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Abstract

The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the
platform of choice for interrogating steady state RNA. In order to discover biologically important changes in
expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and
effective method for performing normalization and show dramatically improved results for inferring differential
expression in simulated and publicly available data sets.

Background
The transcriptional architecture is a complex and
dynamic aspect of a cell’s function. Next generation
sequencing of steady state RNA (RNA-seq) gives unpre-
cedented detail about the RNA landscape within a cell.
Not only can expression levels of genes be interrogated
without specific prior knowledge, but comparisons of
expression levels between genes within a sample can be
made. It has also been demonstrated that splicing var-
iants [1,2] and single nucleotide polymorphisms [3] can
be detected through sequencing the transcriptome,
opening up the opportunity to interrogate allele-specific
expression and RNA editing.
An important aspect of dealing with the vast amounts

of data generated from short read sequencing is the pro-
cessing methods used to extract and interpret the infor-
mation. Experience with microarray data has repeatedly
shown that normalization is a critical component of the
processing pipeline, allowing accurate estimation and
detection of differential expression (DE) [4]. The aim of
normalization is to remove systematic technical effects
that occur in the data to ensure that technical bias has
minimal impact on the results. However, the procedure
for generating RNA-seq data is fundamentally different
from that for microarray data, so the normalization
methods used are not directly applicable. It has been
suggested that ‘One particularly powerful advantage of
RNA-seq is that it can capture transcriptome dynamics
across different tissues or conditions without

sophisticated normalization of data sets’ [5]. We demon-
strate here that the reality of RNA-seq data analysis is
not this simple; normalization is often still an important
consideration.
Current RNA-seq analysis methods typically standar-

dize data between samples by scaling the number of
reads in a given lane or library to a common value
across all sequenced libraries in the experiment. For
example, several authors have modeled the observed
counts for a gene with a mean that includes a factor for
the total number of reads [6-8]. These approaches can
differ in the distributional assumptions made for infer-
ring differences, but the consensus is to use the total
number of reads in the model. Similarly, for LONG-
SAGE-seq data, ‘t Hoen et al. [9] use the square root of
scaled counts or the beta-binomial model of Vencio et
al. [10], both of which use the total number of observed
tags. For normalization, Mortazavi et al. [11] adjust
their counts to reads per kilobase per million mapped
(RPKM), suggesting it ‘facilitates transparent comparison
of transcript levels both within and between samples.’ By
contrast, Cloonan et al. [12] log-transform the gene
length-normalized count data and apply standard micro-
array analysis techniques (quantile normalization and
moderated t-statistics). Sultan et al. [2] normalize read
counts by the ‘virtual length’ of the gene, the number of
unique 27-mers in exonic sequence, as well as by the
total number of reads. Recently, Balwierz et al. [13] illu-
strated that deepCAGE (deep sequencing cap analysis of
gene expression) data follow an approximate power law
distribution and proposed a normalization strategy that
equates the read count distributions across samples.
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Scaling to library size as a form of normalization
makes intuitive sense, given it is expected that sequen-
cing a sample to half the depth will give, on average,
half the number of reads mapping to each gene. We
believe this is appropriate for normalizing between repli-
cate samples of an RNA population. However, library
size scaling is too simple for many biological applica-
tions. The number of tags expected to map to a gene is
not only dependent on the expression level and length
of the gene, but also the composition of the RNA popu-
lation that is being sampled. Thus, if a large number of
genes are unique to, or highly expressed in, one experi-
mental condition, the sequencing ‘real estate’ available
for the remaining genes in that sample is decreased. If
not adjusted for, this sampling artifact can force the DE
analysis to be skewed towards one experimental condi-
tion. Current analysis methods [6,11] have not
accounted for this proportionality property of the data
explicitly, potentially giving rise to higher false positive
rates and lower power to detect true differences.
The fundamental issue here is the appropriate metric

of expression to compare across samples. The standard
procedure is to compute the proportion of each gene’s
reads relative to the total number of reads and compare
that across all samples, either by transforming the origi-
nal data or by introducing a constant into a statistical
model. However, since different experimental conditions
(for example, tissues) express diverse RNA repertoires,
we cannot always expect the proportions to be directly
comparable. Furthermore, we argue that in the discovery
of biologically meaningful changes in expression, it
should be considered undesirable to have under- or
oversampling effects (discussed further below) guiding
the DE calls. The normalization method presented
below uses the raw data to estimate appropriate scaling
factors that can be used in downstream statistical analy-
sis procedures, thus accounting for the sampling proper-
ties of RNA-seq data.

Results and discussion
A hypothetical scenario
Estimated normalization factors should ensure that a
gene with the same expression level in two samples is
not detected as DE. To further highlight the need for
more sophisticated normalization procedures in RNA-
seq data, consider a simple thought experiment. Imagine
we have a sequencing experiment comparing two RNA
populations, A and B. In this hypothetical scenario, sup-
pose every gene that is expressed in B is expressed in A
with the same number of transcripts. However, assume
that sample A also contains a set of genes equal in
number and expression that are not expressed in B.
Thus, sample A has twice as many total expressed genes
as sample B, that is, its RNA production is twice the

size of sample B. Suppose that each sample is then
sequenced to the same depth. Without any additional
adjustment, a gene expressed in both samples will have,
on average, half the number of reads from sample A,
since the reads are spread over twice as many genes.
Therefore, the correct normalization would adjust sam-
ple A by a factor of 2.
The hypothetical example above highlights the notion

that the proportion of reads attributed to a given gene
in a library depends on the expression properties of the
whole sample rather than just the expression level of
that gene. Obviously, the above example is artificial.
However, there are biological and even technical situa-
tions where such a normalization is required. For exam-
ple, if an RNA sample is contaminated, the reads that
represent the contamination will take away reads from
the true sample, thus dropping the number of reads of
interest and offsetting the proportion for every gene.
However, as we demonstrate, true biological differences
in RNA composition between samples will be the main
reason for normalization.

Sampling framework
A more formal explanation for the requirement of nor-
malization uses the following framework. Define Ygk as
the observed count for gene g in library k summarized
from the raw reads, μgk as the true and unknown
expression level (number of transcripts), Lg as the length
of gene g and Nk as total number of reads for library k.
We can model the expected value of Ygk as:
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Sk represents the total RNA output of a sample. The
problem underlying the analysis of RNA-seq data is that
while Nk is known, Sk is unknown and can vary drasti-
cally from sample to sample, depending on the RNA
composition. As mentioned above, if a population has a
larger total RNA output, then RNA-seq experiments will
under-sample many genes, relative to another sample.
At this stage, we leave the variance in the above

model for Ygk unspecified. Depending on the experimen-
tal situation, Poisson seems appropriate for technical
replicates [6,7] and Negative Binomial may be appropri-
ate for the additional variation observed from biological
replicates [14]. It is also worth noting that, in practice,
the Lg is generally absorbed into the μgk parameter and
does not get used in the inference procedure. However,
it has been well established that gene length biases are
prominent in the analysis of gene expression [15].
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The trimmed mean of M-values normalization method
The total RNA production, Sk, cannot be estimated
directly, since we do not know the expression levels and
true lengths of every gene. However, the relative RNA
production of two samples, fk = Sk/Sk’, essentially a glo-
bal fold change, can more easily be determined. We pro-
pose an empirical strategy that equates the overall
expression levels of genes between samples under the
assumption that the majority of them are not DE. One
simple yet robust way to estimate the ratio of RNA pro-
duction uses a weighted trimmed mean of the log
expression ratios (trimmed mean of M values (TMM)).
For sequencing data, we define the gene-wise log-fold-
changes as:
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To robustly summarize the observed M values, we
trim both the M values and the A values before taking
the weighted average. Precision (inverse of the variance)
weights are used to account for the fact that log fold
changes (effectively, a log relative risk) from genes with
larger read counts have lower variance on the logarithm
scale. See Materials and methods for further details.
For a two-sample comparison, only one relative scal-

ing factor (fk) is required. It can be used to adjust both
library sizes (divide the reference by fk and multiply
non-reference by fk ) in the statistical analysis (for
example, Fisher’s exact test; see Materials and methods
for more details).
Normalization factors across several samples can be

calculated by selecting one sample as a reference and
calculating the TMM factor for each non-reference
sample. Similar to two-sample comparisons, the TMM
normalization factors can be built into the statistical
model used to test for DE. For example, a Poisson
model would modify the observed library size to an
effective library size, which adjusts the modeled mean
(for example, using an additional offset in a generalized
linear model; see Materials and methods for further
details).

A liver versus kidney data set
We applied our method to a publicly available transcrip-
tional profiling data set comparing several technical
replicates of a liver and kidney RNA source [6]. Figure
1a shows the distribution of M values between two tech-
nical replicates of the kidney sample after the standard
normalization procedure of accounting for the total

number of reads. The distribution of M values for these
technical replicates is concentrated around zero. How-
ever, Figure 1b shows that log ratios between a liver and
kidney sample are significantly offset towards higher
expression in kidney, even after accounting for the total
number of reads. Also highlighted (green line) is the dis-
tribution of observed M values for a set of housekeeping
genes, showing a significant shift away from zero. If
scaling to the total number of reads appropriately nor-
malized RNA-seq data, then such a shift in the log-fold-
changes is not expected. The explanation for this bias is
straightforward. The M versus A plot in Figure 1c illus-
trates that there exists a prominent set of genes with
higher expression in liver (black arrow). As a result, the
distribution of M values (liver to kidney) is skewed in
the negative direction. Since a large amount of sequen-
cing is dedicated to these liver-specific genes, there is
less sequencing available for the remaining genes, thus
proportionally distorting the M values (and therefore,
the DE calls) towards being kidney-specific.
The application of TMM normalization to this pair of

samples results in a normalization factor of 0.68 (-0.56
on log2 scale; shown by the red line in Figure 1b, c),
reflecting the under-sampling of the majority of liver
genes. The TMM factor is robust for lower coverage
data where more genes with zero counts may be
expected (Figure S1a in Additional file 1) and is stable
for reasonable values of the trim parameters (Figure S1b
in Additional file 1). Using TMM normalization in a sta-
tistical test for DE (see Materials and methods) results
in a similar number of genes significantly higher in liver
(47%) and kidney (53%). By contrast, the standard nor-
malization (to the total number of reads as originally
used in [6]) results in the majority of DE genes being
significantly higher in kidney (77%). Notably, less than
70% of the genes identified as DE using standard nor-
malization are still detected after TMM normalization
(Table 1). In addition, we find the log-fold-changes for a
large set of housekeeping genes (from [16]) are, on aver-
age, offset from zero very close to the estimated TMM
factor, thus giving credibility to our robust estimation
procedure. Furthermore, using the non-adjusted testing
procedure, 8% and 70% of the housekeeping genes are
significantly up-regulated in liver and kidney, respec-
tively. After TMM adjustment, the proportion of DE
housekeeping genes changes to 26% and 41%, respec-
tively, which is a lower total number and more sym-
metric between the two tissues. Of course, the bias in
log-ratios observed in RNA-seq data is not observed in
microarray data (from the same sources of RNA),
assuming the microarray data have been appropriately
normalized (Figure S2 in Additional file 1). Taken
together, these results indicate a critical role for the nor-
malization of RNA-seq data.
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Other datasets
The global shift in log-fold-change caused by RNA com-
position differences occurs at varying degrees in other
RNA-seq datasets. For example, an M versus A plot for
the Cloonan et al. [12] dataset (Figure S3 in Additional
file 1) gives an estimated TMM scaling factor of 1.04
between the two samples (embryoid bodies versus
embryonic stem cells), sequenced on the SOLiD™ sys-
tem. The M versus A plot for this dataset also highlights
an interesting set of genes that have lower overall

expression, but higher in embryoid bodies. This explains
the positive shift in log-fold-changes for the remaining
genes. The TMM scale factor appears close to the med-
ian log-fold-changes amongst a set of approximately 500
mouse housekeeping genes (from [17]). As another
example, the Li et al. [18] dataset, using the llumina 1G
Genome Analyzer, exhibits a shift in the overall distri-
bution of log-fold-changes and gives a TMM scaling fac-
tor of 0.904 (Figure S4 in Additional file 1). However,
there are sequencing-based datasets that have quite
similar RNA outputs and may not need a significant
adjustment. For example, the small-RNA-seq data from
Kuchenbauer et al. [19] exhibits only a modest bias in
the log-fold-changes (Figure S5 in Additional file 1).
Spike-in controls have the potential to be used for

normalization. In this scenario, small but known
amounts of RNA from a foreign organism are added to
each sample at a specified concentration. In order to
use spike-in controls for normalization, the ratio of the
concentration of the spike to the sample must be kept
constant throughout the experiment. In practice, this is
difficult to achieve and small variations will lead to
biased estimation of the normalization factor. For exam-
ple, using the spiked-in DNA from the Mortazavi et al.
data set [11] would lead to unrealistic normalization fac-
tor estimates (Figure S6 in Additional file 1). As with

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of (a) technical replicates and (b) liver versus
kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-
fold-changes of the housekeeping genes. (c) An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points
indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the
estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney
tissues. The black arrow highlights the set of prominent genes that are largely attributable for the overall bias in log-fold-changes.

Table 1 Number of genes called differentially expressed
between liver and kidney at a false discovery rate <0.001
using different normalization methods

Library size
normalization

TMM
normalization

Overlap

Higher in liver 2,355 4,293 2,355

Higher in
kidney

8,332 4,935 4,935

Total 10,867 9,228 7,290

House keeping
genes (545)

Higher in liver 45 137 45

Higher in
kidney

376 220 220

Total 421 357 265

TMM, trimmed mean of M values.
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microarrays, it is generally more robust to carefully esti-
mate normalization factors using the experimental data
(for example, [20]).

Simulation studies
To investigate the range in utility of the TMM normali-
zation method, we developed a simulation framework to
study the effects of RNA composition on DE analysis of
RNA-seq data. To start, we simulate data from just two
libraries. We include parameters for the number of
genes expressed uniquely to each sample, and para-
meters for the proportion, magnitude and direction of
differentially expressed genes between samples (see
Material and methods). Figure 2a shows an M versus A
plot for a typical simulation including unique genes and
DE genes. By simulating different total RNA outputs,
the majority of non-DE genes have log-fold-changes that
are offset from zero. In this case, using TMM normali-
zation to account for the underlying RNA composition
leads to a lower number of false detections using a Fish-
er’s exact test (Figure 2b). Repeating the simulation a
large number of times across a wide range of simulation
parameters, we find good agreement when comparing
the true normalization factors from the simulation with
those estimated using TMM normalization (Figure S7 in
Additional file 1).

To further compare the performance of the TMM
normalization with previously used methods in the con-
text of the DE analysis of RNA-seq data, we extend the
above simulation to include replicate sequencing runs.
Specifically, we compare three published methods:
length-normalized count data that have been log trans-
formed and quantile normalized, as implemented by
Cloonan et al. [12], a Poisson regression [6] with library
size and TMM normalization and a Poisson exact test
[8] with library size and TMM normalization. We do
not compare directly with the normalization proposed
in Balwierz et al. [13] since the liver and kidney dataset
do not appear to follow a power law distribution and
have quite distinct count distributions (Figure S8 in
Additional file 1). Furthermore, in light of the RNA
composition bias we observe, it is not clear whether
equating the count distributions across samples is the
most logical procedure. In addition, we do not directly
compare the normalization to virtual length [2] or
RPKM [11] normalization, since a statistical analysis of
the transformed data was not mentioned. However, we
illustrate with M versus A plots that their normalization
does not completely remove RNA composition bias
(Figures S9 and S10 in Additional file 1).
For the simulation, we used an empirical joint distri-

bution of gene lengths and counts, since the Cloonan

Figure 2 Simulations show TMM normalization is robust and outperforms library size normalization. (a) An example of the simulation
results showing the need for normalization due to genes expressed uniquely in one sample (orange dots) and asymmetric DE (blue dots). (b) A
lower false positive rate is observed using TMM normalization compared with standard normalization.

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25

Page 5 of 9



et al. procedure requires both. We made the simulation
data Poisson-distributed to mimic technical replicates
(Figure S11 in Additional file 1). Figure 3a shows false
discovery plots amongst the genes that are common to
both conditions, where we have introduced 10% unique-
to-group expression for the first condition, 5% DE at a
2-fold level, 80% of which is higher in the first condi-
tion. The approach that uses methodology developed for
microarray data performs uniformly worse, as one might
expect since the distributional assumptions for these
methods are quite different. Among the remaining
methods (Poisson likelihood ratio statistic, Poisson exact
statistic), performance is very similar; again, the TMM
normalization makes a dramatic improvement to both.

Conclusions
TMM normalization is a simple and effective method
for estimating relative RNA production levels from
RNA-seq data. The TMM method estimates scale fac-
tors between samples that can be incorporated into cur-
rently used statistical methods for DE analysis. We have
shown that normalization is required in situations

where the underlying distribution of expressed tran-
scripts between samples is markedly different. The
assumptions behind the TMM method are similar to
the assumptions commonly made in microarray normal-
ization procedures such as lowess normalization [21]
and quantile normalization [22]. Therefore, adequately
normalized array data do not show the effects of differ-
ent total RNA output between samples. In essence, both
microarray and TMM normalization assume that the
majority of genes, common to both samples, are not dif-
ferentially expressed. Our simulation studies indicate
that the TMM method is robust against deviations to
this assumption up to about 30% of DE in one direc-
tion. For many applications, this assumption will not be
violated.
One notable difference with TMM normalization for

RNA-seq is that the data themselves do not need to be
modified, unlike microarray normalization and some
implemented RNA-seq strategies [11,12]. Here, the
estimated normalization factors are used directly in the
statistical model used to test for DE, while preserving
the sampling properties of the data. Because the data

Figure 3 False discovery plots comparing several published methods. The red line depicts the length-normalized moderated t-statistic
analysis. The solid and dashed lines show the library size normalized and TMM normalized Poisson model analysis, respectively. The blue and
black lines represent the LR test and exact test, respectively. It can be seen that the use of TMM normalization results in a much lower false
discovery rate.
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themselves are not modified, it can be used in further
applications such as comparing expression between
genes.
Normalization will be crucial in many other applica-

tions of high throughput sequencing where the DNA or
RNA populations being compared differ in their compo-
sition. For example, chromatin immunoprecipitation
(ChIP) followed by next generation sequencing (ChIP-
seq) may require a similar adjustment to compare
between samples containing different repertoires of
bound targets. Interestingly, the PeakSeq method [23]
uses a linear regression on binned counts across the
genome to estimate a scaling factor between two ChIP
populations to account for the different coverages. This
is similar in principle to what is proposed here, but pos-
sibly less robust. We demonstrated that there are
numerous biological situations where a composition
adjustment will be required. In addition, technical arti-
facts that are not fully captured by the library size
adjustment can be accounted for with the empirical
adjustment. Furthermore, it is not clear that DNA
spiked-in at known concentrations will allow robust
estimation of normalization factors.
Similar to previous high throughput technologies such

as microarrays, normalization is an essential step for
inferring true differences in expression between samples.
The number of reads for a gene is dependent not only
on the gene’s expression level and length, but also on
the population of RNA from which it originates. We
present a straightforward and effective empirical method
for normalization of RNA-seq data.

Materials and methods
TMM normalization details
A trimmed mean is the average after removing the
upper and lower x% of the data. The TMM procedure is
doubly trimmed, by log-fold-changes M gk

r (sample k
relative to sample r for gene g) and by absolute intensity
(Ag). By default, we trim the Mg values by 30% and the
Ag values by 5%, but these settings can be tailored to a
given experiment. The software also allows the user to
set a lower bound on the A value, for instances such as
the Cloonan et al. dataset (Figure S1 in Additional file
1). After trimming, we take a weighted mean of Mg,
with weights as the inverse of the approximate asympto-
tic variances (calculated using the delta method [24]).
Specifically, the normalization factor for sample k using
reference sample r is calculated as:

log ( )
*

*

log
( )

2

2
TMM

wgk
r Mgk

r

g G

wgk
r

g G

M

Ygk
N k

k
r

gk
r 










where 























log

;

,

2
Ygr

Nr

w
N k Ygk
N kYgk

Nr Ygr
NrYgr

Y

gk
r

gk

 and 

YYgr  0.

The cases where Ygk = 0 or Ygr = 0 are trimmed in
advance of this calculation since log-fold-changes cannot
be calculated; G* represents the set of genes with valid
Mg and Ag values and not trimmed, using the percen-
tages above. It should be clear that TMMr

r( )  1 .
As Figure 2a indicates, the variances of the M values

at higher total count are lower. Within a library, the
vector of counts is multinomial distributed and any indi-
vidual gene is binomial distributed with a given library
size and proportion. Using the delta method, one can
calculate an approximate variance for the Mg, as is com-
monly done with log relative risk, and the inverse of
these is used to weight the average.
We compared the weighted with the unweighted

trimmed mean as well as an alternative robust estimator
(robust linear model) over a range of simulation para-
meters, as shown in Figure S4 in Additional file 1.

Housekeeping genes
Human housekeeping genes, as described in [16], were
downloaded from [25] and matched to the Ensembl gene
identifiers using the Bioconductor [26] biomaRt package
[27]. Similarly, mouse housekeeping genes were taken to
be the approximately 500 genes with lowest coefficient of
variation, as calculated by de Jonge et al. [17].

Statistical testing
For a two-library comparison, we use the sage.test func-
tion from the CRAN statmod package [28] to calculate
a Fisher exact P-value for each gene. To apply TMM
normalization, we replace the original library sizes with
‘effective’ library sizes. For two libraries, the effective
library sizes are calculated by multiplying/dividing the
square root of the estimated normalization factor with
the original library size.
For comparisons with technical replicates, we followed

the analysis procedure used in the Marioni et al. study
[6]. Briefly, it is assumed that the counts mapping to a
gene are Poisson-distributed, according to:

Y Pois Mgk gz kk
~ ( )

where gzk
represents the fraction of total reads for

gene g in experimental condition zk. Their analysis utilizes
an offset to account for the library size and a likelihood
ratio (LR) statistic to test for differences in expression
between libraries (that is, H0:μg1 = μg2). In order to use
TMM normalization, we augment the original offset with
the estimated normalization factor. The same LR testing
framework is then used to calculate P-values for DE
between tissues. We modified this analysis to use an exact
Poisson test for testing the difference between two
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replicated groups. The strategy is similar in principle to
the Fisher’s exact test: conditioning on the total count, we
calculated the probability of observing group counts as or
more extreme than what we actually observed. The total
and group total counts are all Poisson distributed.
We re-implemented the method from Cloonan et al.

[12] for the analysis of simulated data using a custom R
[29] script.

Simulation details
The simulation is set up to sample a dataset from a
given empirical distribution of read counts (that is, from
a distribution of observed Yg). The mean is calculated
from the sampled read counts divided by the sum Sk
and multiplied by a specified library size Nk (according
to the model). The simulated data are then randomly
sampled from a Poisson distribution, given the mean.
We have parameters specifying the number of genes
common to both libraries and the number of genes
unique to each sample. Additional parameters specify
the amount, direction and magnitude of DE as well as
the depth of sequencing (that is, range of total numbers
of reads). Since we have inserted known differentially
expressed genes, we can rank genes according to various
statistics and plot the number of false discoveries as a
function of the ranking. Table S1 in Additional file 1
gives the parameter settings used for the simulations
presented in Figures 2 and 3.

Software
Software implementing our method was released within
the edgeR package [30] in version 2.5 of Bioconductor
[26] and is available from [31]. Scripts and data for our
analyses, including the simulation framework, have been
made available from [32].

Additional file 1: A Word document with supplementary materials,
including 11 supplementary figures and one supplementary table.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-3-
r25-S1.doc ]
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