagation to
move faster to the target weight configuration but it
also increases the chance of its never reaching this
target.

• Oi is the output computed by neuron i
•))(1(jjjjj OTOO −−=δ for the output neurons,

where Tj the wanted output for the neuron j and
• kj

k
kjjj WOO ∑−= δδ)1(for the internal

(hidden) neurons
The back propagation algorithm will have to perform

a number of weight modifications before it reaches a
good weight configuration. For n training instances and
W weights, each repetition/epoch in the learning process
takes O(nW) time; but in the worst case, the number of
epochs can be exponential to the number of inputs. For
this reason, neural nets use a number of different
stopping rules to control when training ends. The four
most common stopping rules are: i) Stop after a specified
number of epochs, ii) Stop when an error measure
reaches a threshold, iii) Stop when the error measure has
seen no improvement over a certain number of epochs,
iv) Stop when the error measure on some of the data that
has been sampled from the training data (hold-out set,
validation set) is more than a certain amount than the
error measure on the training set (overfitting).

Feed-forward neural networks are usually trained by
the original back propagation algorithm or by some
variant. Their greatest problem is that they are too slow
for most applications. One of the approaches to speed up
the training rate is to estimate optimal initial weights
(Yam & Chow, 2001). Another method for training
multilayered feedforward ANNs is Weight-elimination
algorithm that automatically derives the appropriate
topology and therefore avoids also the problems with
overfitting (Weigend et al., 1991). Genetic algorithms
have been used to train the weights of neural networks
(Siddique and Tokhi, 2001) and to find the architecture
of neural networks (Yen and Lu, 2000). There are also
Bayesian methods in existence which attempt to train
neural networks. Vivarelli & Williams (2001) compare
two Bayesian methods for training neural networks. A
number of other techniques have emerged recently which
attempt to improve ANNs training algorithms by
changing the architecture of the networks as training
proceeds. These techniques include pruning useless
nodes or weights (Castellano et al. 1997), and

constructive algorithms, where extra nodes are added as
required (Parekh et al. 2000).

4.3 Radial Basis Function (RBF) networks
ANN learning can be achieved, among others,

through i) synaptic weight modification, ii) network
structure modifications (creating or deleting neurons or
synaptic connections), iii) use of suitable attractors or
other suitable stable state points, iv) appropriate choice
of activation functions. Since back-propagation training
is a gradient descending process, it may get stuck in local
minima in this weight-space. It is because of this
possibility that neural network models are characterized
by high variance and unsteadiness.

Radial Basis Function (RBF) networks have been
also widely applied in many science and engineering
fields (Robert and Howlett, 2001). An RBF network is a
three-layer feedback network, in which each hidden unit
implements a radial activation function and each output
unit implements a weighted sum of hidden units outputs.
Its training procedure is usually divided into two stages.
First, the centers and widths of the hidden layer are
determined by clustering algorithms. Second, the weights
connecting the hidden layer with the output layer are
determined by Singular Value Decomposition (SVD) or
Least Mean Squared (LMS) algorithms. The problem of
selecting the appropriate number of basis functions
remains a critical issue for RBF networks. The number of
basis functions controls the complexity and the
generalization ability of RBF networks. RBF networks
with too few basis functions cannot fit the training data
adequately due to limited flexibility. On the other hand,
those with too many basis functions yield poor
generalization abilities since they are too flexible and
erroneously fit the noise in the training data.

Even though multilayer neural networks and decision
trees are two very different techniques for the purpose of
classification, some researchers (Eklund & Hoang,
2002), (Tjen-Sien Lim et al. 2000) have performed some
empirical comparative studies. Some of the general
conclusions drawn in that work are:
i) neural networks are usually more able to easily

provide incremental learning than decision trees
(Saad, 1998), even though there are some
algorithms for incremental learning of decision
trees such as (Utgoff et al, 1997) and
(McSherry, 1999). Incremental decision tree
induction techniques result in frequent tree
restructuring when the amount of training data
is small, with the tree structure maturing as the
data pool becomes larger.

ii) training time for a neural network is usually
much longer than training time for decision
trees.

iii) neural networks usually perform as well as
decision trees, but seldom better.

To sum up, ANNs have been applied to many real-

world problems but still, their most striking disadvantage
is their lack of ability to reason about their output in a

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 257

way that can be effectively communicated. For this
reason many researchers have tried to address the issue
of improving the comprehensibility of neural networks,
where the most attractive solution is to extract symbolic
rules from trained neural networks. Setiono and Leow
(2000) divided the activation values of relevant hidden
units into two subintervals and then found the set of
relevant connections of those relevant units to construct
rules. More references can be found in (Zhou, 2004), an
excellent survey. However, it is also worth mentioning
that Roy (2000) identified the conflict between the idea
of rule extraction and traditional connectionism. In detail,
the idea of rule extraction from a neural network involves
certain procedures, specifically the reading of parameters
from a network, which is not allowed by the traditional
connectionist framework that these neural networks are
based on.

5 Statistical learning algorithms
Conversely to ANNs, statistical approaches are

characterized by having an explicit underlying
probability model, which provides a probability that an
instance belongs in each class, rather than simply a
classification. Linear discriminant analysis (LDA) and
the related Fisher's linear discriminant are simple
methods used in statistics and machine learning to find
the linear combination of features which best separate
two or more classes of object (Friedman, 1989). LDA
works when the measurements made on each observation
are continuous quantities. When dealing with categorical
variables, the equivalent technique is Discriminant
Correspondence Analysis (Mika et al., 1999).

Maximum entropy is another general technique for
estimating probability distributions from data. The over-
riding principle in maximum entropy is that when
nothing is known, the distribution should be as uniform
as possible, that is, have maximal entropy. Labeled
training data is used to derive a set of constraints for the
model that characterize the class-specific expectations for
the distribution. Csiszar (1996) provides a good tutorial
introduction to maximum entropy techniques.

Bayesian networks are the most well known
representative of statistical learning algorithms. A
comprehensive book on Bayesian networks is Jensen’s
(1996). Thus, in this study, apart from our brief
description of Bayesian networks, we mainly refer to
more recent works.

5.1.1 Naive Bayes classifiers
Naive Bayesian networks (NB) are very simple

Bayesian networks which are composed of directed
acyclic graphs with only one parent (representing the
unobserved node) and several children (corresponding to
observed nodes) with a strong assumption of
independence among child nodes in the context of their
parent (Good, 1950).Thus, the independence model
(Naive Bayes) is based on estimating (Nilsson, 1965):

R= ()
()

() ()
() ()

() ()
() ()

|| |

| | |
r

r

P i P X iP i X P i P X i

P j X P j P X j P j P X j
= = ∏

∏

Comparing these two probabilities, the larger
probability indicates that the class label value that is
more likely to be the actual label (if R>1: predict i else
predict j). Cestnik et al (1987) first used the Naive Bayes
in ML community. Since the Bayes classification
algorithm uses a product operation to compute the
probabilities P(X, i), it is especially prone to being
unduly impacted by probabilities of 0. This can be
avoided by using Laplace estimator or m-esimate, by
adding one to all numerators and adding the number of
added ones to the denominator (Cestnik, 1990).

The assumption of independence among child nodes
is clearly almost always wrong and for this reason naive
Bayes classifiers are usually less accurate that other more
sophisticated learning algorithms (such ANNs).
However, Domingos & Pazzani (1997) performed a
large-scale comparison of the naive Bayes classifier with
state-of-the-art algorithms for decision tree induction,
instance-based learning, and rule induction on standard
benchmark datasets, and found it to be sometimes
superior to the other learning schemes, even on datasets
with substantial feature dependencies.

The basic independent Bayes model has been
modified in various ways in attempts to improve its
performance. Attempts to overcome the independence
assumption are mainly based on adding extra edges to
include some of the dependencies between the features,
for example (Friedman et al. 1997). In this case, the
network has the limitation that each feature can be
related to only one other feature. Semi-naive Bayesian
classifier is another important attempt to avoid the
independence assumption. (Kononenko, 1991), in which
attributes are partitioned into groups and it is assumed
that xi is conditionally independent of xj if and only if
they are in different groups.

The major advantage of the naive Bayes classifier is
its short computational time for training. In addition,
since the model has the form of a product, it can be
converted into a sum through the use of logarithms - with
significant consequent computational advantages. If a
feature is numerical, the usual procedure is to discretize
it during data pre-processing (Yang & Webb, 2003),
although a researcher can use the normal distribution to
calculate probabilities (Bouckaert, 2004).

5.2 Bayesian Networks
A Bayesian Network (BN) is a graphical model for

probability relationships among a set of variables
(features) (see Figure 6). The Bayesian network structure
S is a directed acyclic graph (DAG) and the nodes in S
are in one-to-one correspondence with the features X.
The arcs represent casual influences among the features
while the lack of possible arcs in S encodes conditional
independencies. Moreover, a feature (node) is
conditionally independent from its non-descendants
given its parents (X1 is conditionally independent from X2

258 Informatica 31 (2007) 249–268 S.B. Kotsiantis

given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of
X1, X2, X3).

Figure 6. The structure of a Bayes Network

Typically, the task of learning a Bayesian network
can be divided into two subtasks: initially, the learning of
the DAG structure of the network, and then the
determination of its parameters. Probabilistic parameters
are encoded into a set of tables, one for each variable, in
the form of local conditional distributions of a variable
given its parents. Given the independences encoded into
the network, the joint distribution can be reconstructed
by simply multiplying these tables. Within the general
framework of inducing Bayesian networks, there are two
scenarios: known structure and unknown structure.

In the first scenario, the structure of the network is
given (e.g. by an expert) and assumed to be correct. Once
the network structure is fixed, learning the parameters in
the Conditional Probability Tables (CPT) is usually
solved by estimating a locally exponential number of
parameters from the data provided (Jensen, 1996). Each
node in the network has an associated CPT that describes
the conditional probability distribution of that node given
the different values of its parents.

In spite of the remarkable power of Bayesian
Networks, they have an inherent limitation. This is the
computational difficulty of exploring a previously
unknown network. Given a problem described by n
features, the number of possible structure hypotheses is
more than exponential in n. If the structure is unknown,
one approach is to introduce a scoring function (or a
score) that evaluates the “fitness” of networks with
respect to the training data, and then to search for the
best network according to this score. Several researchers
have shown experimentally that the selection of a single
good hypothesis using greedy search often yields
accurate predictions (Heckerman et al. 1999),
(Chickering, 2002). In Figure 7 there is a pseudo-code
for training BNs.

Within the score & search paradigm, another
approach uses local search methods in the space of
directed acyclic graphs, where the usual choices for
defining the elementary modifications (local changes)
that can be applied are arc addition, arc deletion, and arc
reversal. Acid and de Campos (2003) proposed a new
local search method, restricted acyclic partially directed
graphs, which uses a different search space and takes
account of the concept of equivalence between network
structures. In this way, the number of different
configurations of the search space is reduced, thus
improving efficiency.

Initialize an empty Bayesian network
G containing n nodes (i.e., a BN with n
nodes but no edges)
1. Evaluate the score of G: Score(G)
2. G’ = G
3. for i = 1 to n do
4. for j = 1 to n do
5. if i • j then
6. if there is no edge between the

nodes i and j in G• then
7. Modify G’ by adding an edge between

the nodes i and j in G• such that i
is a parent of j: (i • j)

8. if the resulting G’ is a DAG then
9. if (Score(G’) > Score(G)) then
10. G = G’
11. end if
12. end if
13. end if
14. end if
15. G’ = G
16. end for
17. end for

Figure 7. Pseudo-code for training BN

 A BN structure can be also found by learning the
conditional independence relationships among the
features of a dataset. Using a few statistical tests (such as
the Chi-squared and mutual information test), one can
find the conditional independence relationships among
the features and use these relationships as constraints to
construct a BN. These algorithms are called CI-based
algorithms or constraint-based algorithms. Cowell (2001)
has shown that for any structure search procedure based
on CI tests, an equivalent procedure based on
maximizing a score can be specified.

A comparison of scoring-based methods and CI-
based methods is presented in (Heckerman et al., 1999).
Both of these approaches have their advantages and
disadvantages. Generally speaking, the dependency
analysis approach is more efficient than the search &
scoring approach for sparse networks (networks that are
not densely connected). It can also deduce the correct
structure when the probability distribution of the data
satisfies certain assumptions. However, many of these
algorithms require an exponential number of CI tests and
many high order CI tests (CI tests with large condition-
sets). Yet although the search & scoring approach may
not find the best structure due to its heuristic nature, it
works with a wider range of probabilistic models than the
dependency analysis approach. Madden (2003) compared
the performance of a number of Bayesian Network
Classifiers. His experiments demonstrated that very
similar classification performance can be achieved by
classifiers constructed using the different approaches
described above.

The most generic learning scenario is when the
structure of the network is unknown and there is missing
data. Friedman & Koller (2003) proposed a new
approach for this task and showed how to efficiently
compute a sum over the exponential number of networks
that are consistent with a fixed order over networks.

Using a suitable version of any of the model types
mentioned in this review, one can induce a Bayesian
Network from a given training set. A classifier based on
the network and on the given set of features X1,X2, ... Xn,

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 259

returns the label c, which maximizes the posterior
probability p(c | X1, X2, ... Xn).

Bayesian multi-nets allow different probabilistic
dependencies for different values of the class node
(Jordan, 1998). This suggests that simple BN classifiers
should work better when there is a single underlying
model of the dataset and multi-net classifier should work
better when the underlying relationships among the
features are very different for different classes (Cheng
and Greiner, 2001).

The most interesting feature of BNs, compared to
decision trees or neural networks, is most certainly the
possibility of taking into account prior information about
a given problem, in terms of structural relationships
among its features. This prior expertise, or domain
knowledge, about the structure of a Bayesian network
can take the following forms:
1. Declaring that a node is a root node, i.e., it has no

parents.
2. Declaring that a node is a leaf node, i.e., it has no

children.
3. Declaring that a node is a direct cause or direct

effect of another node.
4. Declaring that a node is not directly connected to

another node.
5. Declaring that two nodes are independent, given a

condition-set.
6. Providing partial nodes ordering, that is, declare that

a node appears earlier than another node in the
ordering.

7. Providing a complete node ordering.
A problem of BN classifiers is that they are not

suitable for datasets with many features (Cheng et al.,
2002). The reason for this is that trying to construct a
very large network is simply not feasible in terms of time
and space. A final problem is that before the induction,
the numerical features need to be discretized in most
cases.

6 Instance-based learning
Another category under the header of statistical

methods is Instance-based learning. Instance-based
learning algorithms are lazy-learning algorithms
(Mitchell, 1997), as they delay the induction or
generalization process until classification is performed.
Lazy-learning algorithms require less computation time
during the training phase than eager-learning algorithms
(such as decision trees, neural and Bayes nets) but more
computation time during the classification process. One
of the most straightforward instance-based learning
algorithms is the nearest neighbour algorithm. Aha
(1997) and De Mantaras and Armengol (1998) presented
a review of instance-based learning classifiers. Thus, in
this study, apart from a brief description of the nearest
neighbour algorithm, we will refer to some more recent
works.

k-Nearest Neighbour (kNN) is based on the principle
that the instances within a dataset will generally exist in
close proximity to other instances that have similar
properties (Cover and Hart, 1967). If the instances are

tagged with a classification label, then the value of the
label of an unclassified instance can be determined by
observing the class of its nearest neighbours. The kNN
locates the k nearest instances to the query instance and
determines its class by identifying the single most
frequent class label. In Figure 8, a pseudo-code example
for the instance base learning methods is illustrated.

procedure InstanceBaseLearner(Testing
Instances)

for each testing instance
{
find the k most nearest instances of
the training set according to a
distance metric
Resulting Class= most frequent class
label of the k nearest instances
}

Figure 8. Pseudo-code for instance-based learners

In general, instances can be considered as points
within an n-dimensional instance space where each of the
n-dimensions corresponds to one of the n-features that
are used to describe an instance. The absolute position of
the instances within this space is not as significant as the
relative distance between instances. This relative distance
is determined by using a distance metric. Ideally, the
distance metric must minimize the distance between two
similarly classified instances, while maximizing the
distance between instances of different classes. Many
different metrics have been presented. The most
significant ones are presented in Table 3.

Minkowsky: D(x,y)=
1/

1

rm
r

i i
i

x y
=

−⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Manhattan: D(x,y)=
1

m

i i
i

x y
=

−∑

Chebychev: D(x,y)=
1

max
m

i i
i

x y
=

−

Euclidean: D(x,y)=
1/ 2

2

1

m

i i
i

x y
=

−⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Camberra: D(x,y)=
1

m
i i

i i i

x y
x y=

−
+∑

Kendall’s Rank Correlation:

D(x,y)=
1

1

2
1 () ()

(1)

m i

i j i j
i j j

sign x x sign y y
m m

−

= =

− − −
−
∑∑

Table 3. Approaches to define the distance between
instances (x and y)

For more accurate results, several algorithms use
weighting schemes that alter the distance measurements
and voting influence of each instance. A survey of
weighting schemes is given by (Wettschereck et al.,
1997).

The power of kNN has been demonstrated in a
number of real domains, but there are some reservations
about the usefulness of kNN, such as: i) they have large

260 Informatica 31 (2007) 249–268 S.B. Kotsiantis

storage requirements, ii) they are sensitive to the choice
of the similarity function that is used to compare
instances, iii) they lack a principled way to choose k,
except through cross-validation or similar,
computationally-expensive technique (Guo et al. 2003).

The choice of k affects the performance of the kNN
algorithm. Consider the following reasons why a k-
nearest neighbour classifier might incorrectly classify a
query instance:
• When noise is present in the locality of the query

instance, the noisy instance(s) win the majority vote,
resulting in the incorrect class being predicted. A
larger k could solve this problem.

• When the region defining the class, or fragment of
the class, is so small that instances belonging to the
class that surrounds the fragment win the majority
vote. A smaller k could solve this problem.
Wettschereck et al. (1997) investigated the behavior

of the kNN in the presence of noisy instances. The
experiments showed that the performance of kNN was
not sensitive to the exact choice of k when k was large.
They found that for small values of k, the kNN algorithm
was more robust than the single nearest neighbour
algorithm (1NN) for the majority of large datasets tested.
However, the performance of the kNN was inferior to
that achieved by the 1NN on small datasets (<100
instances).

Okamoto and Yugami (2003) represented the
expected classification accuracy of k-NN as a function of
domain characteristics including the number of training
instances, the number of relevant and irrelevant
attributes, the probability of each attribute, the noise rate
for each type of noise, and k. They also explored the
behavioral implications of the analyses by presenting the
effects of domain characteristics on the expected
accuracy of k-NN and on the optimal value of k for
artificial domains.

The time to classify the query instance is closely
related to the number of stored instances and the number
of features that are used to describe each instance. Thus,
in order to reduce the number of stored instances,
instance-filtering algorithms have been proposed (Kubat
and Cooperson, 2001). Brighton & Mellish (2002) found
that their ICF algorithm and RT3 algorithm (Wilson &
Martinez, 2000) achieved the highest degree of instance
set reduction as well as the retention of classification
accuracy: they are close to achieving unintrusive storage
reduction. The degree to which these algorithms perform
is quite impressive: an average of 80% of cases are
removed and classification accuracy does not drop
significantly. One other choice in designing a training set
reduction algorithm is to modify the instances using a
new representation such as prototypes (Sanchez et al.,
2002).

Breiman (1996) reported that the stability of nearest
neighbor classifiers distinguishes them from decision
trees and some kinds of neural networks. A learning
method is termed "unstable" if small changes in the
training-test set split can result in large changes in the
resulting classifier.

As we have already mentioned, the major
disadvantage of instance-based classifiers is their large
computational time for classification. A key issue in
many applications is to determine which of the available
input features should be used in modeling via feature
selection (Yu & Liu, 2004), because it could improve the
classification accuracy and scale down the required
classification time. Furthermore, choosing a more
suitable distance metric for the specific dataset can
improve the accuracy of instance-based classifiers.

7 Support Vector Machines
Support Vector Machines (SVMs) are the newest

supervised machine learning technique (Vapnik, 1995).
An excellent survey of SVMs can be found in (Burges,
1998), and a more recent book is by (Cristianini &
Shawe-Taylor, 2000). Thus, in this study apart from a
brief description of SVMs we will refer to some more
recent works and the landmark that were published
before these works. SVMs revolve around the notion of a
“margin”—either side of a hyperplane that separates two
data classes. Maximizing the margin and thereby creating
the largest possible distance between the separating
hyperplane and the instances on either side of it has been
proven to reduce an upper bound on the expected
generalisation error.

If the training data is linearly separable, then a pair
),(bw exists such that

Nb

Pb

ii
T

ii
T

∈−≤+

∈≥+

xxw

xxw

 allfor ,1

 allfor ,1

with the decision rule given by
)sgn()(, bf T

b += xwxw where w is termed the

weight vector and b the bias (or b− is termed the
threshold).

 It is easy to show that, when it is possible to linearly
separate two classes, an optimum separating hyperplane
can be found by minimizing the squared norm of the
separating hyperplane. The minimization can be set up as
a convex quadratic programming (QP) problem:

.,,1,1)(subject to
2
1)(Minimize 2

,

liby i
T

i

b

K=≥+

=Φ

xw

ww
w (1)

In the case of linearly separable data, once the
optimum separating hyperplane is found, data points that
lie on its margin are known as support vector points and
the solution is represented as a linear combination of
only these points (see Figure 9). Other data points are
ignored.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 261

hyperplane

optimal

Maximum
margin

optimal

Maximum
margin

optimal

Maximum
margin

hyperplane
hyperplane

Figure 9. Maximum Margin

Therefore, the model complexity of an SVM is
unaffected by the number of features encountered in the
training data (the number of support vectors selected by
the SVM learning algorithm is usually small). For this
reason, SVMs are well suited to deal with learning tasks
where the number of features is large with respect to the
number of training instances.

A general pseudo-code for SVMs is illustrated in
Figure 10.

1) Introduce positive Lagrange
multipliers, one for each of the
inequality constraints (1). This
gives Lagrangian:

() ∑∑
==

+−⋅−≡
N

i
i

N

i
iiiP bwxywL

11

2

2
1 αα

2) Minimize PL with respect to w,
b. This is a convex quadratic
programming problem.

3) In the solution, those points

for which 0>iα are called “support

vectors”

Figure 10. Pseudo-code for SVMs

Even though the maximum margin allows the SVM
to select among multiple candidate hyperplanes, for
many datasets, the SVM may not be able to find any
separating hyperplane at all because the data contains
misclassified instances. The problem can be addressed by
using a soft margin that accepts some misclassifications
of the training instances (Veropoulos et al. 1999). This
can be done by introducing positive slack variables

Nii ,...,1, =ξ in the constraints, which then become:

,0
11
11

≥
−=+−≤−⋅
+=−+≥−⋅

ξ
ξ
ξ

ii

ii

yforbxw
yforbxw

Thus, for an error to occur the corresponding iξ must

exceed unity, so ∑i iξ is an upper bound on the number

of training errors. In this case the Lagrangian is:

(){ } ∑∑∑ −+−−⋅−+≡
i

ii
i

iiii
i

iP bwxyCwL ξµξαξ 1
2
1 2

where the iµ are the Lagrange multipliers introduced to

enforce positivity of the iξ .
Nevertheless, most real-world problems involve non-

separable data for which no hyperplane exists that
successfully separates the positive from negative
instances in the training set. One solution to the
inseparability problem is to map the data onto a higher-
dimensional space and define a separating hyperplane
there. This higher-dimensional space is called the
transformed feature space, as opposed to the input space
occupied by the training instances.

With an appropriately chosen transformed feature
space of sufficient dimensionality, any consistent training
set can be made separable. A linear separation in
transformed feature space corresponds to a non-linear
separation in the original input space. Mapping the data
to some other (possibly infinite dimensional) Hilbert
space H as .: HRd →Φ Then the training algorithm
would only depend on the data through dot products in
H, i.e. on functions of the form)()(ji xx Φ⋅Φ . If there
were a “kernel function” K such
that)()(),(jiji xxxxK Φ⋅Φ= , we would only need
to use K in the training algorithm, and would never need
to explicitly determine Φ . Thus, kernels are a special
class of function that allow inner products to be
calculated directly in feature space, without performing
the mapping described above (Scholkopf et al. 1999).
Once a hyperplane has been created, the kernel function
is used to map new points into the feature space for
classification.

The selection of an appropriate kernel function is
important, since the kernel function defines the
transformed feature space in which the training set
instances will be classified. Genton (2001) described
several classes of kernels, however, he did not address
the question of which class is best suited to a given
problem. It is common practice to estimate a range of
potential settings and use cross-validation over the
training set to find the best one. For this reason a
limitation of SVMs is the low speed of the training.
Selecting kernel settings can be regarded in a similar way
to choosing the number of hidden nodes in a neural
network. As long as the kernel function is legitimate, a
SVM will operate correctly even if the designer does not
know exactly what features of the training data are being
used in the kernel-induced transformed feature space.

Some popular kernels are the following:
(1) ()PyxyxK 1),(+⋅= ,

(2)
22 2

),(
σyx

eyxK
−−

= ,

(3) ()PyxyxK δκ −⋅= tanh),(
Training the SVM is done by solving Nth

dimensional QP problem, where N is the number of
samples in the training dataset. Solving this problem in

262 Informatica 31 (2007) 249–268 S.B. Kotsiantis

standard QP methods involves large matrix operations, as
well as time-consuming numerical computations, and is
mostly very slow and impractical for large problems.
Sequential Minimal Optimization (SMO) is a simple
algorithm that can, relatively quickly, solve the SVM QP
problem without any extra matrix storage and without
using numerical QP optimization steps at all (Platt,
1999). SMO decomposes the overall QP problem into QP
sub-problems. Keerthi and Gilbert (2002) suggested two
modified versions of SMO that are significantly faster
than the original SMO in most situations.

Finally, the training optimization problem of the
SVM necessarily reaches a global minimum, and avoids
ending in a local minimum, which may happen in other
search algorithms such as neural networks. However, the
SVM methods are binary, thus in the case of multi-class
problem one must reduce the problem to a set of multiple
binary classification problems. Discrete data presents
another problem, although with suitable rescaling good
results can be obtained.

8 Discussion
Supervised machine learning techniques are

applicable in numerous domains. A number of ML
application oriented papers can be found in (Saitta and
Neri, 1998) and (Witten and Frank, 2005). Below, we
present our conclusions about the use of each technique.
Discussions of all the pros and cons of each individual
algorithms and empirical comparisons of various bias
options are beyond the scope of this paper; as the choice
of algorithm always depends on the task at hand.
However, we hope that the following remarks can help
practitioners not to select a wholly inappropriate
algorithm for their problem.

Generally, SVMs and neural networks tend to
perform much better when dealing with multi-
dimensions and continuous features. On the other hand,
logic-based systems tend to perform better when dealing
with discrete/categorical features. For neural network
models and SVMs, a large sample size is required in
order to achieve its maximum prediction accuracy
whereas NB may need a relatively small dataset.

SVMs are binary algorithm, thus we made use of
error-correcting output coding (ECOC), or, in short, the
output coding approach, to reduce a multi-class problem
to a set of multiple binary classification problems
(Crammer & Singer, 2002). Output coding for multi-
class problems is composed of two stages. In the training
stage, we construct multiple independent binary
classifiers, each of which is based on a different partition
of the set of the labels into two disjointed sets. In the
second stage, the classification part, the predictions of
the binary classifiers are combined to extend a prediction
on the original label of a test instance.

There is general agreement that k-NN is very
sensitive to irrelevant features: this characteristic can be
explained by the way the algorithm works. Moreover, the
presence of irrelevant features can make neural network
training very inefficient, even impractical.

Bias measures the contribution to error of the central
tendency of the classifier when trained on different data
(Bauer & Kohavi, 1999). Variance is a measure of the
contribution to error of deviations from the central
tendency. Learning algorithms with a high-bias profile
usually generate simple, highly constrained models
which are quite insensitive to data fluctuations, so that
variance is low. Naive Bayes is considered to have high
bias, because it assumes that the dataset under
consideration can be summarized by a single probability
distribution and that this model is sufficient to
discriminate between classes. On the contrary,
algorithms with a high-variance profile can generate
arbitrarily complex models which fit data variations more
readily. Examples of high-variance algorithms are
decision trees, neural networks and SVMs. The obvious
pitfall of high-variance model classes is overfitting.

Most decision tree algorithms cannot perform well
with problems that require diagonal partitioning. The
division of the instance space is orthogonal to the axis of
one variable and parallel to all other axes. Therefore, the
resulting regions after partitioning are all
hyperrectangles. The ANNs and the SVMs perform well
when multicollinearity is present and a nonlinear
relationship exists between the input and output features.

Lazy learning methods require zero training time
because the training instance is simply stored. Naive
Bayes methods also train very quickly since they require
only a single pass on the data either to count frequencies
(for discrete variables) or to compute the normal
probability density function (for continuous variables
under normality assumptions). Univariate decision trees
are also reputed to be quite fast—at any rate, several
orders of magnitude faster than neural networks and
SVMs.

Naive Bayes requires little storage space during both
the training and classification stages: the strict minimum
is the memory needed to store the prior and conditional
probabilities. The basic kNN algorithm uses a great deal
of storage space for the training phase, and its execution
space is at least as big as its training space. On the
contrary, for all non-lazy learners, execution space is
usually much smaller than training space, since the
resulting classifier is usually a highly condensed
summary of the data. Moreover, Naive Bayes and the
kNN can be easily used as incremental learners whereas
rule algorithms cannot. Naive Bayes is naturally robust to
missing values since these are simply ignored in
computing probabilities and hence have no impact on the
final decision. On the contrary, kNN and neural networks
require complete records to do their work.

Moreover, kNN is generally considered intolerant of
noise; its similarity measures can be easily distorted by
errors in attribute values, thus leading it to misclassify a
new instance on the basis of the wrong nearest neighbors.
Contrary to kNN, rule learners and most decision trees
are considered resistant to noise because their pruning
strategies avoid overfitting the data in general and noisy
data in particular.

What is more, the number of model or runtime
parameters to be tuned by the user is an indicator of an

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 263

algorithm’s ease of use. As expected, neural networks
and SVMs have more parameters than the remaining
techniques. The basic kNN has usually only a single
parameter (k) which is relatively easy to tune.

Logic-based algorithms are all considered very easy
to interpret, whereas neural networks and SVMs have
notoriously poor interpretability. k-NN is also considered
to have very poor interpretability because an unstructured
collection of training instances is far from readable,
especially if there are many of them. While
interpretability concerns the typical classifier generated
by a learning algorithm, transparency refers to whether
the principle of the method is easily understood. A
particularly eloquent case is that of k-NN; while the
resulting classifier is not quite interpretable, the method
itself is quite transparent because it appeals to the
intuition of human users, who spontaneously reason in a
similar manner. Similarly, Naive Bayes' is very

transparent, as it is easily grasped by users like
physicians who find that probabilistic explanations
replicate their way of diagnosing (Kononenko, 1993).
Similarly, Naive Bayes' explanations in terms of the sum
of information gains is very transparent, as it is easily
grasped by users like physicians who find that
explanations replicate their way of diagnosing
(Kononenko, 1993).

Finally, decision trees and NB generally have
different operational profiles, when one is very accurate
the other is not and vice versa. On the contrary, decision
trees and rule classifiers have a similar operational
profile. SVM and ANN have also a similar operational
profile. No single learning algorithm can uniformly
outperform other algorithms over all datasets. Features of
learning techniques are compared in Table 4 (from
evidence of existing empirical and theoretical studies).

 Decision

Trees
Neural
Networks

Naïve
Bayes

kNN SVM Rule-
learners

Accuracy in general ** *** * ** **** **
Speed of learning with
respect to number of
attributes and the number of
instances

*** * **** **** * **

Speed of classification **** **** **** * **** ****
Tolerance to missing values *** * **** * ** **
Tolerance to irrelevant
attributes

*** * ** ** **** **

Tolerance to redundant
attributes

** ** * ** *** **

Tolerance to highly
interdependent attributes (e.g.
parity problems)

** *** * * *** **

Dealing with
discrete/binary/continuous
attributes

**** ***(not
discrete)

***(not
continuous)

***(not
directly
discrete)

**(not
discrete)

***(not
directly
continuous)

Tolerance to noise ** ** *** * ** *
Dealing with danger of
overfitting

** * *** *** ** **

Attempts for incremental
learning

** *** **** **** ** *

Explanation
ability/transparency of
knowledge/classifications

**** * **** ** * ****

Model parameter handling *** * **** *** * ***
Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance)

When faced with the decision “Which algorithm will

be most accurate on our classification problem?”, the
simplest approach is to estimate the accuracy of the
candidate algorithms on the problem and select the one
that appears to be most accurate. The concept of
combining classifiers is proposed as a new direction for
the improvement of the performance of individual
classifiers. The goal of classification result integration
algorithms is to generate more certain, precise and
accurate system results. Numerous methods have been
suggested for the creation of ensemble of classifiers

(Dietterich, 2000). Although or perhaps because many
methods of ensemble creation have been proposed, there
is as yet no clear picture of which method is best (Villada
and Drissi, 2002). Thus, an active area of research in
supervised learning is the study of methods for the
construction of good ensembles of classifiers.
Mechanisms that are used to build ensemble of classifiers
include: i) using different subsets of training data with a
single learning method, ii) using different training
parameters with a single training method (e.g., using

264 Informatica 31 (2007) 249–268 S.B. Kotsiantis

different initial weights for each neural network in an
ensemble) and iii) using different learning methods.

9 Conclusions
This paper describes the best-known supervised

techniques in relative detail. We should remark that our
list of references is not a comprehensive list of papers
discussing supervised methods: our aim was to produce a
critical review of the key ideas, rather than a simple list
of all publications which had discussed or made use of
those ideas. Despite this, we hope that the references
cited cover the major theoretical issues, and provide
access to the main branches of the literature dealing with
such methods, guiding the researcher in interesting
research directions.

The key question when dealing with ML
classification is not whether a learning algorithm is
superior to others, but under which conditions a
particular method can significantly outperform others on
a given application problem. Meta-learning is moving in
this direction, trying to find functions that map datasets
to algorithm performance (Kalousis and Gama, 2004). To
this end, meta-learning uses a set of attributes, called
meta-attributes, to represent the characteristics of
learning tasks, and searches for the correlations between
these attributes and the performance of learning
algorithms. Some characteristics of learning tasks are:
the number of instances, the proportion of categorical
attributes, the proportion of missing values, the entropy
of classes, etc. Brazdil et al. (2003) provided an
extensive list of information and statistical measures for
a dataset.

After a better understanding of the strengths and
limitations of each method, the possibility of integrating
two or more algorithms together to solve a problem
should be investigated. The objective is to utilize the
strengthes of one method to complement the weaknesses
of another. If we are only interested in the best possible
classification accuracy, it might be difficult or impossible
to find a single classifier that performs as well as a good
ensemble of classifiers. Despite the obvious advantages,
ensemble methods have at least three weaknesses. The
first weakness is increased storage as a direct
consequence of the requirement that all component
classifiers, instead of a single classifier, need to be stored
after training. The total storage depends on the size of
each component classifier itself and the size of the
ensemble (number of classifiers in the ensemble). The
second weakness is increased computation because in
order to classify an input query, all component classifiers
(instead of a single classifier) must be processed. The last
weakness is decreased comprehensibility. With
involvement of multiple classifiers in decision-making, it
is more difficult for non-expert users to perceive the
underlying reasoning process leading to a decision. A
first attempt for extracting meaningful rules from
ensembles was presented in (Wall et al, 2003).

For all these reasons, the application of ensemble
methods is suggested only if we are only interested in the
best possible classification accuracy. Another time-

consuming attempt that tried to increase the classification
accuracy without decreasing comprehensibility is the
wrapper feature selection procedure (Guyon & Elissee,
2003). Theoretically, having more features should result
in more discriminating power. However, practical
experience with machine learning algorithms has shown
that this is not always the case. Wrapper methods wrap
the feature selection around the induction algorithm to be
used, using cross-validation to predict the benefits of
adding or removing a feature from the feature subset
used.

Finally, many researchers in machine learning are
accustomed to dealing with flat files and algorithms that
run in minutes or seconds on a desktop platform. For
these researchers, 100,000 instances with two dozen
features is the beginning of the range of “very large”
datasets. However, the database community deals with
gigabyte databases. Of course, it is unlikely that all the
data in a data warehouse would be mined simultaneously.
Most of the current learning algorithms are
computationally expensive and require all data to be
resident in main memory, which is clearly untenable for
many realistic problems and databases. An orthogonal
approach is to partition the data, avoiding the need to run
algorithms on very large datasets. Distributed machine
learning involves breaking the dataset up into subsets,
learning from these subsets concurrently and combining
the results (Basak and Kothari, 2004). Distributed agent
systems can be used for this parallel execution of
machine learning processes (Klusch et al., 2003). Non-
parallel machine learning algorithms can still be applied
on local data (relative to the agent) because information
about other data sources is not necessary for local
operations. It is the responsibility of agents to integrate
the information from numerous local sources in
collaboration with other agents.

References
[1] Acid, S. and de Campos. L.M. (2003). Searching

for Bayesian Network Structures in the Space of
Restricted Acyclic Partially Directed Graphs.
Journal of Artificial Intelligence Research 18: 445-
490.

[2] Aha, D. (1997). Lazy Learning. Dordrecht: Kluwer
Academic Publishers.

[3] An, A., Cercone, N. (1999), Discretization of
continuous attributes for learning classification
rules. Third Pacific-Asia Conference on
Methodologies for Knowledge Discovery & Data
Mining, 509-514.

[4] An, A., Cercone, N. (2000), Rule Quality Measures
Improve the Accuracy of Rule Induction: An
Experimental Approach, Lecture Notes in
Computer Science, Volume 1932, Pages 119-129.

[5] Auer P. & Warmuth M. (1998). Tracking the Best
Disjunction. Machine Learning 32: 127–150.

[6] Baik, S. Bala, J. (2004), A Decision Tree Algorithm
for Distributed Data Mining: Towards Network
Intrusion Detection, Lecture Notes in Computer
Science, Volume 3046, Pages 206 – 212.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 265

[7] Barto, A. G. & Sutton, R. (1997). Introduction to
Reinforcement Learning. MIT Press.

[8] Batista, G., & Monard, M.C., (2003), An Analysis
of Four Missing Data Treatment Methods for
Supervised Learning, Applied Artificial
Intelligence, vol. 17, pp.519-533.

[9] Basak., J., Kothari, R. (2004), A Classification
Paradigm for Distributed Vertically Partitioned
Data. Neural Computation, 16(7):1525-1544.

[10] Blum, A. (1997), Empirical Support for Winnow
and Weighted-Majority Algorithms: Results on a
Calendar Scheduling Domain, Machine Learning,
Volume 26, Issue 1, Pages 5-23.

[11] Bonarini, A. (2000), An Introduction to Learning
Fuzzy Classifier Systems, Lecture Notes in
Computer Science, Volume 1813, Pages 83-92.

[12] Bouckaert, R. (2003). Choosing between two
learning algorithms based on calibrated tests. Proc
20th Int Conf on Machine Learning, pp. 51-58.
Morgan Kaufmann.

[13] Bouckaert, R. (2004), Naive Bayes Classifiers That
Perform Well with Continuous Variables, Lecture
Notes in Computer Science, Volume 3339, Pages
1089 – 1094.

[14] Brazdil P., Soares C. and Da Costa J. (2003),
Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results,
Machine Learning, 50: 251-277.

[15] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.
(1984) Classification and Regression Trees,
Wadsforth International Group.

[16] Breiman, L., Bagging Predictors. Machine
Learning, 24 (1996) 123-140.

[17] Breslow, L. A. & Aha, D. W. (1997). Simplifying
decision trees: A survey. Knowledge Engineering
Review 12: 1–40.

[18] Brighton, H. & Mellish, C. (2002), Advances in
Instance Selection for Instance-Based Learning
Algorithms. Data Mining and Knowledge
Discovery 6: 153–172.

[19] Bruha. I. (2000), From machine learning to
knowledge discovery: Survey of preprocessing and
postprocessing. , Intelligent Data Analysis, Vol. 4,
pp. 363-374.

[20] Burges, C. (1998). A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery. 2(2):1-47.

[21] Camargo, L. S. & Yoneyama, T. (2001).
Specification of Training Sets and the Number of
Hidden Neurons for Multilayer Perceptrons. Neural
Computation 13: 2673–2680.

[22] Castellano, G., Fanelli, A., & Pelillo, M. (1997). An
iterative pruning algorithm for feedforward neural
networks. IEEE Transactions on Neural Networks
8: 519–531.

[23] Cestnik, B., Kononenko, I., Bratko, I., (1987).
Assistant 86: A knowledge elicitation tool for
sophisticated users. In: Proceedings of the Second
European Working Session on Learning. pp. 31-45.

[24] Cestnik, B. (1990), Estimating probabilities: A
crucial task in machine learning. In Proceedings of

the European Conference on Artificial Intelligence,
pages 147-149.

[25] Cheng, J. & Greiner, R. (2001). Learning Bayesian
Belief Network Classifiers: Algorithms and System,
In Stroulia, E. & Matwin, S. (ed.), AI 2001, 141-
151, LNAI 2056,

[26] Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W.
(2002). Learning Bayesian networks from data: An
information-theory based approach. Artificial
Intelligence 137: 43–90.

[27] Chickering, D.M. (2002). Optimal Structure
Identification with Greedy Search. Journal of
Machine Learning Research, Vol. 3, pp 507-554.

[28] Clark, P., Niblett, T. (1989), The CN2 Induction
Algorithm. Machine Learning, 3(4):261-283.

[29] Cohen, W. (1995), Fast Effective Rule Induction. In
Proceedings of ICML-95, 115-123.

[30] Cover, T., Hart, P. (1967), Nearest neighbor pattern
classification. IEEE Transactions on Information
Theory, 13(1): 21–7.

[31] Cowell, R.G. (2001). Conditions Under Which
Conditional Independence and Scoring Methods
Lead to Identical Selection of Bayesian Network
Models. Proc. 17th International Conference on
Uncertainty in Artificial Intelligence.

[32] Crammer, K. & Singer, Y. (2002). On the
Learnability and Design of Output Codes for
Multiclass Problems. Machine Learning 47: 201–
233.

[33] Cristianini, N. & Shawe-Taylor, J. (2000). An
Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge
University Press, Cambridge.

[34] Csiszar, I. (1996), Maxent, mathematics, and
information theory. In K. Hanson and R. Silver,
editors, Maximum Entropy and Bayesian Methods.
Kluwer Academic Publishers.

[35] De Mantaras & Armengol E. (1998). Machine
learning from examples: Inductive and Lazy
methods. Data & Knowledge Engineering 25: 99-
123.

[36] Dietterich, T. G. (1998), Approximate Statistical
Tests for Comparing Supervised Classification
Learning Algorithms. Neural Computation, 10(7)
1895–1924.

[37] Dietterich, T. G. (2000). An Experimental
Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting,
and Randomization, Machine Learning 40: 139–
157.

[38] Domingos, P. & Pazzani, M. (1997). On the
optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning 29: 103-130.

[39] Dutton, D. & Conroy, G. (1996), A review of
machine learning, Knowledge Engineering Review
12: 341-367.

[40] Eklund, P., Hoang, A. (2002), A Performance
Survey of Public Domain Machine Learning
Algorithms Technical Report, School of
Information Technology, Griffith University.

266 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[41] Elomaa, T. & Rousu, J. (1999). General and
Efficient Multisplitting of Numerical Attributes.
Machine Learning 36, 201–244.

[42] Elomaa T. (1999). The biases of decision tree
pruning strategies. Lecture Notes in Computer
Science 1642. Springer, pp. 63-74.

[43] Flach, P.A. & Lavrac, N. (2000). The role of feature
construction in inductive rule learning. De Raedt, L.
& Kramer, S., (ed.), In Proceedings of the
ICML2000 workshop on Attribute-Value Learning
and Relational Learning: Bridging the Gap,
Stanford University.

[44] Frank, E. & Witten, I. (1998). Generating Accurate
Rule Sets Without Global Optimization. In Shavlik,
J., (eds), Machine Learning: Proceedings of the
Fifteenth International Conference, Morgan
Kaufmann Publishers, San Francisco, CA.

[45] Freund, Y. & Schapire, R. (1999), Large Margin
Classification Using the Perceptron Algorithm,
Machine Learning 37: 277–296.

[46] Friedman, J.H. (1989), Regularized Discriminant
Analysis. Journal of the American Statistical
Association.

[47] Friedman, N., Geiger, D. & Goldszmidt M. (1997).
Bayesian network classifiers. Machine Learning 29:
131-163.

[48] Friedman, N. & Koller, D. (2003). Being Bayesian
About Network Structure: A Bayesian Approach to
Structure Discovery in Bayesian Networks.
Machine Learning 50(1): 95-125.

[49] Furnkranz, J. (1997). Pruning algorithms for rule
learning. Machine Learning 27: 139-171.

[50] Furnkranz, J. (1999). Separate-and-Conquer Rule
Learning. Artificial Intelligence Review 13: 3-54.

[51] Furnkranz, J. (2001). Round Robin Rule Learning.
In Proceedings of the 18th International
Conference on Machine Learning (ICML-01), 146-
153.

[52] Furnkranz, J., Flach, P. (2005), ROC ‘n’ Rule
Learning—Towards a Better Understanding of
Covering Algorithms, Machine Learning, Volume
58 (1), pp. 39 – 77.

[53] Gama, J. & Brazdil, P. (1999). Linear Tree.
Intelligent Data Analysis 3: 1-22

[54] Gehrke, J., Ramakrishnan, R. & Ganti, V. (2000),
RainForest—A Framework for Fast Decision Tree
Construction of Large Datasets, Data Mining and
Knowledge Discovery, Volume 4, Issue 2 - 3, Jul
2000, Pages 127 - 162

[55] Genton, M. (2001). Classes of Kernels for Machine
Learning: A Statistics Perspective. Journal of
Machine Learning Research 2: 299-312.

[56] Good I.J. (1950), Probability and the Weighing of
Evidence, London, Charles Grin.

[57] Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.
(2003), KNN Model-Based Approach in
Classification, Lecture Notes in Computer Science,
Volume 2888, Pages 986 – 996.

[58] Guyon, I, Elissee, A. (2003), An introduction to
variable and feature selection. Journal of Machine
Learning Research, 3:1157 1182.

[59] Hunt E., Martin J & Stone P. (1966), Experiments
in Induction, New York, Academic Press.

[60] Heckerman, D., Meek, C. & Cooper, G. (1999). A
Bayesian Approach to Causal Discovery. In
Glymour, C. and G. Cooper, (ed.), Computation,
Causation, and Discovery, 141-165. MIT Press.

[61] Hodge, V., Austin, J. (2004), A Survey of Outlier
Detection Methodologies, Artificial Intelligence
Review, Volume 22, Issue 2, pp. 85-126.

[62] Japkowicz N. and Stephen, S. (2002), The Class
Imbalance Problem: A Systematic Study Intelligent
Data Analysis, Volume 6, Number 5.

[63] Jain, A.K., Murty, M. N., and Flynn, P. (1999),
Data clustering: A review, ACM Computing
Surveys, 31(3): 264–323.

[64] Jensen, F. (1996). An Introduction to Bayesian
Networks. Springer.

[65] Jordan, M.I. (1998), Learning in Graphical Models.
MIT Press, Cambridge, MA.

[66] Kalousis A., Gama, G. (2004), On Data and
Algorithms: Understanding Inductive Performance,
Machine Learning 54: 275–312.

[67] Keerthi, S. & Gilbert, E. (2002). Convergence of a
Generalized SMO Algorithm for SVM Classifier
Design. Machine Learning 46: 351–360.

[68] Kivinen, J. (2002), Online Learning of Linear
Classifiers, Advanced Lectures on Machine
Learning: Machine Learning Summer School 2002,
Australia, February 11-22, ISSN: 0302-9743, pp.
235 – 257.

[69] Klusch, M., Lodi, S., Moro, G. (2003), Agent-
Based Distributed Data Mining: The KDEC
Scheme. In Intelligent Information Agents: The
AgentLink Perspective, LNAI 2586, pages 104-
122. Springer.

[70] Kon, M. & Plaskota, L. (2000), Information
complexity of neural networks, Neural Networks
13: 365–375.

[71] Kononenko, I. (1991), "Semi-Naive Bayesian
Classifier", In Proceedings of the sixth European
Working Session on Learning, 206-219.

[72] Kononenko, I. (1993), Inductive and Bayesian
learning in medical diagnosis. Applied Artificial
Intelligence 7(4): 317-337.

[73] Kononenko, I. (1994), ‘Estimating attributes:
analysis and extensions of Relief’. In: L. De Raedt
and F. Bergadano (eds.): Machine Learning:
ECML-94. pp. 171–182, Springer Verlag.

[74] Kubat, Miroslav Cooperson Martin (2001), A
reduction technique for nearest-neighbor
classification: Small groups of examples. Intell.
Data Anal. 5(6): 463-476.

[75] Lindgren, T. (2004), Methods for Rule Conflict
Resolution, Lecture Notes in Computer Science,
Volume 3201, Pages 262 – 273.

[76] Littlestone, N. & Warmuth, M. (1994). The
weighted majority algorithm. Information and
Computation 108(2): 212–261.

[77] Liu, H. and H. Motoda (2001), Instance Selection
and Constructive Data Mining, Kluwer, Boston.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 267

[78] Madden, M. (2003), The Performance of Bayesian
Network Classifiers Constructed using Different
Techniques, Proceedings of European Conference
on Machine Learning, Workshop on Probabilistic
Graphical Models for Classification, pp. 59-70.

[79] Markovitch S. & Rosenstein D. (2002), Feature
Generation Using General Construction Functions,
Machine Learning 49: 59-98.

[80] McSherry, D. (1999). Strategic induction of
decision trees. Knowledge-Based Systems, 12(5-
6):269-275.

[81] Michalski, R. S., Chilausky, R. L. (1980), Learning
by being told and learning from examples: an
experimental comparison of the two methods of
knowledge acquisition in the context of developing
and expert system for soybean disease diagnosis.
Policy Analysis and Information Systems, 4(2)..

[82] Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and
Müller, K.-R. (1999), Fisher discriminant analysis
with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, editors, Neural Networks for Signal
Processing IX, pages 41-48. IEEE.

[83] Mitchell, T. (1997). Machine Learning. McGraw
Hill.

[84] Murthy, (1998), Automatic Construction of
Decision Trees from Data: A Multi-Disciplinary
Survey, Data Mining and Knowledge Discovery 2:
345–389.

[85] Nadeau, C. and Bengio, Y. (2003), Inference for the
generalization error. In Machine Learning 52:239–
281.

[86] Neocleous, C. & Schizas, C., (2002), Artificial
Neural Network Learning: A Comparative Review,
LNAI 2308, pp. 300–313, Springer-Verlag Berlin
Heidelberg.

[87] Nilsson, N.J. (1965). Learning machines. New
York: McGraw-Hill.

[88] Olcay Taner Yıldız, Onur Dikmen (2007), Parallel
univariate decision trees, Pattern Recognition
Letters, Volume 28 , Issue 7 (May 2007), Pages:
825-832.

[89] Okamoto, S., Yugami, N. (2003), Effects of domain
characteristics on instance-based learning
algorithms. Theoretical Computer Science 298,
207-233.

[90] Parekh, R., and Yang, J., and Honavar, V. (2000),
Constructive Neural Network Learning Algorithms
for Pattern Classification. IEEE Transactions on
Neural Networks. 11(2), pp. 436-451.

[91] Platt, J. (1999). Using sparseness and analytic QP to
speed training of support vector machines. In
Kearns, M., Solla, S. & Cohn, D. (ed.), Advances in
neural information processing systems. MIT Press.

[92] Quinlan, J.R. (1979), "Discovering rules by
induction from large collections of examples", D.
Michie ed., Expert Systems in the Microelectronic
age, pp. 168-201.

[93] Quinlan, J.R. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann, San Francisco

[94] Rastogi, R. & Shim, K. (2000). PUBLIC: A
Decision Tree Classifier that Integrates Building

and Pruning. Data Mining and Knowledge
Discovery 4: 315–344.

[95] Reinartz T. (2002), A Unifying View on Instance
Selection, Data Mining and Knowledge Discovery,
6, 191–210, Kluwer Academic Publishers.

[96] Robert, J., Howlett L.C.J. (2001), Radial Basis
Function Networks 2: New Advances in Design.

[97] Rosenblatt, F., (1962), Principles of
Neurodynamics. Spartan, New York

[98] Roy, A. (2000), On connectionism, rule extraction,
and brain-like learning. IEEE Transactions on
Fuzzy Systems, 8(2): 222-227.

[99] Ruggieri, S. (2001). Efficient C4.5. IEEE
Transactions on Knowledge and Data Engineering
14 (2): 438-444.

[100] Rumelhart, D. E., Hinton, G. E., Williams, R. J.
(1986), Learning internal representations by error
propagation. In: Rumelhart D E, McClelland J L et
al. (eds.) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition.
MIT Press, Cambridge, MA, Vol. 1, pp. 318-362.

[101] Saad, D. (1998). Online learning in neural
networks. London: Cambridge University Press.

[102] Sanchez, J., Barandela, R., Ferri, F. (2002), On
Filtering the Training Prototypes in Nearest
Neighbour Classification, Lecture Notes in
Computer Science, Volume 2504, Pages 239 - 248

[103] Scholkopf, C., Burges, J. C. & Smola, A. J.
(1999). Advances in Kernel Methods. MIT Press.

[104] Setiono R. and Loew, W. K. (2000), FERNN:
An algorithm for fast extraction of rules from
neural networks, Applied Intelligence 12, 15-25.

[105] Siddique, M. N. H. and Tokhi, M. O. (2001),
Training Neural Networks: Backpropagation vs.
Genetic Algorithms, IEEE International Joint
Conference on Neural Networks, Vol. 4, pp. 2673–
2678.

[106] Smyth, P, Goodman, R., M. (1990), Rule
induction using information theory, In G. Piatetsky
Shapiro and W. Frawley (eds), Knowledge
Discovery in Databases, MIT Press.

[107] Tjen-Sien, L., Wei-Yin, L., Yu-Shan, S. (2000).
A Comparison of Prediction Accuracy, Complexity,
and Training Time of Thirty-Three Old and New
Classification Algorithms. Machine Learning 40:
203–228.

[108] Utgoff, P., Berkman, N., Clouse, J. (1997),
Decision Tree Induction Based on Efficient Tree
Restructuring, Machine Learning, Volume 29, Issue
1, Pages: 5 – 44.

[109] Vapnik, V. (1995), The Nature of Statistical
Learning Theory}. Springer Verlag.

[110] Veropoulos, K., Campbell, C. & Cristianini, N.
(1999). Controlling the Sensitivity of Support
Vector Machines. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI99).

[111] Villada, R. & Drissi, Y. (2002). A Perspective
View and Survey of Meta-Learning. Artificial
Intelligence Review 18: 77–95.

268 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[112] Vivarelli, F. & Williams, C. (2001). Comparing
Bayesian neural network algorithms for classifying
segmented outdoor images. Neural Networks 14:
427-437.

[113] Wall, R., Cunningham, P., Walsh, P., Byrne, S.
(2003), Explaining the output of ensembles in
medical decision support on a case by case basis,
Artificial Intelligence in Medicine, Vol. 28(2) 191-
206.

[114] Weigend, A. S., Rumelhart, D. E., & Huberman,
B. A. (1991). Generalization by weight-elimination
with application to forecasting. In: R. P. Lippmann,
J. Moody, & D. S. Touretzky (eds.), Advances in
Neural Information Processing Systems 3, San
Mateo, CA: Morgan Kaufmann.

[115] Wettschereck, D., Aha, D. W. & Mohri, T.
(1997). A Review and Empirical Evaluation of
Feature Weighting Methods for a Class of Lazy
Learning Algorithms. Artificial Intelligence Review
10:1–37.

[116] Wilson, D. R. & Martinez, T. (2000). Reduction
Techniques for Instance-Based Learning
Algorithms. Machine Learning 38: 257–286.

[117] Witten, I. & Frank, E. (2005), "Data Mining:
Practical machine learning tools and techniques",
2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[118] Yam, J. & Chow, W. (2001). Feedforward
Networks Training Speed Enhancement by Optimal

Initialization of the Synaptic Coefficients. IEEE
Transactions on Neural Networks 12: 430-434.

[119] Yang, Y., Webb, G. (2003), On Why
Discretization Works for Naive-Bayes Classifiers,
Lecture Notes in Computer Science, Volume 2903,
Pages 440 – 452.

[120] Yen, G. G. and Lu, H. (2000), Hierarchical
genetic algorithm based neural network design, In:
IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, pp. 168–175.

[121] Yu, L., Liu, H. (2004), Efficient Feature
Selection via Analysis of Relevance and
Redundancy, JMLR, 5(Oct):1205-1224.

[122] Zhang, G. (2000), Neural networks for
classification: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C 30(4): 451-
462.

[123] Zhang, S., Zhang, C., Yang, Q. (2002). Data
Preparation for Data Mining. Applied Artificial
Intelligence, Volume 17, pp. 375 - 381.

[124] Zheng, Z. (1998). Constructing conjunctions
using systematic search on decision trees.
Knowledge Based Systems Journal 10: 421–430.

[125] Zheng, Z. (2000). Constructing X-of-N
Attributes for Decision Tree Learning. Machine
Learning 40: 35–75.

[126] Zhou, Z. (2004), Rule Extraction: Using Neural
Networks or For Neural Networks?, Journal of
Computer Science and Technology, Volume 19,
Issue 2, Pages: 249 – 253.

