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Preface

Computational systems biology is the term that we use to describe computational
methods to identify, infer, model, and store relationships between the molecules,
pathways, and cells (‘‘systems’’) involved in a living organism. Based on this definition,
the field of computational systems biology has been in existence for some time.
However, the recent confluence of high-throughput methodology for biological data
gathering, genome-scale sequencing, and computational processing power has driven a
reinvention and expansion of this field. The expansions include not only modeling of
small metabolic (1–3) and signaling systems (2, 4) but also modeling of the relation-
ships between biological components in very large systems, including whole cells and
organisms (5–15). Generally, these models provide a general overview of one or more
aspects of these systems and leave the determination of details to experimentalists
focused on smaller subsystems. The promise of such approaches is that they will
elucidate patterns, relationships, and general features, which are not evident from
examining specific components or subsystems. These predictions are either interesting
in and of themselves (e.g., the identification of an evolutionary pattern) or interesting
and valuable to researchers working on a particular problem (e.g., highlight a previously
unknown functional pathway).

Two events have occurred to bring the field of computational systems biology to
the forefront. One is the advent of high-throughput methods that have generated large
amounts of information about particular systems in the form of genetic studies, gene
and protein expression analyses and metabolomics. With such tools, research to con-
sider systems as a whole are being conceived, planned, and implemented experimentally
on an ever more frequent and wider scale. The other event is the growth of computa-
tional processing power and tools. Methods to analyze large data sets of this kind are
often computationally demanding and, as is the case in other areas, the field has
benefited from continuing improvements in computational hardware and methods.

The field of computational biology is very much like a telescope with two sequential
lenses: one lens represents the biological data and the other represents a computational
and/or mathematical model of the data. Both lenses must be properly coordinated to
yield an image that reflects biological reality. This means that the design parameters for
both lenses must be designed in concert to create a system that yields a model of the
organism, which provides both predictive and mechanistic information. The chapters in
this book describe the construction of subcomponents of such a system. Computa-
tional systems biology is a rapidly evolving field and no single group of investigators has
yet developed a complete system that integrates both data generation and data analysis
in such a way so as to allow full and accurate modeling of any single biological organism.
However, the field is rapidly moving in that direction. The chapters in this book
represent a snapshot of the current methods being developed and used in the area of
computational systems biology. Each method or database described within represents
one or more steps on the path to a complete description of a biological system. How
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these tools will evolve and ultimately be integrated is an area of intense research and
interest. We hope that readers of this book will be motivated by the chapters within and
become involved in this exciting area of research.

Organization of the Book

This volume is organized into five major parts: Network Components, Network
Inference, Network Dynamics, Function and Evolutionary Systems Biology, and Com-
putational Infrastructure for Systems Biology. Each section is described briefly below.

Part I – Network Components

This section focuses on methods to identify subcomponents of the complete networks.
Ultimately, such subcomponents will need to be integrated with each other or used to
inform other methods to arrive at a complete description of a biological system. This
section begins with two methods for the prediction of transcription factor binding sites.
In the first, Chapter 1, Mariño-Ramirez et al. describe a method for the prediction of
transcription factor binding sites using a Gibbs sampling approach. In Chapter 2, Liu
and Bader show how DNA-binding sites and specificity can be predicted using sophis-
ticated structural analysis. Chapters 3–5 discuss methods to predict protein–protein
interaction (PPI) networks, and Chapter 6 builds on predicted PPIs to identify poten-
tial regulatory interactions. Finally, Chapter 7 discusses the inherent modularity that is
observed in biological networks with a focus on networks of PPIs.

Part II – Network Inference

This section focuses on methodologies to infer transcriptional networks on a genome-
wide scale. In general, the methods described within focus on using either mRNA
expression data or mRNA expression data coupled with expression quantitative trait
locus (eQTL) data. To a large extent, method development in this area is driven
primarily by the ubiquitous mRNA expression data that are available in the public
domain or that are relatively easily generated within a single laboratory. These methods
have been tremendously enabled by the development of array technology and hence
predominately model mRNA levels (as that is the most ubiquitous data type).
Chapters 8 and 9 present two methods for identifying and modeling transcriptional
regulatory networks, while Chapter 10 focuses on inferring mRNA expression net-
works from eQTL data. Chapter 11 is a review of different methods for inferring and
modeling large scale networks from expression and eQTL data.

Part III – Network Dynamics

Systems are not static entities. They change over time and in response to a variety of
perturbations. Ultimately, computational systems biology will have to develop meth-
ods and corresponding data sets that allow one to infer and model the kinetics and
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dynamics of reactions between all the chemical moieties in a cell. The chapters in this
section focus on such methods. Chapter 12 discusses methods to infer both static co-
expression networks and a finite-state Markov chain model for mimicking the dynamic
behavior of a transcriptional network. Chapter 13 focuses on quantitative models of
system behavior based on differential equations using biochemical control theory,
whereas Chapter 14 focuses on the use of stochastic kinetic simulations. Both
approaches have applications where one is superior to the other. At this point in time,
it is not clear which methods will turn out to be most useful in dynamically modeling
the largest number of biological systems. In general, this is likely the case for most of the
technologies described in this book, so it is useful for readers to familiarize themselves
with several concepts. Specifically, both Chapters 13 and 14 provide an excellent
discussion of a variety of historical approaches to the dynamical modeling of biological
systems and the relative merits and downsides to each. Chapter 15 provides an excellent
introduction to considerations for the interplay between experimental design and
dynamic modeling using lambda phage as an example system. The methods and
considerations described within are generally applicable to other biological systems
and highlight the importance of integrating the direction of wet bench work and
computational modeling to more rapidly refine the models.

Part IV – Function and Evolutionary Systems Biology

The ultimate representation of the function of a given biological moiety is a complete
description of all the reactions in which it participates and the relative rates of said
reactions. At present, we are quite distant from this goal for most biological molecules
or systems. However, we are able to use computational methods to predict the most
likely functions of a given protein and even predict which portions and specific
sequences of the protein contribute most to that function. This section is focused on
methods used to infer protein function and on the relationships between function and
evolution.

Ultimately, the reason to study and research ‘‘systems’’ biology is to understand
biological function at a given hierarchical level (be it a single catalytic site or entire
pathways). The interplay between the detailed atomic study of function and the large-
scale study of systems will enable us to achieve this goal. This section contains chapters
that address the interdependence of these two aspects: individual algorithms or tech-
niques to understand the functional role of atoms or residues in single molecules (e.g.,
proteins), which in turn are extrapolated to understand their greater role in terms of
biological or organismal function. Conversely and complementarily, the role of larger
systems and their influence on single molecules is also explored. Together, all these
chapters illustrate the strong dependence between single molecules and entire pathways
or systems.

Part V – Computational Infrastructure for Systems Biology

To represent and organize the large amounts of experimental data and software tools,
database frameworks must be created and made available to the larger biological
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community. This chapter focuses on computational methods and databases as well as
data representations necessary to both integrate and export systems biology informa-
tion to an end user. The user may be the biologist searching for their gene of interest or
they may be the bioinformatician looking for trends in protein function among higher
eukaryotes. Several groups are working on this extremely difficult task of providing
semantic meaning to the large amounts of underlying biological data collected from
single and high-throughput experiments, as well as computational predictions. (As a
parenthetical comment, this is a significantly much harder problem than one faced by
Internet search engines such as a Google, which at this point do not provide any
semantic meaning to a query.) We present only a few such examples in this section
(and in this book). One primary focus is on the Bioverse framework, database, and web
application, which was developed by the editors of this book. However, we also
describe the Biozon as well as the SEBIN and CABIN frameworks. The abstract
representations required to model biological systems are still in fruition, and a comple-
ment of many tools, technologies, databases, and algorithms will have to be integrated
in the future as our knowledge expands.
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Color Plates

Color Plate 1 Uncovering the underlying modularity of a complex network.
(a) Topological overlap illustrated on a small hypothetical network.
On each link, we indicate the topological overlap for the connected
nodes; and in parentheses next to each node, we indicate the node’s
clustering coefficient. (b) The topological overlap matrix correspond-
ing to the small network shown in (a). The rows and columns of the
matrix were reordered by the application of an average linkage cluster-
ing method to its elements, allowing us to identify and place close to
each other those nodes that have high topological overlap. The color
code denotes the degree of topological overlap between the nodes. The
associated tree reflects the three distinct modules built into the model,
as well as the fact that the EFG and HIJK modules are closer to each
other in the topological sense than to the ABC module (Chapter 7,
Fig. 3; see discussion on p. 151).

Color Plate 2 Topological modules in the Escherichia coli metabolism: the topologic
overlap matrix, together with the corresponding hierarchical tree (top
and right) that quantifies the relation between the different modules.
The branches of the tree are color-coded to reflect the predominant
biochemical classification of their substrates. The color code of the
matrix denotes the degree of topological overlap shown in the matrix.
The large-scale functional map of the metabolism, as suggested by
the hierarchical tree, is also shown (bottom) (Chapter 7, Fig. 5; see
discussion on p. 153).

Color Plate 3 Enlarged view of the substrate module of pyrimidine metabolism, along
with a detailed diagram of the metabolic reactions that surround and
incorporate it. The colored boxes in the background denote the first two
levels of the three levels of nested modularity suggested by the hierarchical
tree. Red-outlined boxes denote the substrates directly appearing in the
reduced metabolism and thus on the tree (Chapter 7, Fig. 6; see discussion
on p. 154 and full caption on p. 155).

Color Plate 4 Structural localization of putative SDRs and CERs in two-component
system domains. (a) RR Spo0F (red-brown ribbon) bound to structural
analog of the DD in Spo0B protein. The conserved His is shown in
purple, the conserved Asp in RR in magenta. SDRs and CERs are shown
in yellow or, when located on the �4 helix, in white (PDB entry 1F51).
(b) The non-catalytic conformation of HK homodimer. ADP is shown
as a purple wireframe, the phosphate-accepting conserved His residue in
magenta spacefill. SDRs and CERs on the ATPase are shown in yellow,
or in white if located on the unresolved ATP-lid loop that was
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superimposed from PhoQ kinase (PDB entry 1ID0 ), or in green in the
RR-specific CERs side patch. SDRs and CERs on the DD are shown in
red on one homodimer and orange on another (PDB entry 2C2A)
(Chapter 18, Fig. 6; see discussion on p. 435).

Color Plate 5 Localization of putative SDRs and CERs on computationally obtained
models (models provided by Marina et al (27) ). (a) HK in the active
conformation, the ATPase is docked on the DD so that transfer of the
phosphoryl group is possible. SDRs and CERs on the ATPase domain are
shown in yellow or green when located in the RR-specific CERs side patch.
SDRs and CERs on the DD are shown in red on one homodimer and
orange on another. (b) Spo0F computationally docked on HK and sub-
sequently superimposed with RR from OmpR. RR (brown-red ribbon)
(PDB entry 1KGS) with its 4 helix swung�90�: the phosphorylated Asp in
the RR is shown in magenta, SDR and CERs are shown in light red or,
when located the 4 helix in white. DD (dark blue and dark green ribbon):
SDRs and CERs are shown in light blue on one dimer and in light green on
another. ATPase (yellow-green ribbon on the left and light-blue on the
right): the colors are the same as in (a) (Chapter 18, Fig. 7; see discussion
on p. 439).

Color Plate 6 Valine aminoacyl-tRNA synthetase (PDB entry 1GAX). The
tRNA is shown as a purple wireframe structure, SDRs and CERs
are red balls, and amino acid (valyl-adenylate analog) is in yellow
wireframe (Chapter 18, Fig. 8; see discussion on p. 443).
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Chapter 1

Identification of cis-Regulatory Elements in Gene
Co-expression Networks Using A-GLAM

Leonardo Mariño-Ramı́rez, Kannan Tharakaraman, Olivier Bodenreider,
John Spouge, and David Landsman

Abstract

Reliable identification and assignment of cis-regulatory elements in promoter regions is a challenging
problem in biology. The sophistication of transcriptional regulation in higher eukaryotes, particularly in
metazoans, could be an important factor contributing to their organismal complexity. Here we present an
integrated approach where networks of co-expressed genes are combined with gene ontology–derived
functional networks to discover clusters of genes that share both similar expression patterns and functions.
Regulatory elements are identified in the promoter regions of these gene clusters using a Gibbs sampling
algorithm implemented in the A-GLAM software package. Using this approach, we analyze the cell-cycle
co-expression network of the yeast Saccharomyces cerevisiae, showing that this approach correctly identifies
cis-regulatory elements present in clusters of co-expressed genes.

Key words: Promoter sequences, transcription factor–binding sites, co-expression, networks, gene
ontology, Gibbs sampling.

1. Introduction

The identification and classification of the entire collection of
transcription factor–binding sites (TFBSs) are among the greatest
challenges in systems biology. Recently, large-scale efforts invol-
ving genome mapping and identification of TFBS in lower eukar-
yotes, such as the yeast Saccharomyces cerevisiae, have been
successful (1). On the other hand, similar efforts in vertebrates
have proven difficult due to the presence of repetitive elements and
an increased regulatory complexity (2–4). The accurate prediction
and identification of regulatory elements in higher eukaryotes
remains a challenge for computational biology, despite recent
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progress in the development of algorithms for this purpose (5).
Typically, computational methods for identifying cis-regulatory
elements in promoter sequences fall into two classes, enumerative
and alignment techniques (6). We have developed algorithms that
use enumerative approaches to identify cis-regulatory elements
statistically significantly over-represented in promoter regions
(7). Subsequently, we developed an algorithm that combines
both enumeration and alignment techniques to identify statisti-
cally significant cis-regulatory elements positionally clustered rela-
tive to a specific genomic landmark (8).

Here, we will present a systems biology framework to study cis-
regulatory elements in networks of co-expressed genes. This
approach includes a network comparison operation, namely the
intersection between co-expression and functional networks to
reduce complexity and false positives due to co-expression linkage
but absence of functional linkage. First, co-expression (9, 10) and
functional networks (11, 12) are created using user-selected thresh-
olds. Second, the construction of a single network is obtained from
the intersection between co-expression and functional networks
(13). Third, the highly interconnected regions in the intersection
network are identified (14). Fourth, upstream regions of the gene
clusters that are linked by both co-expression and function are
extracted. Fifth, candidate cis-regulatory elements using A-GLAM
(8) present in dense cluster regions of the intersection network are
identified. In principle, the calculation of intersections for other
types of networks with co-expression and/or functional networks
could also be used to identify groups of co-regulated genes of
interest (15) that may share cis-regulatory elements.

2. Materials

2.1. Hardware

Requirements
1. Personal computer with at least 512 MB of random access

memory (RAM) connected to the Internet.

2. Access to a Linux or UNIX workstation.

2.2. Software

Requirements

1. The latest version of the Java Runtime Environment (JRE)
freely available at http://www.java.com/.

2. The latest version of Cytoscape – a bioinformatics software
platform for visualizing molecular interaction networks (13)
freely available at http://www.cytoscape.org/.

3. The latest version of the MCODE plug-in for Cytoscape –
finds clusters or highly interconnected regions in any network
loaded into Cytoscape (14) freely available at http://cbio.mskcc.
org/�bader/software/mcode/.
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4. A modern version of the Perl programming language installed
on the Linux or UNIX workstation freely available at http://
www.perl.com/.

5. The A-GLAM package (8) freely available at ftp://ftp.ncbi.
nih.gov/pub/spouge/papers/archive/AGLAM/.

3. Methods

The size of co-expression networks depends on the number of
nodes in the network and the threshold used to define an edge
between two nodes. There are a number of distance measures that
are often used to compare gene expression profiles (16).

Here we use the Pearson correlation coefficient (PCC) as a
metric to measure the similarity between expression profiles
and to construct gene co-expression networks (17, 18). We
establish a link by an edge between two genes, represented by
nodes, if the PCC value is higher or equal to 0.7; this is an
arbitrary cut-off that can be adjusted depending on the dataset
used. The microarray dataset used here is the yeast cell-cycle
progression experiment from Cho et al. (9) and Spellman
et al. (10). The semantic similarity method (11) was used to
quantitatively assess the functional relationships between
S. cerevisiae genes.

The A-GLAM software package uses a Gibbs sampling algo-
rithm to identify functional motifs (such as TFBSs, mRNA
splicing control elements, or signals for mRNA 3’-cleavage
and polyadenylation) in a set of sequences. Gibbs sampling (or
more descriptively, successive substitution sampling) is a
respected Markov-chain Monte Carlo procedure for discover-
ing sequence motifs (19). Briefly, A-GLAM takes a set of
sequences as input. The Gibbs sampling step in A-GLAM uses
simulated annealing to maximize an ‘overall score’, a figure of
merit corresponding to a Bayesian marginal log-odds score. The
overall score is given by

s ¼
Xw

i¼1

log2

a � 1ð Þ!
c þ a � 1ð Þ!þ

X

jð Þ
log2

cij þ aj � 1
� �

!

aj � 1
� �

!

" #
� cij log2 pj

( )0

@

1

A: ½1�

In Eq. [1], m! ¼ m m � 1ð Þ . . . 1 denotes a factorial; aj , the pseudo-
counts for nucleic acid j in each position; a ¼ a1 þ a2 þ a3 þ a4, the
total pseudo-counts in each position; cij , the count of nucleic acid j in
position i; and c ¼ ci1 þ ci2 þ ci3 þ ci4, the total number of aligned
windows, which is independent of the position i. The rationale behind
the overall score s in A-GLAM is explained in detail elsewhere (8).
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To initialize its annealing maximization, A-GLAM places a single
window of arbitrary size and position at every sequence, generating
a gapless multiple alignment of the windowed subsequences. It
then proceeds through a series of iterations; on each iteration step,
A-GLAM proposes a set of adjustments to the alignment. The pro-
posal step is either a repositioning step or a resizing step. In a
repositioning step, a single sequence is chosen uniformly at random
from the alignment; and the set of adjustments include all possible
positions in the sequence where the alignment window would fit
without overhanging the ends of the sequence. In a resizing step,
either the right or the left end of the alignment window is selected;
and the set of proposed adjustments includes expanding or contract-
ing the corresponding end of all alignment windows by one position
at a time. Each adjustment leads to a different value of the overall
score s. Then, A-GLAM accepts one of the adjustments randomly,
with probability proportional to exp s=Tð Þ. A-GLAM may even
exclude a sequence if doing so would improve alignment quality.
The temperature T is gradually lowered to T ¼ 0, with the intent of
finding the gapless multiple alignment of the windows maximizing s.
The maximization implicitly determines the final window size. The
randomness in the algorithm helps it avoid local maxima and find
the global maximum of s . Due to the stochastic nature of the proce-
dure, finding the optimum alignment is not guaranteed. Therefore,
A-GLAM repeats this procedure ten times from different starting
points (ten runs). The idea is that if several of the runs converge to
the same best alignment, the user has increased confidence that it is
indeed the optimum alignment. The steps (below) corresponding to
E-values and post-processing were then carried out with the PSSM
corresponding to the best of the ten scores s.

The individual score and its E-value in A-GLAM: The
Gibbs sampling step produces an alignment whose overall score
s is given by Eq. [1]. Consider a window of length w that is
about to be added to A-GLAM’s alignment. Let di jð Þ equal 1 if
the window has nucleic acid j in positioni, and 0 otherwise.
The addition of the new window changes the overall score by

Ds ¼
Xw

i¼1

X

jð Þ
di jð Þ log2

cij þ aj

c þ a

� �
=pj

� �� 	
: ½2�

The score change corresponds to scoring the new window accord-
ing to a position-specific scoring matrix (PSSM) that assigns the
‘individual score’

si jð Þ ¼ log2

cij þ aj

c þ a

� �
=pj

� �
½3�

to nucleic acid j in positioni. Equation [3] represents a log-odds
score for nucleic acid j in position i under an alternative hypothesis
with probability cij þ aj

� �
= c þ að Þ and a null hypothesis with
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probabilitypij . PSI-BLAST (20) uses Eq. [3] to calculate E-values.
The derivation through Eq. [2] confirms the PSSM in Eq. [3] as
the natural choice for evaluating individual sequences.

The assignment of an E-value to a subsequence with a particular
individual score is done as follows: consider the alignment sequence
containing the subsequence. Let n be the sequence length, and recall
that w is the window size. If DSi denotes the quantity in Eq. [2] if the
final letter in the window falls at position i of the alignment sequence,
thenDS� ¼ max DSi : i ¼ w; . . . ;nf g is the maximum individual score
over all sequence positions i. We assigned an E-value to the actual
value DS� ¼ Ds�, as follows. Staden’s method (21) yields P DSiDs�f g
(independent of i) under the null hypothesis of bases chosen indepen-
dently and randomly from the frequency distribution pj


 �
. The E-

value E ¼ n � w þ 1ð ÞP DSiDs�f g is therefore the expected number
of sequence positions with an individual score exceeding Ds�. The
factor n � w þ 1 in E is essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (22). The optional ‘scanning step’ after Gibbs
sampling produces a PSSM given by Eq. [3]. The new scanning
step resembles an iterative PSI-BLAST search based on the PSSM.
First, it assigns an ‘individual score’ to each subsequence of appro-
priate length within the input sequences using the initial PSSM.
Second, it computes an E-value from each individual score to
assess the agreement between the corresponding subsequence
and the PSSM. Third, it permits subsequences with E-values fall-
ing below a threshold to contribute to the underlying PSSM,
which is then updated using the Bayesian calculus. A-GLAM
iterates its scanning step to convergence, at which point no new
subsequences contribute to the PSSM. After convergence,
A-GLAM reports predicted regulatory elements within each
sequence in the order of increasing E-values; users then have a
statistical evaluation of the predicted elements in a convenient
presentation. Thus, although the Gibbs sampling step in
A-GLAM finds at most one regulatory element per input
sequence, the scanning step can now rapidly locate further
instances of the element in each sequence.

3.1. Co-expression

Network Construction

1. The yeast cell-cycle-regulated expression data are obtained
from http://cellcycle-www.stanford.edu/ (see Note 1).

2. Pairwise Pearson correlation coefficient (PCC) values are cal-
culated using a subroutine implemented in the Perl program-
ming language (23) (see Note 2).

3. The co-expression network is constructed with all gene pairs
with a PCC greater or equal to 0.7 and is formatted according
to the simple interaction file (SIF) described in the Cytoscape
manual available at http://www.cytoscape.org/ (see Note 3).
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4. The co-expression network can be loaded in Cytoscape, which
is an open-source software for integrating biomolecular inter-
action networks. Cytoscape is available for a variety of operat-
ing systems, including Windows, Linux, Unix, and Mac OS X.

3.2. Functional

Similarity Network

Construction

1. Gene ontology (GO) annotations for yeast gene products
come from the Saccharomyces Genome Database (SGD) and
were downloaded from http://www.geneontology.org/cgi-
bin/downloadGOGA.pl/gene_association.sgd.gz. The evi-
dence supporting such annotations is captured by evidence
codes, including TAS (Traceable Author Statement) and IEA
(Inferred from Electronic Annotation). While TAS refers to
peer-reviewed papers and indicates strong evidence, IEA
denotes automated predictions, not curated by experts, i.e.,
generally less reliable annotations. For this reason, IEA anno-
tations were excluded from this study.

2. Functional relationships between S. cerevisiae genes were
assessed quantitatively using a semantic similarity method
(11) based on the gene ontology (GO). We first computed
semantic similarity among GO terms from the Biological Process
hierarchy using the Lin metric. This metric is based on infor-
mation content and defines term–term similarity, i.e., the
semantic similarity sim(ci, cj) between two terms ci and cj as

simðci; cj Þ ¼
2� max

c2Sðci ;cj Þ
½logðpðcÞÞ�

logð pðciÞÞ þ logðpðcj ÞÞ
; ½4�

where S(ci,cj) represents the set of ancestor terms shared by
both ci and cj, ‘max’ represents the maximum operator, and
p(c) is the probability of finding c or any of its descendants in
the SGD database. It generates normalized values between 0
and 1. Gene–gene similarity results from the aggregation of
term–term similarity values between the annotation terms of
these two genes. In practice, given a pair of gene products, gk

and gp, with sets of annotations Ak and Ap comprising m and
n terms, respectively, the gene–gene similarity, SIM(gk, gp), is
defined as the highest average (inter-set) similarity between
terms from Ai and Aj:

SIMðgi; gj Þ ¼
1

m þ n
�

X

k

max
p
½simðck; cpÞ�Þ þ

X

p

max
k
½simðck; cpÞ�

( )
; ½5�

where sim(ci,cj) may be calculated using Eq. [1]. This aggre-
gation method (12) can be understood as a variant of the
Dice similarity.

3. The functional similarity network is constructed using
semantic similarity greater or equal to 0.7 and is formatted
according to the simple interaction file (SIF).

8 Mariño-Ramı́rez et al.



4. Functional relationships in a group of genes can be further
explored in Cytoscape using the BiNGO plug-in (24). Here
we have used the hypergeometric test to assess the statistical
significance (p < 0.05) and the Benjamini & Hochberg False
Discovery Rate (FDR) correction (25).

3.3. Intersection

Network Construction

1. The yeast co-expression and functional similarity networks are
loaded in Cytoscape and the intersection network can be
obtained by using the Graph Merge plug-in, freely available
at the Cytoscape Web site. The nodes that are connected by
having similar expression profiles and GO annotations are
present in the intersection network (Fig. 1.1) (see Note 4).

Fig. 1.1. Yeast cell-cycle gene co-expression and GO intersection network. The intersection network topology is
shown for yeast genes, represented by nodes linked by one or more edges as described in the text. An edge represents
both co-expression and functional linkage between the nodes connected.
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2. The intersection network can be visualized using a variety of
layouts in Cytoscape. A circular layout of the intersection net-
work using the yFiles Layouts plug-in is depicted in Fig. 1.1.

3.4. Identification

of Highly

Interconnected

Regions

1. The identification of dense gene clusters in the intersection
network is done using the MCODE Cytoscape plug-in (14)
(see Note 5). The clusters identified share similar expression
patterns and functions as described by GO (Fig. 1.2).
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Fig. 1.2. Core histone gene cluster in the intersection network. A. Highly connected cluster identified by MCODE
corresponds to eight core histone genes present in the yeast genome. The eight nodes are connected by 28 co-expression
and functional edges. B. Expression profiles of the core histone genes over the cell cycle. C. Over-represented GO terms in
the Biological Process category for the core histone genes. The statistical significance of each GO term is related to the
intensity of the colored circles (see Note 5).

10 Mariño-Ramı́rez et al.



3.5. Identification

of Proximal Promoter

Regions

1. The Saccharomyces Genome Database (SGD) maintains the
most current annotations of the yeast genome (see http://
www.yeastgenome.org/). The SGD FTP site contains the
DNA sequences annotated as intergenic regions in FASTA
format (available at ftp://genome-ftp.stanford.edu/pub/
yeast/sequence/genomic_sequence/intergenic/), indicating
the 5’ and 3’ flanking features. Additionally, a tab-delimited
file with the annotated features of the genome is necessary to
determine the orientation of the intergenic regions relative to
the genes (available at ftp://genome-ftp.stanford.edu/pub/
yeast/chromosomal_feature/). The two files can be used to
extract upstream intergenic regions (26) for the genes present
in the intersection network clusters (see Note 6).

3.6. Identification

of cis-Regulatory

Elements in Promoter

Regions

1. Construct FASTA files for each of the gene clusters identified
by MCODE.

2. Install the A-GLAM package (see Note 7).

3. The A-GLAM package has a number of options that can be
used to adjust search parameters (see Note 8).
$ aglam

Usage summary: aglam [options] myseqs.fa

C

Fig. 1.2. (continued)
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Options:

– h help: print documentation

– n end each run after this many iterations without improve-
ment (10,000)

– r number of alignment runs (10)

– a minimum alignment width (3)

– b maximum alignment width (10,000)

– j examine only one strand

– i word seed query ()

– f input file containing positions of the motifs ()

– z turn off ZOOPS (force every sequence to participate in
the alignment)

– v print all alignments in full

– e turn off sorting individual sequences in an alignment on
p-value

– q pretend residue abundances = 1/4

– d frequency of width-adjusting moves (1)

– p pseudocount weight (1.5)

– u use uniform pseudocounts: each pseudocount = p/4

– t initial temperature (0.9)

– c cooling factor (1)

– m use modified Lam schedule (default = geometric
schedule)

– s seed for random number generator (1)

– w print progress information after each iteration

– l find multiple instances of motifs in each sequence

– k add instances of motifs that satisfy the cutoff e-value (0)

– g number of iterations to be carried out in the post-processing
step (1,000)

4. Run A-GLAM to identify the regulatory elements present in
the gene clusters with similar expression patterns and GO
annotations (see Note 9). A-GLAM correctly identifies an
experimentally characterized element known to regulate
core histone genes in yeast (27). The alignments produced
by A-GLAM can be represented by sequence logos (28, 29)
and the positional preferences of the elements can be eval-
uated by plotting the score against relative positions, nor-
malized by sequence length, in the promoter sequences
(Fig. 1.3).
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4. Notes

1. The yeast cell cycle data from the Web site include the
experiments from Cho et al. (9) and Spellman et al. (10).

2. The following Perl code can be used to calculate the PCC:

my$r = correlation(\@{$values{$probe1}}, \@{$values
{$probe2}});
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Fig. 1.3. Core histone regulatory element identified with A-GLAM. A. Sequence logo representation of the motif
obtained from the ungapped multiple sequence alignment identified by A-GLAM (see Note 9). B. Positional preference plot
for the elements identified by A-GLAM where the score in bits is plotted against the relative position of the element in the
upstream regions of the core histone genes.
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sub covariance {
my ($array1ref,$array2ref) = @_;
my ($i,$result);
for ($i = 0;$i < @$array1ref;$i++) {$result +=$array1

ref->[$i] *$array2ref->[$i];
}
$result /= @$array1ref;
$result -= mean($array1ref) * mean($array2ref);

}

sub correlation {
my ($array1ref,$array2ref) = @_;
my ($sum1,$sum2);
my ($sum1_squared, $sum2_squared);
foreach (@$array1ref) {$sum1 +=$_;$sum1_squared

+=$_ ** 2 }
foreach (@$array2ref) {$sum2 +=$_;$sum2_squared

+=$_ ** 2 }
return (@$array1ref ** 2) * covariance($array1ref,

$array2ref) /sqrt(((@$array1ref *$sum1_squared) -
($sum1 ** 2)) *((@$array1ref *$sum2_squared) -
($sum2 ** 2)));

}

sub mean {
my ($arrayref) = @_;
my$result;
foreach (@$arrayref) {$result +=$_ }
return$result / @$arrayref;

}

3. The simple interaction file (SIF or .sif format) consists of lines
where each node, representing a protein, is connected by an
edge to a different protein in the network. Lines from the
simple interaction file from the co-expression network:
RPL12A pp THR1

RPL12A pp TIF2

RPL12A pp TIF1

RPL12A pp GUK1

RPL12A pp URA5

RPL12A pp RPL1B

RPL12A pp SSH1

RPL12A pp SNU13

RPL12A pp RPL23B

SHU1 pp DON1
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Two nodes are connected by a relationship type that in this
case is pp. The nodes and their relationships are delimited by a
space or a tab (see the Cytoscape manual for more detailed
information).

4. Two or more networks can be used to calculate their
intersection as needed to select for connections that meet
certain criteria. The researcher can overlay protein–protein
interactions, co-expression and functional networks to
identify the protein complexes created under specific
experimental conditions.

5. The MCODE plug-in ranks the clusters according to the
average number of connections per protein in the complex
(Score). The top five clusters identified by MCODE in the
intersection network are shown below:

Cluster Score Proteins Interactions

1 6.6 15 99

2 3.5 8 28

3 2.267 15 34

4 2 5 10

5 2 5 10

The BiNGO plug-in can be used to determine the GO terms
statistically over-represented in a group of genes. Here we
show the results for cluster 2:

Selected statistical test : Hypergeometric test
Selected correction : Benjamini & Hochberg False Dis-
covery Rate (FDR) correction
Selected significance level : 0.05

Testing option : Test cluster versus complete annotation

The selected cluster :
HHT1 HHF1 HTA1 HHT2 HHF2 HTA2 HTB1 HTB2

Number of genes selected : 8
Total number of genes in annotation : 5932

6. There are a number of Web sites that facilitate the extraction
of promoter sequences. A service for the extraction of human,
mouse, and rat promoters is freely available at http://bio
wulf.bu.edu/zlab/promoser/

7. The A-GLAM package is currently available in source
code and binary forms for the Linux operating system
(see ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/
AGLAM/).
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Installation of the Linux binary: Get the executable from the
FTP site and set execute permissions.

$chmod +x aglam

Installation from source: Unpack the glam archive and com-
pile A-GLAM.

$tar –zxvf aglam.tar.gz
$cd aglam
$make aglam

8. Possible scenarios and options to modify A-GLAM’s behavior.
$aglam <myseqs.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in ‘‘myseqs.fa’’.

$aglam <myseqs.fa> -n 20000 -a 5 -b 15 -j

This tells the program to search only the given strand of the
sequences to find motifs of length between 5 and 15 bp. The
flag n specifies the number of iterations performed in each of
the ten runs. Low values of n are adequate when the problem
size is small, i.e., when the sequences are short and more
importantly there are few of them, but high values of n are
needed for large problems. In addition, smaller values of n are
sufficient when there is a strong alignment to be found, but
larger values are necessary when there is not, e.g., for finding
the optimal alignment of random sequences. You will have to

GO ID P-value
Corrected
P-value Description

6333 4.9168E-15 1.2292E-13 Chromatin assembly
or disassembly

6325 2.2510E-12 1.8758E-11 Establishment and/or
maintenance of
chromatin
architecture

6323 2.2510E-12 1.8758E-11 DNA packaging

7001 2.0415E-10 1.2759E-9 Chromosome
organization and
biogenesis (sensu
Eukaryota)

51276 2.5897E-10 1.2949E-9 Chromosome
organization and
biogenesis

6259 5.9413E-9 2.4756E-8 DNA metabolism

6996 6.9565E-7 2.4845E-6 Organelle
organization and
biogenesis
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choose n on a case-by-case basis. This parameter also controls
the tradeoff between speed and accuracy.

$aglam <myseqs.fa> -i TATA

This important option sets the program to run in a ‘‘seed’’-
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed
in the standard Gibbs sampling algorithm, however, A-GLAM
continues to align one exact copy of the ‘‘seed’’ in all ‘‘seed
sequences’’. Therefore, A-GLAM uses the seed sequences to
direct its search in the remaining non-seed ‘‘target sequences’’.
Using this option leads to the global optimum quickly.

$aglam <myseqs.fa> -f <positions.dat>

The above command uses an extra option that allows
A-GLAM to take a set of positions from an input file ‘‘posi-
tions.dat’’. Like with the ‘‘-’’ flag, this option provides ‘‘seeds’’
for the A-GLAM alignment. Using this command restricts
the Gibbs sampling step to aligning the original list of win-
dows specified by the positions in the file. The seed sequences
then direct the search in the remaining non-seed sequences.

$aglam <myseqs.fa> -l –k 0.05 –g 2000

Usable only with version 1.1. This tells the program to find
multiple motif instances in each input sequence, via the scan-
ning step (described above). Those instances that receive an
E-value less than 0.05 are included in the PSSM. The search
for multiple motifs is carried on until either (a) no new motifs
are present or (b) the user-specified number of iterations (in
this case, it is 2,000) is attained, whichever comes first.

9. A-GLAM uses sequences in FASTA format as input. Cluster
number 2, identified by MCODE, is composed of eight genes
linked by 28 co-expression and GO connections. Interest-
ingly, the intergenic regions of the same cluster are shared
between the genes in the cluster:

>B:235796-236494, Chr 2 from 235796-236494,
between YBL003C and YBL002W
TATATATTAAATTTGCTCTTGTTCTGTACTTTCCTAATTCTTATGTA
AAAAGACAAGAAT
TTATGATACTATTTAATAACAAAAAACTACCTAAGAAAAGCATCATGCAG
TCGAAATTGA
AATCGAAAAGTAAAACTTTAACGGAACATGTTTGAAATTCTAAGAAAGC
ATACATCTTCA
TCCCTTATATATAGAGTTATGTTTGATATTAGTAGTCATGTTGTAATCT
CTGGCCTAAGT
ATACGTAACGAAAATGGTAGCACGTCGCGTTTATGGCCCCCAGGTTAAT
GTGTTCTCTGA
AATTCGCATCACTTTGAGAAATAATGGGAACACCTTACGCGTGAGCTGT
GCCCACCGCTT
CGCCTAATAAAGCGGTGTTCTCAAAATTTCTCCCCGTTTTCAGGATCAC
GAGCGCCATCT
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AGTTCTGGTAAAATCGCGCTTACAAGAACAAAGAAAAGAAACATCGCGT
AATGCAACAGT
GAGACACTTGCCGTCATATATAAGGTTTTGGATCAGTAACCGTTATTTG
AGCATAACACA
GGTTTTTAAATATATTATTATATATCATGGTATATGTGTAAAATTTTTT
TGCTGACTGGT
TTTGTTTATTTATTTAGCTTTTTAAAAATTTTACTTTCTTCTTGTTAAT
TTTTTCTGATT
GCTCTATACTCAAACCAACAACAACTTACTCTACAACTA
>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W
TGTATGTGTGTATGGTTTATTTGTGGTTTGACTTGTCTATATAGGATAA
ATTTAATATAA
CAATAATCGAAAATGCGGAAAGAGAAACGTCTTTAATAAATCTGACCAT
CTGAGATGATC
AAATCATGTTGTTTATATACATCAAGAAAACAGAGATGCCCCTTTCTTA
CCAATCGTTAC
AAGATAACCAACCAAGGTAGTATTTGCCACTACTAAGGCCAATTCTCTT
GATTTTAAATC
CATCGTTCTCATTTTTTCGCGGAAGAAAGGGTGCAACGCGCGAAAAAGT
GAGAACAGCCT
TCCCTTTCGGGCGACATTGAGCGTCTAACCATAGTTAACGACCCAACCG
CGTTTTCTTCA
AATTTGAACTCGCCGAGCTCACAAATAATTCATTAGCGCTGTTCCAAAA
TTTTCGCCTCA
CTGTGCGAAGCTATTGGAATGGAGTG
TATTTGGTGGCTCAAAAAAAGAGCACAATAGTTA
ACTCGTCGTTGTTGAAGAAACGCCCGTAGAGATATGTGGTTTCTCATGC
TGTTATTTGTT
ATTGCCCACTTTGTTGATTTCAAAATCTTTTCTCACCCCCTTCCCCGTT
CACGAAGCCAG
CCAGTGGATCGTAAATACTAGCAATAAGTCTTGACCTAAAAAATATATA
AATAAGACTCC
TAATCAGCTTGTAGATTTTCTGGTCTTGTTGAACCATCATCTATTTACT
TCCAATCTGTA
CTTCTCTTCTTGATACTACATCATCATACGGATTTGGTTATTTCTCAGT
GAATAAACAAC
TTCAAAACAAACAAATTTCATACATATAAAATATAAA
>N:576052-576727, Chr 14 from 576052-576727, between
YNL031C and YNL030W
TGTGGAGTGTTTGCTTGGATCCTTTAGTAAAAGGGGAAGAACAGTTGGAA
GGGCCAAAGT
GGAAGTCACAAAACAGTGGTCCTATATAAAAGAACAAGAAAAAGATTATT
TATATACAAC
TGCGGTCACAAGAAGCAACGCGAGAGAGCACAACACGCTGTTATCACGCA
AACTATGTTT
TGACACCGAGCCATAGCCGTGATTGTGCGTCACATTGGGCGATAATGAAC
GCTAAATGAC
CAACTCCCATCCGTAGGAGCCCCTTAGGGCGTGCCAATAGTTTCACGCGC
TTAATGCGAA
GTGCTCGGAACGGACAACTGTGGTCGTTTGGCACCGGGAAAGTGGTACTA
GACCGAGAGT
TTCGCATTTGTATGGCAGGACGTTCTGGGAGCTTCGCGTCTCAAGCTTTT
TCGGGCGCGA
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AATGCAGACCAGACCAGAACAAAACAACTGACAAGAAGGCGTTTAATTTA
ATATGTTGTT
CACTCGCGCCTGGGCTGTTGTTATTCGGCTAGATACATACGTGTTTGTGC
GTATGTAGTT
ATATCATATATAAGTATATTAGGATGAGGCGGTGAAAGAGATTTTTTTT
TTTTCGCTTAA
TTTATTCTTTTCTCTATCTTTTTTCCTACATCTTGTTCAAAAGAGTAGC
AAAAACAACAA
TCAATACAATAAAATA
>B:255683-256328, Chr 2 from 255683-256328, between
YBR009C and YBR010W
ATTTTACTATATTATATTTGTTGCTTGTTTTTGTTTGTTGCTTTAGTAC
TATAGAGTACA
ATAATGCGACGGAAACCATCATATAGAAAAAATATCTCGGTATTTATAG
GAAAAAGAATT
AGACCTTTTCCACAACCAATTTATCCATCAAATTGGTCTTTACCCAATG
AATGGGGAAGG
GGGGGTGGCAATTTACCACCGTATTCGCGGGCATTTGCTAAAGTAAACA
ACTTCGGTTTT
TACCACTAACCATTATGGGGAGAAGCGCTCGGAACAGTTTTACTATGTG
AAGATGCGAAG
TTTTCAGAACGCGGTTTCCAAATTCGGCGGGGAGATACAAAAAAGATTT
TTGCTCTCGTT
CTCACATTTTCGCATTGTCCCATACATTATCGTTCTCACAATTTCTCAC
ATTTCCTTGCT
CTGCACCTTTGCGATCCTGGCCGTAATATCTCTCCTTGACTTTTAGCGT
GGAAGATAACG
AAATGCCCGGGCGATTTTTCTTTTTGGTACCCTCCACGGCTCCTTGTTG
AAATACATATA
TAAAAGACTGTGTATTCTTCGGGATACATCTCTTTCCTCAACCTTTTAT
ATTCTTTCTTT
CTAGTTAATAAGAAAAACATCTAACATAAATATATAAACGCAAACA

A-GLAM has a number of useful command line options that
can be adjusted to improve ab initio motif finding; in this
example we have restricted the search to motifs no larger
than 20 bp.

$aglam -b 20 -l 02.fa

A-GLAM: Anchored Gapless Local Alignment of
Multiple

Sequences Compiled on Jun 2 2006
Run 1... 11724 iterations
Run 2... 10879 iterations
Run 3... 10878 iterations
Run 4... 10336 iterations
Run 5... 10181 iterations
Run 6... 10637 iterations
Run 7... 10116 iterations
Run 8... 11534 iterations
Run 9... 10097 iterations
Run 10... 10239 iterations
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! The sequence file was [02.fa]
! Reading the file took [0] secs
! Sequences in file [4]
! Maximum possible alignment width [1292]
! Score [243.4] bits
! Motif Width [20]
! Runs [10]

! Best possible alignment:

>B:235796-236494, Chr 2 from 235796-236494, between

YBL003C and YBL002W

365 AGGCGAAGCGGTGGGCACAG 346 � (21.29360)

(2.820982e-08)

394 GGGAGAAATTTTGAGAACAC 375 � (13.97930)

(5.205043e-04)

309 ATGCGAATTTCAGAGAACAC 290 � (11.12770)

(5.771870e-03)

314 TTGAGAAATAATGGGAACAC 333 + (9.034960)

(2.714569e-02)

>D:914709-915525, Chr 4 from 914709-915525, between

YDR224C and YDR225W

423 GTGCGAAGCTATTGGAATGG 442 + (18.55810)

(2.256236e-06)

278 GCGCGAAAAAGTGAGAACAG 297 + (13.90430)

(6.495526e-04)

418 AGGCGAAAATTTTGGAACAG 399 � (12.51460)

(2.007017e-03)

262 CCGCGAAAAAATGAGAACGA 243 � (9.499530)

(2.299132e-02)

>N:576052-576727, Chr 14 from 576052-576727,

between YNL031C and YNL030W

294 ATGCGAAGTGCTCGGAACGG 313 + (21.65330)

(1.526033e-08)

367 ATGCGAAACTCTCGGTCTAG 348 � (11.95760)

(2.781407e-03)

399 ACGCGAAGCTCCCAGAACGT 380 � (11.25120)

(5.253971e-03)

288 GCGTGAAACTATTGGCACGC 269 � (8.853600)

(3.961768e-02)

>B:255683-256328, Chr 2 from 255683-256328, between

YBR009C and YBR010W

258 GGGAGAAGCGCTCGGAACAG 277 + (22.13350)

(6.281785e-09)

293 ATGCGAAGTTTTCAGAACGC 312 + (11.81510)

(3.041439e-03)

409 GTGAGAAATTGTGAGAACGA 390 � (8.852760)

(3.780865e-02)

375 ATGCGAAAATGTGAGAACGA 356 � (8.564750)

(4.774790e-02)
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! 16 sequences in alignment

! Residue abundances:Pseudocounts

! A = 0.312544:0.468816 C = 0.187456:0.281184

! G = 0.187456:0.281184 T = 0.312544:0.468816

! Total Time to find best alignment [15.87] secs
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Chapter 2

Structure-Based Ab Initio Prediction of Transcription
Factor–Binding Sites

L. Angela Liu and Joel S. Bader

Abstract

We present an all-atom molecular modeling method that can predict the binding specificity of a
transcription factor based on its 3D structure, with no further information required. We use molecular
dynamics and free energy calculations to compute the relative binding free energies for a transcription
factor with multiple possible DNA sequences. These sequences are then used to construct a position
weight matrix to represent the transcription factor–binding sites. Free energy differences are calculated
by morphing one base pair into another using a multi-copy representation in which multiple base pairs
are superimposed at a single DNA position. Water-mediated hydrogen bonds between transcription
factor side chains and DNA bases are known to contribute to binding specificity for certain transcrip-
tion factors. To account for this important effect, the simulation protocol includes an explicit
molecular water solvent and counter-ions. For computational efficiency, we use a standard additive
approximation for the contribution of each DNA base pair to the total binding free energy. The
additive approximation is not strictly necessary, and more detailed computations could be used to
investigate non-additive effects.

Key words: Transcription factor–binding sites, molecular dynamics, free energy, position weight
matrix (PWM), multi-copy, thermodynamic integration, protein–DNA binding.

1. Introduction

Transcription factors are DNA-binding proteins that control gene
expression (1). They often recognize short DNA sequences (about
six to eight base pairs long, roughly the number of base pairs
exposed on the single face of a DNA major groove) that can be
degenerate. Traditionally, binding sites have been obtained using
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experimental methods, including SELEX (2), ChIP-chip (3), pro-
tein-binding microarrays (4), etc. These methods are often labor-
intensive and expensive.

The binding sites of a transcription factor are intrinsically
determined by the 3D structures of the protein and DNA and
their structural complementarities. Binding sites of a transcription
factor may also depend on its participation in a multi-protein
complex. It is therefore desirable to predict these binding sites
based on the 3D structures of transcription factors. This ab initio
approach uses all-atom molecular simulation and remains a chal-
lenging problem. Several previous attempts (5–7) are limited to
implicit solvent, enthalpic calculations of the free energy and fro-
zen macromolecular backbones, all of which could lead to a bias in
the binding site prediction.

In this chapter, we present an improved and, in principle, exact
method (at least to the level of accuracy of molecular force fields)
that can predict the transcription factor–binding sites using their
structural information. There is no other required information,
except for a well-chosen atomic force field for the representation of
the protein–DNA complex.

The theoretical basis for structure-based binding site pre-
dictions for transcription factors is the binding free energy of
the protein–DNA complex, calculated as the difference in free
energy between the solvated complex and the solvated indivi-
dual protein and DNA components. A transcription factor
could possibly bind to multiple different DNA sequences
with comparable binding affinity. This is because both DNA
and protein are highly flexible molecules. Once a DNA base
pair is changed to a different base pair and its prior favorable
contacts with the protein are disrupted, protein and DNA can
relax and change their geometries to achieve alternative favor-
able binding conformation. Typically, a specific DNA sequence
and a non-specific DNA sequence to the same transcription
factor differ only in binding energy on the magnitude of
10 kcal/mol. This is roughly equivalent to the energy of
breaking two to five hydrogen bonds, as hydrogen bonds
formed between oxygen and nitrogen atoms are typically
2–5 kcal/mol.

The relative binding free energy of a transcription factor with
two different DNA sequences can be obtained using the following
thermodynamic cycle:

DNAðaqÞþproteinðaqÞ ! protein�DNA complex ðaqÞ�G

#�GDNA #�Gcomp

DNA0ðaqÞþproteinðaqÞ ! protein�DNA0 complex ðaqÞ�G 0

��G ¼�G 0 ��G ¼�Gcomp��GDNA; ½1�
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where ��G is the relative binding free energy of the protein with
DNA and DNA’. The two horizontal reactions represent the
association of the protein with two different DNA sequences.
These binding free energies can be obtained from experimental
measurement. The two vertical reactions represent mutations of
changing the DNA sequence in the DNA duplex (�GDNA) and the
protein–DNA complex (�Gcomp). In computation, it is the two
vertical or ‘‘mutational’’ reactions that are calculated. There are
two common methods for the calculation of such ‘‘mutational’’
free energies: free energy perturbation and thermodynamic inte-
gration. From our experience, we found that the latter method,
thermodynamic integration, is easy to implement and provides
more opportunities for extension such as free energy decomposi-
tion analyses. In this chapter, we use this method exclusively.

A prevalent representation of the transcription factor–binding
site is a position weight matrix (PWM), which can be converted
into a sequence logo for graphical representation. In order for the
PWM representation to be valid, each base pair must contribute
independently or additively to the total binding free energy, com-
monly called the ‘‘additive approximation’’. In transcription
factor – DNA complexes that have relatively small deformations
in the DNA structure, this assumption has been observed to be a
fairly good simplification (6). In this chapter, we will also use this
additive approximation and point out ways to assess the non-
additivity in Note 1.

At each base pair position along the DNA, there are four
possible Watson-Crick base pairs. Equation [1] can be used to
calculate the relative binding free energies among these four
possible base pairs, which will result in a four-level energy
diagram. The base pair with the lowest energy leads to the
strongest binding, and is normally the base that appears in the
experimental consensus binding sequence. These relative ener-
gies can be converted into probabilities using the Boltzmann
factor, as in

Prðbp ¼ a; a 2 fA;C;G;TgÞ ¼ exp½�bðEa � E0Þ�P
g2fA;C;G;Tg

exp½�bðEg � E0Þ�
; ½2�

where the four possible base pairs are labeled as A, C, G, or T; a and
g represent possible base pair identities; b is the inverse tempera-
ture (i.e., 1/kBT, kB is the Boltzmann constant and T is the
temperature); Ea and E0 represent the free energy of the base
pair a and the free energy of a reference base pair. Then (Ea – E0)
corresponds to the ��G of Eq. [1] for changing the reference
base pair into base pair a. For convenience, we choose the base pair
leading to the lowest free energy (thus the strongest binder) as the
reference point.

Binding Site Prediction 25



These probabilities can then be converted into a sequence logo
(8) using the following formula,

ICðlÞ ¼ 2þ
X

a2fA;C;G;Tg
Prða; lÞ log2 Prða; lÞ; ½3�

where IC(l) represents the information content (in bits) at base
pair position l; Pr(a,l) represents the probability (from Eq. [2]) of
base pair a at position l. In the sequence logo, the letters A, C, G,
and T (representing the corresponding base pair) are stacked on
top of each other in the order of descending probability at each
base pair position. The relative height of each base pair at a position
is proportional to their corresponding probabilities. The maxi-
mum height of information content at each position is 2 bits,
representing 100% conservation at the position; the minimum
height is 0, representing equal probabilities for all four possible
base pairs.

Taking the vertical reaction �Gcomp as an example, the free
energy simulation and analysis can be done as follows. We will use a
single base pair change as an example, using the above-mentioned
additive approximation. First, a protein–DNA complex structure is
made. Then a base pair at a specific position is changed to another
possible base pair. These two structures represent the reactant and
the product of the reaction. Our job is to calculate the free energy
change associated with the reaction. Because free energy is a state
function, we can connect the reactant and the product using an
arbitrary reaction path, and integrate the energy gradient along the
path to obtain the total free energy change. This approach is called
thermodynamic integration. The formal derivation of this method
can be found in Leach’s introductory modeling book (9), as well as
most of the theoretical background for this chapter. More
advanced treatments are also available (10). Here we list the equa-
tions that are pertinent to the discussion. The energy function of
the system is

H ¼ H0 þ ð1� lÞHreac þ lHprod; ½4�

where H is the total Hamiltonian of the system that contains all the
energetic terms; H0 is the energy terms for the environmental
atoms, comprising all those other than the reactant and product;
Hreac and Hprod represent the energy terms associated with atoms
in the reactant and the product, respectively; and l represents the
reaction coordinate (aka coupling parameter). Here the reactant
refers to the original base pair; the product refers to the final base
pair; and the environment refers to the atoms of the DNA back-
bone, other DNA base pairs, protein, and the solvent. From this
equation we can see that the Hamiltonian becomes that of the
reactant system when l is 0, and becomes that of the product
system when l is 1. At intermediate l values, the Hamiltonian
corresponds to an artificial system that contains both the reactant
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atoms and the product atoms. The reactant and the product,
however, do not have any interaction terms, allowing them to
occupy the same space.

Based on the linear coupling scheme of Eq. [4], the free
energy change for changing the base pair is

�G ¼
Z1

0

dl
@H

@l

� �

l
¼
Z1

0

dl Hprod �Hreac

� �
l; ½5�

where the angular brackets ‘‘h il’’ represent an ensemble average at
a particular value of l. In practice, the free energy simulation is
done using traditional molecular dynamics methods, except that
the energy function is now evaluated using Eq. [4]. After every
1 ps or so, the simulation trajectory will be saved. When the
simulation is done, the saved trajectory will be analyzed using
Eq. [5] to obtain the ensemble average of the Hamiltonian gra-
dient. Typically, a numerical integration scheme is used to com-
pute the free energy change for the reaction, such as the
trapezoidal rule.

2. Materials

We list here the required computational resources for carrying out
the computations discussed in the next section. The computa-
tional cost is listed in Note 2.

The majority of the calculations are done using a molecular
modeling package called CHARMM (http://www.charmm.org)
that requires a license. The version for wide distribution as of
Jan. 2009 is c35b1. We have carried out all calculations using
version c32b1. CHARMM requires FORTRAN90 compiler. On a
Linux computer with Intel processors, the GNU FORTRAN compi-
ler suffices. On Apple PowerPC computers with IBM processors,
the IBM FORTRAN compiler is required. The benchmarks for these
two architectures lead to similar running time for identical mole-
cular test systems in serial mode, where the Intel processor is
3.0 GHz and the IBM processor is 2.2 GHz. CHARMM requires a
moderate amount of memory at about 250 MB on the above two
architectures for a system with about 25,000 atoms. The CHARMM

executable is also available at public supercomputer sites, such as
BigBen at the Pittsburgh Supercomputing Center (PSC), which
has a parallel version of CHARMM installed (proof of license is
required for usage). Benchmarks for additional systems are avail-
able from CHARMM’s website, which lists a wide range of supported
architectures and compilers.
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We chose CHARMM because we found it the easiest for imple-
menting the calculations we desired (see Note 3). The CHARMM27
atomic force field has been well tested to be accurate for the
description of proteins and nucleic acids. In tests on BigBen at
PSC, we have found a drop-off in performance for running
CHARMM on more than 16 compute nodes (32 CPUs) in parallel.
This drop-off may be system-specific or even due to inexperience
on our part. We did not investigate this issue because paralleliza-
tion of the code is not particularly important for our calculations.
Calculations may be trivially parallelized by simulating each
nucleotide on a separate node (see Note 4).

3. Methods

3.1. Simulation

Protocols for Native

DNA Duplex or Native

Protein–DNA Complex

The starting point of the simulation is the 3D structure of the
protein–DNA complex of interest. The structure can be obtained
from X-ray crystallography, NMR determination, or homology
modeling. We outline the protocol in Fig. 2.1 and explain the
steps below. The same protocols are carried out for the protein–
DNA complex as well as the DNA duplex in the complex. This is
necessary according to the thermodynamic cycle in Eq. [1].

3.1.1. Preparation of the

Complete Structure File

CHARMM incorporates PDB (11) structural files to initiate the
molecular modeling and simulation. The starting structure’s
PDB file must be edited to follow CHARMM’s naming conven-
tion. This may be done manually. One can also write a computer
program to do these modifications once they become familiar
with the required changes for amino acids and nucleotides. If the
starting structure is from crystallography, missing side chains will
be added by CHARMM. If the structure file is obtained from NMR
determination, the hydrogen atoms need to be removed first,
and CHARMM’s HBUILD module is used to add hydrogen atoms
according to its own naming convention. Any water molecules
that are resolved in the original structures are also removed.

A common practice for the assignment of charge state of
titratable amino acid residues is to assign a þ1 charge for all
basic residues including lysine and arginine, assign a – 1 charge to
all acidic residues including glutamate and aspartate, and finally
assign a +1 charge to histidine residues that are exposed at the
protein surface. These assignments are appropriate for near-
neutral pH values. If histidine is buried in the protein core, then
more advanced studies are required to assign its proper protona-
tion state. For the transcription factors we have simulated to date,
all histidine residues are exposed at the surface.
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The ends of the protein contain a positively charged N-termi-
nus and a negatively charged C-terminus. For the DNA section of
the structure file, the 50 end phosphate groups of both strands are
removed. Other possible end-cappings are also supported in
CHARMM.

Once the initial PDB file is edited to conform to CHARMM’s
convention and missing atoms are added, we will have a dry
protein–DNA complex or DNA duplex with no solvent atoms.

3.1.2. Introduction of

Explicit Water Molecules

and Preparation of

Minimized Structure in

Water Box

Since we consider explicitly the role of water in the binding of
protein and DNA, we now add water molecules to the dry complex
structure (see Note 5) to form a solvated system in a periodic
boundary condition. Because the water model TIP3P was used
during the development of the current CHARMM force field
CHARMM27, we recommend its usage over other water models.

Once the water molecules are added, a series of minimizations
are required to allow the water molecules to relax around the
macromolecules. The recommended minimization algorithms

Fig. 2.1. Simulation protocol for generating a fully equilibrated native protein–DNA
complex or DNA duplex structure in explicit solvent.
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are Steepest Descent at the initial stage of the minimizations, and
then Adopted Basis Newton-Raphson method for more refined
minimizations. We use 1,000 steps of the former and 3,000 steps
of the latter. The energy of the system should be decreasing
steadily and reach stability. However, we do not advise running
long minimizations to achieve convergence (to reach absolute zero
K in temperature), as all our molecular dynamic simulation and
free energy calculations need to be carried out at room
temperature.

3.1.3. Introduction of

Counter-Ions

After the system in the water box is minimized, we use the CHARMM

script file written by Rick Venable (available from CHARMM Dis-
cussion Forum Script Archive at http://www.charmm.org/
ubbthreads/ubbthreads.php?Cat=0) to replace an appropriate
number of water molecules with counter-ions. For the protein–
DNA complexes we have studied, typically about ten sodium ions
are required to neutralize the system. For a 10-base pair DNA
duplex, 18 sodium ions are required. In Venable’s script, the same
number of water molecules as the desired counter-ions are selected
at random and replaced by sodium ions. Then the system is mini-
mized for 50 steps by Steepest Descent and by Adopted Basis
Newton-Raphson. One hundred different sets of water selections
are done. The lowest energy configuration among them is chosen
to proceed to the next step.

3.1.4. Heating and

Equilibration of the

Structure

Since minimization freezes many degrees of freedom of the sys-
tem, the solvent box is roughly about 50 K in temperature. Now
we heat the system to room temperature and equilibrate it for
1.5 ns. We ramp up the temperature linearly from 50 to 300 K
over 50 ps at a heating speed of 5 K per ps. During equilibration,
constant temperature (300 K) and constant pressure (1 atm) are
maintained using CHARMM’s CPT keyword. This corresponds to
the NPT ensemble. A time step of 1 fs is used. SHAKE is used to
constrain all the bonds with hydrogen atoms to be at the equili-
brium values. All other degrees of freedom are allowed.

The BLOCK module for free energy analysis has a limitation in
that it requires the electrostatic interactions to be evaluated using
non-Ewald methods, i.e., spherical cutoffs. Long, computationally
expensive cutoffs are required to obtain an adequate representa-
tion of long-range electrostatic interactions. To reach a compro-
mise between accuracy and computational saving, we carry out
initial equilibration of the system for 1 ns using Ewald summation
method Particle Mesh Ewald. Then we switch to spherical cutoff
scheme using a cutoff value of 14 Å. Further equilibration of 0.5 ns
is run at this condition.

After the 1.5 ns equilibration, the native protein–DNA com-
plex structure is now considered well equilibrated. We need to
note here that this equilibration time is still far too short for the
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equilibration of the counter-ions, which typically requires much
longer equilibrations on the scale of tens to hundreds of ns. Please
see Note 6 for strategies that avoid long equilibrations for ions.

3.2. Simulation

Protocols for Free

Energy Calculations

3.2.1. Multi-Copy Base

Pairs

CHARMM supports dual-topology, which means that in the ‘‘muta-
tional’’ reactions, the reactant and the product chemical groups
co-exist in the structure. This is also known as ‘‘multi-copy’’
representation, where multiple functional groups occupy possibly
the same space; their interactions with the rest of the system are
scaled by a coupling parameter, but there are no interactions
among the multiple copies. As we have discussed in the Introduc-
tion, thermodynamic integration is an established method for
calculating the free energy change associated with changing one
functional group in the multi-copy into another. In the simula-
tions that are discussed in this chapter, we consider only the co-
existence of two possible base pairs at any base pair position.
Figure 2.2 illustrates the construction of such structures. We call
these 2-base multi-copy base pairs, or in short multi-copy base
pairs. Details on how to create structures with multi-copy bases
and how to enable CHARMM to evaluate their force and energy
functions are in Notes 7 and 8.

3.2.2. Using BLOCK for

Simulation and Free Energy

Analysis

The BLOCK module in CHARMM allows straightforward force and
energy evaluation of multi-copies. Here we use a simple example to
illustrate its usage. Imagine a protein–DNA complex in which one
base pair is a multi-copy base. Using Eq. [4], the total Hamilto-
nian that contains the contributions from the environment, the
reactant, and the product will be further separated into six con-
tributions, as in Eq. [6] in BLOCK.

Fig. 2.2. Schematic diagram of multi-copy base pair. Single base pair change from A
(gray, bottom base pair) to C (black, top base pair) is used as an example. The multi-copy
base pair is referred to as A/C. The left strand is treated as the leading strand. The bases
within each physical base pair interact normally, as evidenced by the hydrogen bonds
(dotted lines) between complementary bases. The gray (reactant) atoms do not interact
with the black (product) atoms.
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Env Reac Prod

Env 1 1� l l

Reac 1� l 0

Prod l

½6�

This matrix is used for force and energy evaluation. The labels
‘‘Env’’, ‘‘Reac’’, and ‘‘Prod’’ represent the environmental atoms,
the atoms in the reactant, and the atoms in the product, respec-
tively. The matrix is symmetric so the lower half is not shown. Each
element in the matrix represents the interaction term between the
atoms in the corresponding row and the atoms in the correspond-
ing column. For example, the term H0 in Eq. [4] is 1 in the matrix
and represents the interactions between atoms in the environment.
Note that the interactions that involve reactant atoms are scaled by
the (1–l) coupling parameter, whereas those involving product
atoms are scaled by l, just like in Eq. [4]. Finally, there are no
interactions between the atoms of the reactant and the atoms of
the product, hence the zero in the matrix.

BLOCK uses a different matrix to calculate the Hamiltonian
gradient in Eq. [5] for the free energy analysis. The matrix is listed
in Eq. [7].

Env Reac Prod

Env 0 �1 1

Reac �1 0

Prod 1

½7�

Note that at all values of l, the analysis matrix is of the same
form.

Because of the flexibility of BLOCK, multiple multi-copy bases
can be studied at the same time, and the dynamics and analysis
matrices need to be adjusted correspondingly. The environmental
atoms can also be further partitioned so that their contributions to
the free energy can be calculated separately.

3.2.3. Simulation of Multi-

copy Structures

For each multi-copy structure we create in Section 3.2.1, the
following simulation protocol is used.

A short minimization is needed in order to resolve the poten-
tial bad contacts caused by the introduction of the multi-copy base
pair. We use 100 steps of Steepest Descent and 100 steps of
Adopted Basis Newton-Raphson for this purpose. Then the sys-
tem is heated from 50 to 350 K over a linear ramp for 15 ps at a
speed of 20 K per ps. Then the system is equilibrated at 350 K for
15 ps. After that, a linear ramp is used to cool the system down to
300 K at a speed of –10 K per ps for 5 ps. The system is then
equilibrated at 300 K for 65 ps. This heat-cool-cycle is similar to
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the annealing process, except that we only heat the system up to
50 K above room temperature. The current force field is still
expected to be reasonable in describing the system. The purpose
of this heat-cool-cycle is to help the new multi-copy structure
overcome the energy barriers that could trap the structure in the
conformation favorable only to the native structure (see Note 9).
Finally, a 100 ps production run is done (see Note 10), during
which the system configuration is saved at every 0.5 ps. A time step
of 1 fs is used. SHAKE is again applied to constrain bonds invol-
ving hydrogen atoms.

During the simulation, we use IMAGE to describe the cubic-
shaped periodic boundary condition. The BLOCK matrix of Eq. [6]
is used for force and energy evaluation. We assume that the density
of the system is well-equilibrated over 1.5 ns simulation (Section
3.1.4). So the box size is fixed here using the final box size from
the 1.5 ns equilibration, and the NVT ensemble is run. After the
production run is finished, we examine all the saved configurations
to calculate the free energy change using the BLOCK analysis matrix
of Eq. [7].

The saved configurations in the trajectory might be correlated
among adjacent frames. To correct for this effect, we use Eq. [8]
in estimating the sampling error.

E ¼ s
1

N

� �
1þ c

1� c

� 	1=2

¼
XN

f ¼1

ðx2 � �x2Þ
N ðN � 1Þ

1þ c

1� c

" #1=2

; ½8�

where E is the estimated error of the free energy change �G, x
represents �G value at each frame, c is the correlation between
adjacent frames, f is the frame number from 1 to N (total number
of frames), and s is the standard deviation of �G for all frames.
Systematic and statistical errors that could exist in the simulation
and free energy calculations are summarized in Notes 9 and 10.

3.2.4. Tournament

Approach

According to Eq. [1], two free energy calculations (one for the
complex and one for the DNA duplex) are required to obtain the
relative binding free energy for a single base pair change as in
��G¼�Gcomp – �GDNA. At each base pair position, we evaluate
the free energy changes for three multi-copy structures for both
the DNA duplex and the protein–DNA complex. We carry out
three ��G calculations as a tournament, which contains three
�GDNA and three �Gcomp calculations. Two competitions for
multi-copy A/T and C/G are carried out first to obtain ��GA/

T and ��GC/G. The two winners then compete in the second
round, e.g., ��GA/C when A and C are the two winners. These
three relative free energies are sufficient to describe the energy
diagram of all four possible base pairs. These energies are then
converted into probability and sequence logo representation using
Eqs. [2] and [3].
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4. Notes

1. Correlation between adjacent base pairs. The ‘‘additive
approximation’’ in Section 1 might not always be valid
depending on the transcription factor. We can estimate the
correlation between adjacent base pairs by the following test.
It is analogous to comparing the energy change caused by two
separate single mutations of the DNA and the energy change
caused by a double mutation of the DNA. For example, one
might be interested in the correlation between positions five
and six. The user will first do two separate free energy evalua-
tions for position five and position six. Only one base pair is
changed at any time. Then, the user calculates the free energy
change caused by changing positions five and six simulta-
neously. Taking multi-copy base pair A/C as an example,
we use A5C and A6C to describe the base pair change at
these two positions. The non-additivity can be estimated by
��GA5C,A6C – (��GA5C + ��GA6C). These calculations can
help quantify the non-additivity as well as the correlation
between adjacent base pairs.

2. Total computational cost and monetary equivalent. The com-
putational cost for obtaining the binding sites as a PWM for a
transcription factor is about 400 CPU-days on a single Intel
3.0 GHz processor. The calculations in Sections 3.1 and 3.2
are both included. We also list in Table 2.1 the computa-
tional cost on the supercomputer BigBen at PSC. The total
computational cost for the prediction of one transcription
factor is about 1.2 CPU-years, or $1,200 if we assume one
CPU-year is about $1,000.

3. Force field and multi-copy implementations. We compare four
popular molecular modeling packages here, CHARMM, AMBER,
NAMD, and GROMACS, and explain the reasons based on which
we choose CHARMM in our simulations (Section 2).

CHARMM was the first package to be developed and has the
most capabilities and functions. CHARMM and AMBER are writ-
ten in FORTRAN, and the GROMACS is written in C. NAMD is
developed using similar philosophy of CHARMM, but is written
in C++/C. All four packages can carry out traditional mole-
cular dynamics simulations, and lead to similar results when
the same force field is used.

Many packages allow the user to choose a specific force
field. The CHARMM27 force field is currently recommended
for use in CHARMM. It can accurately characterize proteins and
nucleic acids, and has overcome problems associated with the
older versions. AMBER parm99 and parm03 are force fields
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recommended for use in AMBER. However, the A-DNA form
tends to be over-stabilized in these force fields (13, 14).
GROMACS uses OPLS force field for all-atom simulations that
leads to good results for proteins but is less characterized for
nucleic acids. NAMD allows the user to choose whether they
want to use CHARMM, AMBER, or GROMACS force fields.

All these force fields use pairwise additive energy functions,
typically including the bond length, bond angle, dihedral
angle, van der Waals, and electrostatic interaction terms.
Two library files are used for the implementation of the
force field. The topology library file contains the list of these
terms, whereas the parameter library file contains the force
constants and other relevant constants.

The most important factor that leads us to choose CHARMM

is its ‘‘dual-topology’’ implementation. AMBER and GROMACS

support only ‘‘single-topology’’, which means that if a ‘‘muta-
tional’’ free energy perturbation is to be carried out, the two
end points (reactant and product) must be similar in structure
and number of atoms. In practice, they typically differ in only
a small functional group (15). This poses serious challenges
for the perturbations of two groups of varying number of
atoms. For instance, one might be interested in finding the
free energy change associated with morphing an A¼T base
pair into a T¼A base pair along a linear coupling path. For
this mutation, the total numbers of atoms in the two end

Table 2.1
Computational cost for the prediction of transcription factor–binding sites
on supercomputer BigBen at Pittsburgh Supercomputing Center

Counter CPU hour CPU days

Native structures

Protein–DNA complex, 1.5 ns equilibration 1,200 50

DNA duplex, 1.5 ns equilibration 1,200 50

Multi-copy structures

Number of free energy evaluations per �G 1 160

Number of �G0s per ��G 2

Number of ��G0s per base pair in tournament 3

Number of base pair positions 8

Number of free energy evaluations per protein 48 7,680 320

Total cost per protein 10,080 420
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states are the same. However, because the atom types and
parameters are very different for bases adenine and thymine,
this morphing and free energy calculation was difficult for us
to implement in AMBER and, presumably, GROMACS. One
possible solution is to introduce a common intermediate
topology, calculate two free energy changes of the two end
states morphing into the intermediate, and then calculate the
sum of the two to obtain the total free energy change. As we
have already mentioned in Note 9, free energy calculations
have a large innate systematic error, and we decided against
using two ‘‘single-topology’’ simulations to mimic a single
‘‘dual-topology’’ calculation.

In contrast, both CHARMM and NAMD support ‘‘dual-
topology’’. However, NAMD only supports free energy per-
turbation for ‘‘mutational’’ reactions, which is generally less
accurate than thermodynamic integration. This is because in
the free energy perturbation formula (9, 10), the free energy
change is obtained as the ensemble average of the exponen-
tial of the energy function of the system. If we assume these
energy function evaluations are Gaussian-distributed, which
is often true, then only one of the tails of the Gaussian curve
will contribute to the final free energy change, since all the
other energy values nearly contribute nothing to the ensem-
ble average of the exponentials. However, given the same
trajectory, if we use thermodynamic integration, then all
these configurations will contribute to the final free energy
change. A second factor is that, to our knowledge, NAMD

only permits single mutations. In CHARMM, the BLOCK mod-
ule allows us to carry out simulations of multiple mutations
at the same time, which could lead to significant computa-
tional saving.

4. Parallelization. CHARMM, as pointed out in Section 2, does
not scale very well in parallel. However, inefficient paralleliza-
tion is at best a minor concern for our study, because the
calculations we have described in Section 3.2 are trivially
parallelizable by running a free energy calculation at each
base pair on a different node. For a binding site of length
eight, 48 free energy evaluations are required to obtain the
relative binding free energies at all eight base pair positions
(see Table 2.1 second column). The only exception to the
trivial parallelization is the initial long equilibration (for
1.5 ns, Section 3.1.4) for generating configurations of the
native protein–DNA complex and DNA duplex. If parallel
runs are to be planned, we advise a short benchmark to be
done first to establish the optimal number of processors for
each system of different size. For the protein–DNA com-
plexes we have studied (about 25,000 atoms in total), we
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found that the optimal number of processors was eight on the
supercomputer BigBen at PSC, and the 1.5 ns equilibrations
typically take about 6 days.

5. Addition of water box as solvent. In Section 3.1.2, water box is
added to the dry protein–DNA complex or DNA duplex. A
CHARMM script file written by Lennart Nilsson can be used to
add a small box of water with a maximal number of water
molecules of 9,999. A modified script file written
by Davit Hakobyan can be used to add larger boxes of
water exceeding 10,000 water molecules. Both script files
assume periodic boundary condition. These script files can
be downloaded from the ‘‘Script Archive’’ on the ‘‘CHARMM

Discussion Forum’’ (http://www.charmm.org/ubbthreads/
ubbthreads.php?Cat=0). The TIP3P water model is used in
these scripts.

For periodic boundary conditions, there are a variety of
available box shapes to choose when adding water molecules
using the above-mentioned scripts. Since we rely on the
BLOCK module, which in turn requires the IMAGE module of
CHARMM, to carry out free energy simulation and analysis, we
use the cubic box shape, which is supported by IMAGE. It is
also possible to use other more spherical-like box shapes, such
as truncated octahedron, but it requires the creation of the
corresponding IMAGE file by the user.

6. Other treatments of counter-ions. Two simple strategies are
listed here, which avoid running long equilibrations for the
ions in the system (Section 3.1.4). First, the system can be
studied without counter-ions as a non-neutral system. This
means that Section 3.1.3 can be bypassed. The Ewald summa-
tion and spherical cutoff methods for electrostatic interactions
are still valid in non-neutral systems. However, for certain
molecular systems, salt concentration is an important factor
for structural stability. In this case, both positive and negative
ions should be added in order to obtain the desired salt con-
centration. Second, one can use a simple uniform neutralizing
background to achieve neutral system. This is typically achieved
by setting the k¼0 term in the Ewald sum to zero (this term is
automatically zero for a charge-neutral system). Simulations
with a uniform neutralizing background may require modifica-
tions to be made to the standard CHARMM source code.

7. Generation of structures with multi-copy bases. There are two
types of files that must be created for the study of multi-copy
structures in Section 3.2: PDB and an extended topology
library file. We explain the method for creating PDB files with
multi-copy bases in this section. The extended topology file is
explained in Note 8.
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First of all, a library of all 2-base multi-copy PDB files is
made. There are several ways of doing this. We use the standard
base geometry in Ref. (12) to create PDB files for each base.
These base geometries do not contain the backbone geometry
or hydrogen atoms. One can then use CHARMM to read this
PDB file and use ‘‘IC BUILD’’ and HBUILD routines to create a
complete PDB file for each DNA nucleotide. Note that
CHARMM’s default nucleotides are for RNA, so patches need
to be applied to convert them into DNA nucleotides. After the
set of PDB files are prepared for the four DNA nucleotides, the
atomic entries for the base atoms are concatenated to form the
2-base multi-copy PDB files. We use the following shorthand
for multi-copy bases, e.g., A/C represents the multi-copy base
of changing adenine to cytosine in the leading (1st) strand of
the DNA (C/A is not needed as it is simply the reverse reaction
of A/C). There are six files needed for describing all possible 2-
base multi-copies that constitute the library: A/C, A/G, A/T,
C/G, C/T, and G/T.

Second, a fully equilibrated native DNA duplex or protein–
DNA complex structure is modified to create all possible
multi-copy structures for each base pair position. For a
10-base pair DNA, there are 60 multi-copy structures. We
developed a C++ program to replace the original base pair by
one multi-copy base pair from the above-mentioned library.
Three rotations are required to align the N-glycosidic bond,
then align the base atoms to preserve Watson-Crick base-
pairing arrangement, and finally align the original plane of
the base with the new multi-copy plane. For the complemen-
tary strand, the complementary multi-copy base is used so
that proper base pairing is achieved.

8. Topology files for multi-copy bases. The multi-copy bases of the
previous section are not yet integrated in the CHARMM27
topology files (‘‘top_all27_prot_na.rtf’’). The user needs to
create topology entries for the six multi-copy bases (Note 7)
and append them to the original library file. The interested
users can consult CHARMM27’s topology library file,
‘‘top_all27_prot_na.rtf’’, which is distributed with the pack-
age, to learn the proper naming conventions CHARMM uses for
protein and nucleic acids.

The lines starting with ‘‘ATOM’’ in the PDB file are
used by CHARMM to define the 3D coordinate of each
atom. However, PDB files do not specify which atom is
bonded with which one. The topology library file contains
the information of the bonding arrangement and connec-
tivity of each monomer unit (amino acids for proteins and
nucleotides for DNAs), so that all the bonds, angles, and
dihedral angles can be included in the evaluations of the
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force and energy. Therefore, it is of paramount importance
that the topology of the molecular system is properly
built.

For each nucleotide in the topology library file,
‘‘top_all27_prot_na.rtf’’, there are the following sections of
information: the atom types, the atomic charges, the bonds
that connect the atoms, the hydrogen bond donor and
acceptor atoms, and the internal coordinates required for
adding missing hydrogen atoms and side chains for ‘‘IC
BUILD’’ and HBUILD. Since all the entries of the nucleic
acid nucleotides share identical backbone section (phos-
phate and sugar group), only the entries corresponding to
the base atoms need to be combined to form the multi-copy
base section. All the sections that correspond to base atoms
need to be combined. The hydrogen bond sections are
necessary if the HBOND module of CHARMM is to be used
for hydrogen bond analysis.

An important addition to the multi-copy topology library
file is the non-bonded exclusion section between atoms of the
two bases in the multi-copy. For example, if A/C multi-copy
is made, the atom section of the topology file must specify
that the base atoms of the cytosine do not have any non-
bonded (including electrostatic and van der Waals) interac-
tions with the adenine base atoms.

As bond angles and dihedral angles are not explicitly listed
in the topology files, the keyword ‘‘SETUP’’ is needed for
generating them in CHARMM. This step will add one unwanted
bond angle and four unwanted dihedral angles between the
two bases in the multi-copy. So the keyword ‘‘DISCON-
NECT’’ should be used for these two bases, which will
remove the unwanted angles from future force and energy
evaluation. Using this method, the user will also need to
append a few fictitious force field parameters to the standard
parameter file (‘‘par_all27_prot_na.prm’’) for the unwanted
angles. The force constant values do not matter, as they are
removed from the force and energy evaluation by the ‘‘DIS-
CONNECT’’ step.

9. Systematic error. As we can see from the Introduction, the
relative binding free energy of a protein with two differ-
ent DNA sequences is usually small. This creates a pro-
blem if the systematic and statistical errors of the
calculation are larger than the relative energy difference
we want to calculate. Statistical errors can be overcome
by running longer simulations to collect independent
data values for analysis. Systematic error is still a hard
problem and there is no sound solution for its complete
removal. Systematic error in molecular dynamics
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simulation and free energy calculation is typically a result
of poor sampling of the entire conformational space. It
may also be due to biases in the molecular force field.
Sufficient sampling of alternative favorable conforma-
tions of the protein and DNA is necessary. However,
because these macromolecular systems contain tens of
thousands of atoms and huge number of degrees of
freedom, the entire conformational space is combinato-
rially large. This rugged energy surface often presents
energy barriers between adjacent local minima, possibly
limiting the sampling space. The heat-cool-cycle step we
use in Section 3.2.3 is an attempt to overcome local
energy barriers.

For protein–DNA complexes, a problem that could
cause insufficient sampling is the long-lived hydrogen
bonds between protein and DNA bases. The hydrogen
bonds formed with the DNA backbone generally do not
contribute to the binding specificity, unless the backbone
geometry is highly dependent on the base identity. If
there is a particular hydrogen bond that exists between a
protein residue and a DNA base pair throughout the
simulation of the native complex, one must closely exam-
ine what is the fate of this hydrogen bond in the multi-
copy complex structures. Since the multi-copy base pair is
larger and needs more space, a prior stable hydrogen
bond might become unstable due to strong van der
Waals repulsion, and that part of the configurational
space will no longer be sampled, leading to a bias in the
calculations. This can also be true is there is a persistent
and stable water-mediated hydrogen bond between the
protein and the DNA. For such cases, other force field
choices might need to be explored, such as the ‘‘soft core
potential’’ that tones down van der Waals repulsion to
allow bulky groups in a crowded space.

10. Statistical error. The duration of the production run dur-
ing which trajectory frames are saved for future free
energy analysis is important. Good statistics can in gen-
erally be achieved by running a sufficiently long produc-
tion. However, the ensemble average we want to calculate
Eq. [5] converges at about 100 ps (Section 3.2.3),
indicating that longer productions than that will lead to
the same free energy results. This production duration
might be different for different systems. Therefore, it is
important that the users examine the convergence of the
ensemble average to reach a good compromise of conver-
gence and statistical significance.

40 Liu and Bader



Acknowledgments

LAL acknowledges funding from the Department of Energy (DE-
FG0204ER25626). JSB acknowledges funding from NSF
CAREER 0546446, NIH/NCRR U54RR020839, and the Whi-
taker foundation. We acknowledge a starter grant and an MRAC
grant of computer time from the Pittsburgh Supercomputer Cen-
ter, MCB060010P, MCB060033P, and MCB060056N.

References

1. Pabo CO, Sauer RT. Transcription factors:
structural families and principles of DNA
recognition. Annu Rev Biochem 1992,
61:1053–1095.

2. Tuerk C, Gold L. Systematic evolution of
ligands by exponential enrichment: RNA
ligands to bacteriophage T4 DNA polymer-
ase. Science 1990, 249(4968):505–510.

3. Ren B, Robert F, Wyrick JJ, et al.
Genome-wide location and function of
DNA binding proteins. Science 2000,
290(5500):2306–2309.

4. Mukherjee S, Berger MF, Jona G, et al.
Rapid analysis of the DNA-binding specifi-
cities of transcription factors with DNA
microarrays. Nat Genet 2004,
36(12):1331–1339.

5. Morozov AV, Havranek JJ, Baker D, Siggia
ED. Protein-DNA binding specificity pre-
dictions with structural models. Nucleic
Acids Res 2005, 33(18):5781–5798.

6. Paillard G, Lavery R. Analyzing protein-
DNA recognition mechanisms. Structure
(Camb) 2004, 12(1):113–122.

7. Endres RG, Schulthess TC, Wingreen NS.
Toward an atomistic model for predicting
transcription-factor binding sites. Proteins
2004, 57(2):262–268.

8. Schneider TD, Stephens RM. Sequence logos:
a new way to display consensus sequences.
Nucleic Acids Res 1990, 18(20):6097–6100.

9. Leach A. Molecular Modelling: Principles
and Applications, 2nd ed. Prentice Hall,
Harlow, England; New York, 2001.

10. Frenkel D, Smit B. Understanding Molecu-
lar Simulations: From Algorithms to Appli-
cations, 2nd ed. San Diego: Academic Press,
2002.

11. Berman HM, Westbrook J, Feng Z, et al.
The protein data bank. Nucleic Acids Res
2000, 28(1):235–242.

12. Olson WK, Bansal M, Burley SK, et al. A
standard reference frame for the description
of nucleic acid base-pair geometry. J Mol
Biol 2001, 313(1):229–237.

13. Cheatham TE, III, Young MA. Molecular
dynamics simulation of nucleic acids: suc-
cesses, limitations, and promise. Biopoly-
mers 2000, 56(4):232–256.

14. Mackerell AD, Jr. Empirical force fields for
biological macromolecules: overview and
issues. J Comput Chem 2004,
25(13):1584–1604.

15. Kollman P. Free energy calculations: appli-
cations to chemical and biochemical phe-
nomena. Chem Rev 1993, 93:2395–2417.

Binding Site Prediction 41



Chapter 3

Inferring Protein–Protein Interactions from Multiple Protein
Domain Combinations

Simon P. Kanaan, Chengbang Huang, Stefan Wuchty, Danny Z. Chen,
and Jesús A. Izaguirre

Abstract

The ever accumulating wealth of knowledge about protein interactions and the domain architecture
of involved proteins in different organisms offers ways to understand the intricate interplay between
interactome and proteome. Ultimately, the combination of these sources of information will allow the
prediction of interactions among proteins where only domain composition is known. Based on the
currently available protein–protein interaction and domain data of Saccharomyces cerevisiae and
Drosophila melanogaster we introduce a novel method, Maximum Specificity Set Cover (MSSC), to
predict potential protein–protein interactions. Utilizing interactions and domain architectures of
domains as training sets, this algorithm employs a set cover approach to partition domain pairs,
which allows the explanation of the underlying protein interaction to the largest degree of specificity.
While MSSC in its basic version only considers domain pairs as the driving force between interactions,
we also modified the algorithm to account for combinations of more than two domains that govern a
protein–protein interaction. This approach allows us to predict the previously unknown protein–
protein interactions in S. cerevisiae and D. melanogaster, with a degree of sensitivity and specificity
that clearly outscores other approaches. As a proof of concept we also observe high levels of co-
expression and decreasing GO distances between interacting proteins. Although our results are very
encouraging, we observe that the quality of predictions significantly depends on the quality of
interactions, which were utilized as the training set of the algorithm. The algorithm is part of a
Web portal available at http://ppi.cse.nd.edu.

Key words: Domain combinations, set cover, protein interaction prediction.

1. Introduction

Contemporary proteome research attempts to elucidate the struc-
ture, interactions, and functions of the proteins that constitute
cells and organisms. Large-scale methods determine the molecular
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interactions and unravel the complex web of protein–protein inter-
actions in single-cellular organisms such as Helicobacter pylori (1)
and Saccharomyces cerevisiae (2–7). Most recently, attention
focused on the first protein–protein interaction maps of complex
multicellular organisms such as Caenorhabditis elegans (8, 9) and
Drosophila melanogaster (10).

Such experimental results provide the basis for theoretical con-
siderations that focus on the prediction of potential protein–protein
interactions. Pioneering methods drew on the observation that
interacting protein domains tend to combine into a fusion protein
(11, 12) in higher organisms. Another method utilizes the observa-
tion that proteins having matching phylogenetic profiles strongly
tend to be functionally linked (13, 12). The domain architecture of
interacting proteins offers a framework (14) for assessing the poten-
tial presence of a particular interaction by clustering protein
domains, depending on sequence and connectivity similarities.
Another approach estimates the maximum likelihood of domain
interaction (15, 16). Further ideas include overrepresented domain
signatures (17), graph-theoretical methods (18), and other prob-
abilistic approaches (19). Support vector machines also were
employed to predict potential interactions by modeling network
motifs that exhibit higher reliability of the underlying protein–
protein interactions (20).

2. Materials

2.1. Protein–Protein

Interactions
The first comprehensive, albeit weakly overlapping protein–
protein interaction maps of S. cerevisiae have been provided
with the yeast-two-hybrid method (2, 4). Currently, there exists
a variety of yeast-specific protein–protein interaction databases.
Most of them, such as MINT (21), MIPS (22), and BIND (23),
collect experimentally determined protein–protein interactions.
These databases lack an assessment of the data’s quality.
In contrast, the GRID database, a compilation of BIND, MIPS,
and other data sets, as well as the DIP database (24), provides sets
of manually curated protein–protein interactions in S. cerevisiae.
The majority of DIP entries are obtained from combined, non-
overlapping data mostly obtained by systematic two-hybrid
analyses. Here, we used a compilation of yeast interactions that
have been evaluated by a logistic regression method, allowing
the assessment of 47,773 interactions among 4,627 proteins
(25). Similarly, experimentally determined interactions in
D. melanogaster were evaluated, allowing for 20,047 interactions
among 6,996 proteins (10).
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2.2. Protein Domain

Data

The advent of fully sequenced genomes of various organisms has
facilitated the investigation of proteomes. The Integr8 database
(http://www.ebi.ac.uk/integr8) has been set up to provide
comprehensive statistical and comparative analyses of complete
proteomes of fully sequenced organisms. The initial version of
the application contains data for the genomes and proteomes of
182 sequenced organisms (including 19 archae, 150 bacteria, and
13 eukaryotes) and proteome analysis derived through the inte-
gration of UniProt (26), InterPro (27), CluSTr (28), GO/GOA
(29), EMSD, Genome Reviews, and IPI (30). In particular, we
utilized IPI (International Protein Index) files of Yeast, which
provide full annotations of each protein with its corresponding
domains. In particular, we elucidated the domain architecture of
the corresponding proteins by focusing on PFAM domain infor-
mation as of the corresponding IPI files (31).

2.3. Microarray Data

and Co-expression

Correlation

Coefficients

Genes with similar expression profiles are likely to encode inter-
acting proteins (32, 33). We assess MSSC’s ability to predict pairs
of potentially interacting yeast proteins (Section 3.5), by utilizing
the gene expression data of S. cerevisae and D. melanogaster. By
downloading 1,051 expression profiles of Yeast and 157 of fly
from the Stanford Microarray Database (SMD, http://genome-
www5.stanford.edu), we calculated the Pearsons correlation coef-
ficient rP for each pair of interacting proteins. Provided there exist
data for both proteins over m time points, the Pearson correlation
coefficient is calculated by

rP ¼
1
m

Xm
i ¼ 1xiyi � �x�y

sisj
; ½1�

where �x and �y are the sample means, and si and sj are the standard
deviations of i and j.

2.4. GO Annotation

Data and GO Distance

For any two interacting proteins, we calculate an annotation-based
distance between proteins, taking into account all Gene Ontology
terms (29) (GO, http://www.geneontology.org) that are com-
mon to the pair and terms which are specific to each protein. Any
two proteins can have several shared GO terms (common terms)
and a variable number of terms specific for each protein (specific
terms). This distance between interacting proteins i and j is based
on the Czekanowski-Dice formula (34):

di;j ¼
jTGOðiÞDTGOðjÞj

jTGOðiÞ [ TGOðjÞj þ jTGOðiÞ \ TGOðjÞj
: ½2�

In this formula, TGO are the sets of the proteins with associated
GO terms while jTGOj stands for their number of elements, and D
is the symmetrical difference between two sets. This distance
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formula emphasizes the importance of the shared GO terms by
giving more weight to similarities than to differences. Conse-
quently, for two genes that do not share any GO terms the distance
value is 1, while for two proteins sharing exactly the same set of GO
terms the distance value is 0.

3. Methods

3.1. General Outline of

the Protein Cover

Problem

Investigations of the three-dimensional protein structure suggest
that the fundamental unit of protein structure is a domain. Inde-
pendent of neighboring sequences, this region of a polypeptide
chain folds into a distinct structure and mediates the proteins’
biological functionality. A domain can also be defined as an
amino acid sequence motif with an associated function. Largely,
proteins contain only one domain (35) while the majority of
sequences from multicellular eukaryotes appear as multidomain
proteins of up to 130 domains (36).

We identify proteins in the proteome that give rise to protein
interactions through the selection of domain combinations that
explain the known protein interaction network. In the simplest
case, we use only a selected set of domain pairs in a training set of
protein interactions R = (PR, ER), where PR is the set of proteins,
and ER defines a set of edges between proteins if and only if they
interact with each other. The protein interactions R induce a set
of domain pairs DR = {(di, dj) } where the domains di and dj belong
to the proteins involved in the interactions ER. Schematically,
we show these relations in Fig. 3.1a. The protein–protein cover
problem thus arising is to choose an ‘‘optimal’’ subset of domain
pairs DR;D � DR, such that D covers all the interactions in R
(Section 3.5).

3.2. Domain

Combinations

We conceptualize domains as the driving force behind the forma-
tion of protein interactions. Since the vast majority of proteins in
single cellular organisms carry a single domain, domain pairs are
sufficient to explain the presence of a protein interaction. How-
ever, in more complex organisms the number of multidomain
proteins increases. Indicating that protein interactions might be
also facilitated by multidomain interactions, we also allow DR to
include combinations of interacting domains that are potentially
involved in a given protein interaction. As such, we handle domain
combinations in our framework as new ‘‘domains.’’ Assuming that
P1 has domains d1, d2, and d3, we label d1d2, d1d3, d2 d3, and d1d2d3

as ‘‘new’’ domains (Fig. 3.1b). Depending on the complexity of
the proteins, we might only want to look at combinations up to a
certain number of domains.
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3.3. Previous

Prediction Methods

3.3.1. Association Method

The set of domain pairs D obtained from a training set of interac-
tions among proteins for which the domain architectures are
known can be utilized in different ways to predict protein–protein
interactions. The association method (17) assigns an interaction
probability P(dm, dn) to each domain pair (dm, dn) in DR (such that
DR = D) by

Pðdi; dj Þ ¼
Iij

Nij
; ½3�

where Iij is the number of interacting protein pairs that contain (di,
dj), and Nij is the total number of protein pairs that contain (di, dj).
The interaction probability for each putative interaction between
pairs of proteins is calculated using

PðPi;Pj Þ ¼ 1�
Y

ðdm ;dnÞ2ðPi ;Pj Þ
ð1� Pðdm; dnÞÞ: ½4�

a

b

Fig. 3.1. Combinatorics of protein interactions. (a) In the simplest case, we consider
protein domain pairs as the driving force behind the formation of protein interactions.
(b) In a more sophisticated way, we also consider combination of domain pairs that
potentially can give rise to observed protein interactions.
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3.3.2. Maximum Likelihood

Estimation (MLE)

The maximum likelihood estimation method (15) assumes that
two proteins interact if at least one pair of domains of the two
proteins interacts. Under the above assumption, any protein pair
(Pi, Pj) is the same as the one used in our protein–protein cover
problem, Eq. [4]. So, the maximum likelihood is

L ¼
Y

PðOij ¼ 1ÞOij ð1� PðOij ¼ 1ÞÞ1�Oij ½5�

where

Oij ¼
1 if ðPi;Pj Þ 2 ER;

0 otherwise:

�
½6�

The likelihood L is a function of y(P (di, dj), fp, fn), where P(di,
dj) represents the probability that domains di and dj interact
while fp and fn indicate fixed rates of false positive and false
negative interactions in the underlying network. Note that in
both the Association Method (AM) and the Maximum-Likelihood-
Estimation (MLE), domain pairs were utilized to predict potential
protein interactions.

3.4. Transformation of

Protein Network to Set

Cover Problem

Suppose X is a finite set and F is a family of subsets of X that can
cover X, i.e.,X �

S
S2F S. The set-cover problem is to find a subset

C of F to cover X,

X �
[

S2C

S; ½7�

where C is also required to satisfy certain conditions according to
different specific problems. For example, the minimum exact set-
cover problem requires that SS2C jSj is minimized, allowing for a C
with minimum cardinality jC j (37, 38). The minimum set-cover
problem is NP-complete. The set-cover problem can be general-
ized for our purposes by putting X into a bigger set Y (Fig. 3.2a).
Suppose Y is a finite set, X � Y and F is a family of subsets of Y
that can cover X , i.e.,X �

S
S2F S. Thus, the generalized set-cover

problem is to find a subset C of F to cover X,

X �
[

S2C

S; ½8�

where C is again constrained to certain problem-specific conditions.
This theoretical framework allows us to conceive protein interac-
tions as a set-cover problem. As already mentioned, protein–protein
interactions can be modeled as a graph PR = (P, E), where P is the set
of proteins and E is the set of edges between two proteins if and only
if they interact with each other. A set-cover problem is set up from
the protein–protein interaction network PR by taking

Y ¼ fall protein pairs ðPi;Pj ÞjPi;Pj 2 PRg;

X ¼ fprotein pairs ðPi;Pj ÞjðPi;Pj Þ 2 ERg;
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and F to be the set of all domain pairs (dm, dn), where (dm, dn) is
contained by at least one element of X. A domain pair (dm, dn) is
considered as a subset of Y. Specifically, if a protein pair (Pi, Pj) (an
element in X ) contains (dm, dn), then (Pi, Pj) belongs to the subset
(dm, dn).

Suppose we find a subset C of F to cover every element (Pi, Pj)
in X where an element in C corresponds to a domain pair (dm, dn).
If (dm, dn) covers (Pi, Pj), then the two proteins Pi and Pj contain
dm and dn, respectively. Since (dm, dn) can be used to cover the
interaction between Pi and Pj, we also have a set of domain pairs to
cover the protein network PR. Suppose there is a set D of domain
pairs to cover the network PR. For every element (Pi, Pj) in X,
there is a domain pair (dm, dn) from D to cover the interaction
between Pi and Pj. Since (dm, dn) can be viewed as an element in F ,
the collection C of all the domain pairs from D is a subset of F , and
C covers X.

In this transformation, the set of protein–protein interactions
PR corresponds to the set X that needs to be covered, and a
domain pair corresponds to an element in F (a subset of Y).

Once a set cover that fulfills these criteria is found, sets of
protein domain interactions allow a description and explanation
of the underlying protein interactions to the best extent. Such pairs
of proteins can be scanned if an interaction among their domains is
actually present in the set cover and therefore is a potential candi-
date for a putative protein interaction.

3.5. MSSC Approach Many ways exist that allow choices of domain pairs which cover the
protein–protein interactions in a training set. AM simply uses all
the possible domain pairs to explain the protein–protein

b

a

Fig. 3.2. Schematic representations of set cover problems. (a) Here, we show the
generalized set cover problem: X is a subset of Y, and F ¼ fSi ; 1 � i � tg is a family of

subsets of Y. (b) MSSC chooses a set S with the minimum bþc
a . The greedy algorithm for

MSSC allows overlapping of subset inside X. The overlap actually increases the inter-
action probability for a protein pair.
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interaction network, i.e., it uses F to cover X, so the resulting
specificity is very low (15). Sometimes, we are only interested in
using a subset of domain pairs to cover the protein–protein inter-
action network, and hopefully the subset is chosen so that both
specificity and sensitivity are maximized. So, the MSSC problem is
to find a subset C of F to cover X such that

mðCÞ :¼
X

S2C

jS �X j ½9�

is minimized.
MSSC allows the subset C to cover the overlap with X, but the

overlap with Y � X (outside X ) is minimized. MSSC chooses a
cover in this way to maximize the specificity because the false
positives appear only in Y � X. In developing a greedy algorithm
for MSSC (Fig. 3.3) at each step, it chooses a subset whose ratio
between the part outside X and the part inside
U ; ðjS �X jÞ=ðjS \U jÞ, is minimized (Fig. 3.2b).

The number of iterations of the while loop is bounded by
min(jX j; jF j) where each single iteration takes (OjX jjF j) time; so
the time complexity of this greedy algorithm is
OðjX jjF jminðjX j; jF jÞÞ. If we apply appropriate data structures,
it can be realized in Oðlog jF jSS2F jSjÞ time. In particular, we
maintain a bipartite graph between the elements in Y and the
elements in F . If the former is contained by the latter, we add an

GREEDY MSSC(Y, X, F)
U ← X
E ← F
C ← ∅
while U �= ∅

do pick S ∈ E with the minimum ⏐S−X⏐
⏐S∩U⏐

(a tie is broken by⏐S∩ U⏐)
U ← U −{S}
E ← E − {S}
C ← C ∪ {S}

return C

Fig. 3.3. Pseudocode of the greedy algorithm for solving the Maximum Specificity
Set Cover (MSSC) problem. In this representation, we describe the basic steps of the
greedy algorithm, which allows us to find a set cover with maximum specificity. In
particular, the routine GREEDY_MSSC (Y, X, F) receives X, the set of actual interactions, Y
the set of non existing interactions, and F , a family of possible families of protein domain
interactions that cover X. In every step of the algorithm a family S from E is chosen, which
minimizes the ratio between the cover between S and X and the intersection between S
and the already covered set of interactions U. This optimization procedure allows us to
obtain an optimal collection of families of domain interactions that allow the largest
possible cover of interactions.
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edge between them, so there are SS2F jSj edges. Furthermore, we

store all elements in F into a heap ordered by jS�X j
jS\U j. When a subset S

is selected, it is excluded from our problem. We update the bipar-
tite graph and the heap accordingly. The bipartite graph will not be
updated more than SS2F jSj times totally. For a single S, the updat-
ing of the heap takes jSj log jF j. Therefore, the total time is
OðSS2F jSj þ SS2F jSj log jF jÞ, which is Oðlog jF jSS2F jSjÞ. If jF j is
very large, we use an array of jX j2 instead of a heap to store F ,

resulting in a time which is OðjX j2 þ SS2F jSjÞ.
The greedy algorithm only allows an approximation. Its solu-

tion has the following relationship with the optimal solution of
MSSC

Theorem Suppose Ca is the approximation of MSSC found by
the above greedy algorithm, and Co is an optimal subset for MSSC.
Let k ¼ maxS2F jSj. If mðCoÞ ¼ 0, then mðCaÞ ¼ 0; otherwise, we
have

mðCaÞ
mðCoÞ

� ½lnðk � 1Þ þ 1�: ½10�

The proof for this theorem can be found in (39). Since k is the
maximum number of elements a subset can have, it corresponds to
the maximum number of protein pairs that contain a domain pair
in the protein network. Therefore, this theorem indicates that the
difference between the approximated and the exact solution
remains small, if the maximal number of protein interactions cov-
ered by a domain pair is kept small too (i.e., we want to get rid of
‘‘promiscuous’’ domain pairs).

The MSSC procedure, which also accounts for multidomain
interactions, allows us to predict putative protein–protein interac-
tions in S. cerevisiae and D. melanogaster. We observe that our
algorithm clearly outscores previous methods such as the Association
method (AM) and Maximum Likelihood Estimation (MLE) in
terms of sensitivity and specificity. We also observe that our algo-
rithm increases the quality of predictions by using a carefully selected
training set of protein interactions. As such we observe that a curated
set of yeast and fly protein interactions, which aims to evaluate each
interaction with a confidence score, can increase the quality of pre-
dictions drastically. Indeed, we observe that our predictions correlate
significantly with elevated levels of co-expression and low GO dis-
tances, a strong indication for the quality of our predictions.

3.6. Comparison of the

Performance of MSSC

to Other Algorithms

Since it was used in the original paper (15), we use the combined
data set of Uetz et al. (4) and Ito et al. (2), which allows a direct
performance comparison of AM, MLE, MSC, MSSC, and MSSC2.
We choose MSSC2, the MSSC version that accounts for up to two
domain combinations, since we did not find a significant
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improvement when going to greater than two domain combina-
tions with the current data. However, this might not be the case
for more complex data sets.

We use all interactions in the aforementioned dataset as train-
ing and test sets. As for information about the domain architecture
of yeast proteins, we utilized PFAM domain data (31) as laid down
in the Integr8 database. This induces an overfitting, but results in
disjoint training and testing sets are qualitatively similar. We mea-
sure the prediction accuracy by specificity, the ratio of the number
of matched interactions between the predicted interaction set, I,
and the testing set, T, over the total number of predicted interac-

tions, SP ¼ jI\T j
jI j . As quality parameters, we define sensitivity as the

ratio of the number of matched interactions between the predicted
set, I, and the testing set, T, over the total number of observed

interactions, SN ¼ jI\T j
jT j :

In Fig. 3.4, we observe that MSSC – the implementation of
our algorithm that accounts for domain pairs only – outperforms
AM in terms of both specificity and sensitivity drastically. While
MSSC in general allows for results that are very similar to MLE, we
observe that MSSC generates significantly more results in areas of
high specificity.

Apart from MSSC, we also tried the minimum set cover
(MSC), utilizing domain pairs. MSC uses different criteria to
choose the subset C from F so that C has minimum cardinality
jC j (38, 39). Compared to MSSC, MSC chooses fewer domain

Fig. 3.4. Performance comparison of different algorithms. We compare the perfor-
mance of the Association Method (AM) (17), Maximum Likelihood Estimation (MLE) (15),
Minimum Set Cover (MSC) (38), Maximum Specificity Set cover (MSSC), and its version
that uses pairwise domain combinations (MSSC2). As training and testing set we utilize a
combined set of interactions retrieved from yeast-two-hybrid compilations of Uetz et al.
(4) and Ito et al. (2). We observe that MLE and MSSC share the same prediction
characteristics while MSSC2 allows the best predictions. On the other hand, MSSC and
MSSC2 clearly outscore AM and MSC.
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pairs to cover the protein–protein interaction network, but actu-
ally covers more false positives, as indicated by the comparably low
values of sensitivity and specificity. In Fig. 3.4, we also observe
that an implementation of MSSC that accounts for interactions
between up to two domain combinations (MSSC2) slightly out-
performs MSSC. Note that the solution for MSSC is a subset of
MSSC2 since both use the same algorithm, while MSSC2 gives the
algorithm more choices in order to obtain more accurate
predictions.

3.7. Results with High-

Quality Interactions

Currently available sets of protein–protein interactions contain
startling rates of false positives (�50%) and false negatives
(�90%) (40). However, there exist a variety of ways to circumvent
this problem. One of the most reliable ways to assess the quality of
interactions is to integrate different sources interactions to increase
their reliability. In particular, training a logistic regression model
with parameters such as co-expression, topological and protein
interaction related data allows a prediction of an interaction’s
reliability quantified by a confidence value (25). Here, we utilize
such evaluated interaction data sets of the organisms S. cerevisiae
(25) and D. melanogaster (10), combining 4,627 yeast proteins
and 47,783 interactions and 6,996 fly protein, which are involved
in 20,047 interactions. All of these interactions are evaluated by a
confidence value.

In general, proteomes are composed by a majority of proteins
that carry one domain. However, in more complex organisms,
proteins carry more than one domain, suggesting that domain
combinations are putatively important for protein interactions.
In Fig. 3.5, we present the sensitivity/specificity curves we
obtained by applying MSSC and MSSC2 to the curated sets of
yeast and fly protein interactions. In particular, we utilized sets of
increasing reliability (as measured by the threshold of the confi-
dence value c) of yeast (25) and fly (10), allowing us to obtain
sensitivity/sensitivity curves of predictions by considering these
sets as trainings as well as testing set. In general, we observe that
both yeast and fly protein interaction sets of increasing reliability
outscore the corresponding curves obtained with sets of lower
quality. In particular, our results suggest that predicting interac-
tions with MSSC2 slightly outperforms the results obtained with
MSSC, indicating the role of protein domain combinations for the
underlying interactome. In the following, we predict protein inter-
actions in yeast and fly by the application of the MSSC2 algorithm.

To evaluate the quality of our predictions, we analyze the
distributions of co-expression correlations. In Fig. 3.6, we
observe that training sets containing high confidence interactions
indeed allow a significant shift of distributions of co-expression
correlation coefficients. In both cases, yeast and fly predictions
show significant different means of their distributions when
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compared to a background distribution (which is defined as the
full set of uncurated yeast (25) and fly interactions (10)). Signifi-
cant Student’s t-test scores support our conclusion that high-
quality interactions allow a higher degree of quality predictions.

As a different measure for the existence of a predicted interac-
tion, we utilize the empirical observation that interacting proteins
show a significantly elevated tendency to share similar functions.

a

b

Fig. 3.5. Sensitivity/specificity curves of predictions in yeast and fly protein
interactions sets. We predicted interactions by feeding the MSSC and MSSC2 algo-
rithms with protein interactions sets of increasing reliability (c). We obtained sensitivity/
specificity curves by considering these sets as trainings as well as testing sets. (a) In
general, we observe that both (a) yeast and (b) fly protein interaction sets of increasing
reliability allow us to obtain sensitivity and specificity values that outscore the corre-
sponding curves obtained with sets of lower quality. In particular, our results suggest that
predicting interactions with MSSC2 slightly outscores the results obtained with MSSC,
indicating the dominating role of domain combinations for the underlying interactome.
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In turn, a measure that represents functional similarity might be
used as an indicator of an interaction’s existence. Utilizing GO
annotations (29), we calculate a GO distance (see Materials) for
every predicted interaction. If two proteins do not share any GO

a

b

Fig. 3.6. Co-expression and GO distance analysis of the predictions in yeast and fly.
Compared to a comprehensive set of co-expression correlations values of protein links
(background), we observe that in (a) yeast and (b) fly the quality of the underlying protein
interaction network increases the quality of our predictions. The shift toward higher
coexpression correlation values is further supported by significant Student’s t-test
scores, when testing the curves of the predictions to a background distribution being
the full set of uncurated yeast and fly interactions. [c� 0.5 : 2.61 (P¼ 9.1 � 10�3), c�
0.7 : 41.66 (P< 10�10), c� 0.9 : 36.26 (P< 10�10)] and fly [c� 0.5 : 4.20 (P¼ 2.6 �
10�5), c� 0.7 : 10.53 (P< 10�10), c� 0.9 : 8.81 (P < 10�10)]. As a different indicator
of the existence of a potential interaction we show the GO distance for yeast ((a), inset)
and fly ((b), inset). Similarly to the distributions of co-expression coefficients we find that
an increasing quality of the training sets allows qualitatively better predictions as exemplified
by the shifts toward lower values. These results are further supported by significant Student’s
t-test scores when compared to the background distributions of yeast [c � 0.5 : 3.85
(P¼ 1.2 � 10�4), c� 0.7 : 3.10 (P = 2.0 � 10�3), c� 0.9 : 5.94 (P = 2.9� 10�9 )] and
fly [c� 0.5 : 1.02 (P = 0.31), c� 0.7 : 2.88 (P = 4.0 � 10�3), c� 0.9 :6.27 (P = 5.9 �
10�10)].
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terms, the distance value is 1, while the opposite holds for proteins
sharing exactly the same set of GO terms. Indeed, in the insets of
Fig. 3.6, we observe that both yeast and fly predictions, that were
obtained with high-quality training sets show a stronger functional
similarity. Again, in both cases distributions have significantly
different means as exemplified by significant Student’s t-test
scores, indicating that high-quality interactions indeed influence
the quality of the predictions.

4. Conclusions

In this paper, we present a novel algorithm that allows the selection
of a set of domain pairs, which covers the experimental observa-
tions and maximizes the specificity in the training set of protein
interactions. Compared to previous methods, MSSC is able to
improve the specificity for a given sensitivity. As a refinement of
this algorithm we also introduced the opportunity to model and
predict interactions as the consequence of interactions among
many combinations of domains. In particular, we observe that
the relatively small amount of multidomain proteins in yeast com-
pared to fly already have a significant impact on the interactions of
the underlying interactome. As such, we observe that we obtain
better results by applying MSSC2, our algorithmic extension that
accounts for domain combinations.

5. Notes

1. Dependence from training data. Our results also suggest that
the quality of predicted protein–protein interactions strongly
depends on the utilized training sets. Although we showed
that our algorithm by design reduces the amount of false
positives, it allows only high-quality interactions if the train-
ing set reflects an elevated degree of quality.

The dependence on high-quality interaction sets also poses a
sometimes intricate problem. The increase in quality always is
accompanied by a decrease of protein interactions and there-
fore limits the number of interacting proteins involved. Thus,
the number of protein domains that allow these interactions is
diminished as well. Since protein interactions and domains are
the major data sources of our algorithm, the choice of an
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appropriate training set that balances quality and a reasonable
number of domains, that still allows predictions on a large
scale is a crucial step.

2. Outlook. The proposed algorithm can be used to predict
protein interactions for every organism for which data of
protein interactions and the corresponding protein domain
architectures are available. Encouraged by the high quality of
our results, a next step is the prediction of potential interac-
tions between proteins in organisms where high-quality inter-
action data are available to train MSSC2. Furthermore,
proteins that participate in many interactions are preferen-
tially conserved and change their sequence only to a small
extent (41, 42). The observation that high clustering and co-
expressed protein–protein interaction sets show preferential
evolutionary conservation (43, 44), and increased reliability
(18) allows us to not only obtain a high-quality set of inter-
actions potentially serving as the basis for predictions in a
reference organism. In fact, such sets of interactions may
also indicate evolutionary cores that have been conserved
more generally among different organisms. As such they not
only allow the evaluation of protein–protein interactions but
also could serve as a training set for the predictions of protein
interactions in target organisms.
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Chapter 4

Prediction of Protein–Protein Interactions: A Study
of the Co-evolution Model

Itai Sharon, Jason V. Davis, and Golan Yona

Abstract

The concept of molecular co-evolution drew attention in recent years as the basis for several
algorithms for the prediction of protein–protein interactions. While being successful on specific
data, the concept has never been tested on a large set of proteins. In this chapter we analyze the
feasibility of the co-evolution principle for protein–protein interaction prediction through one of its
derivatives, the correlated divergence model. Given two proteins, the model compares the patterns of
divergence of their families and assigns a score based on the correlation between the two. The
working hypothesis of the model postulates that the stronger the correlation the more likely is that
the two proteins interact. Several novel variants of this model are considered, including algorithms
that attempt to identify the subset of the database proteins (the homologs of the query proteins) that
are more likely to interact. We test the models over a large set of protein interactions extracted from
several sources, including BIND, DIP, and HPRD.

Key words: Protein–protein interactions, co-evolution, mirror-tree.

1. Introduction

Protein–protein interactions are at the core of numerous basic
reactions that make up complex biological processes. The detec-
tion of these interactions can help to better understand the mole-
cular machinery of the cell and expose biological processes and
pathways that have not been characterized so far. Existing tech-
nologies enable researchers to detect interactions on a genomic
scale and have triggered studies that explore large networks of
known protein interactions in search of interesting subnetworks,
complexes, and regular patterns (1–4).
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Traditionally, protein–protein interactions have been deduced
via conventional wet-lab experimental methods, such as the yeast
two-hybrid (Y2H) system (5) and mass spectrometry (2). While
these are high-throughput technologies, they tend to be very expen-
sive and time-consuming. Moreover, their error rate is high, espe-
cially with the Y2H method, with many false negatives (due to the
cellular localization of the proteins, post-translational modifications,
misfolding of the recruited proteins, or steric hindrances) and high
percentage of false positives (6). Other experimental techniques
(such as affinity chromatography and co-immunoprecipitation) are
more accurate but are low-throughput methods.

In this view, there is a strong interest in tools that can reliably
predict the existence of protein–protein interactions. This problem
has received a considerable attention in the past several years, and
many methods to predict interactions were developed (see next
section for a survey). Here we focus on the co-evolution model and
test it extensively. As opposed to other methods that look for
recurring patterns in proteins that are known to interact, the co-
evolution model is based on a concrete biological hypothesis,
namely interacting proteins evolve in coordination. The goal of
our computational experiments is to test the validity and extent of
this hypothesis and to determine how successful it is in discerning
interacting from non-interacting proteins.

We start with a review of the computational methods that are
used to predict interactions. We then proceed to discuss the co-
evolution model in detail. To assess co-evolution and predict
protein–protein interactions, we test several variants of the
mirror-tree method and different strategies to identify the subset
of proteins within two given protein families that are more likely
to interact.

1.1. Prediction

of Protein–Protein

Interactions: Survey

The field of protein–protein interaction prediction via computa-
tional methods is relatively new but very active. The methods can
be mainly classified into four different approaches: studies that use
structural information, relational data mining inference, co-evolu-
tion analysis, and hybrid approaches.

1.1.1. Protein Structure–

Based Approaches

Methods using protein tertiary structure have had some success
(7, 8), but are relatively slow. Protein docking methods use known
tertiary structures to predict the most probable binding site
between two structures. As this problem is NP hard, conventional
methods rely on local search heuristics. For example, the method
of Espadaler et al. (9) uses residue patches that characterize protein
interfaces to search for proteins containing similar patches. The
interface patches are determined by analysis of residue contacts
in complexes whose structure is known. Other methods use
known hydrogen bond potentials, charge potentials, and
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interaction site energy minimization techniques. Most of these
approaches, however, do not take into consideration possible
protein deformations that can change the binding properties at
the time of interaction. Methods that do allow such flexible dock-
ing structures are sometimes computationally infeasible (10).
Furthermore, structure-based approaches fail to distinguish
between two proteins that have the biochemical potential of inter-
action, and two proteins that physiologically interact. Lastly, these
methods are limited to proteins of known structures, which
account for less than 5% of all known proteins and 30% of the
known protein families.

Protein threading methods can extend predictions to
sequences of unknown structures. Lu et al. use a multi-threading
approach in their ‘‘Multiprospector’’ algorithm (11). The method
threads sequences in a library of monomer structures that are
known to participate also as part of dimer structures. If two
sequences have significant signal with respect to two chains that
are part of the same complex, the sequences are re-aligned (con-
sidering the other sequence in the template structure), the energy
between the interacting residues is computed, and if the z-score of
the dimer is significant compared to that of the monomers, the
sequences are predicted to interact. One of the main advantages of
the method is that beyond predicting the interaction itself, it also
predicts the interaction site. However, it is limited to solved com-
plexes of interacting proteins, of which only a few are known in the
protein data bank.

1.1.2. Relational Data

Mining Inference

These approaches are among the most successful in the field of
computational protein–protein interaction inference. Kini and
Evans’ earlier work showed a correlation between interaction
binding sites and proline residues: these residues are 2.5 times
more likely in these areas (12). Aytuna et al. (13) utilized informa-
tion about protein interfaces and hotspot residues in interacting
pairs (residues that contribute most of the binding energy for the
interaction (14)), for deducing possible interactions in other pairs
that share similarity with the interacting protein interfaces. It has
been suggested that the presence of a few hotspots may be a
characteristic of most interactions (15). Extending this analysis,
Sprinzak and Margalit (16) provided a framework for identifying
protein–protein interactions through the analysis of over-repre-
sented sequence signatures. Utilizing also the information on
known three-dimensional structures of interacting proteins, Inter-
PreTS characterizes possible interaction sites between two pro-
teins (17). Other algorithms attempt to detect protein–protein
interactions through the interactions between domains (18, 19).
In the algorithm described in (20), each protein is represented as a
vector in the domain space. Using a machine learning technique
known as random forests (21), in which many randomly generated
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decision trees are combined through majority voting, the authors
classify each pair of proteins as either interacting or non-interacting.
Han et al. (22) propose an algorithm that uses information from
multiple domains to predict interactions.

Other relational methods trace evolutionary events that might
hint at the existence of interaction. Marcotte et al. (23) note the
relation between protein interaction and gene locality through a
technique termed ‘‘domain fusion prediction’’. Enright et al. pre-
sent a refinement over typical domain fusion prediction methods,
suggesting that interacting proteins can also be the result of a
‘‘composite’’ protein evolving into ‘‘component’’ proteins (24).

Relational methods have had some success, but mostly for
interactions of similar nature, either with the same signatures or
when there is an evidence of gene fusion/decomposition events in
sequence databases. Clearly, such evolutionary circumstances are
not the case for all protein–protein interactions.

1.1.3. Co-evolution Analysis Co-evolution approaches include gene preservation correlation,
phylogenetic tree topology comparison, and correlated mutation
approaches. Gene preservation approaches are very simple: if two
proteins interact to perform a vital biological function, then both
proteins will be passed on during speciation (24). Many interac-
tions are conserved across species, in particular interactions with
functions such as protein translation, ribosomal structure, DNA
binding, and ATP metabolism (25). This approach was used for
the prediction of potential protein–protein interactions in the
POINT database (26). Sun et al. (27) proposed the phyloge-
netic-profile method that is based on the assumption that inter-
acting proteins are inherited together during speciation events due
to strong selective pressure. Thus, these proteins are expected to
have similar phylogenetic profiles composed of those organisms
from a reference set in which their homologs are present. Other
gene preservation approaches consider locality constraints among
protein subdomains: subdomains will tend to have the same rela-
tive position in interacting proteins (28).

Phylogenetic tree topology methods compare homologs of
interacting proteins (i.e., protein families) and their phylogenetic
trees: if the two trees are very similar (termed mirror trees), then it
is assumed the proteins have co-evolved and possibly interact (29,
30). Mirror-tree-based methods gained popularity in recent years.
The reported results seem to be promising, and already led to the
development of tools and web servers (31, 32). However, while
there are several examples of interactions that follow this model, it
is unclear how successful it is in predicting interactions and distin-
guishing correlation due to interaction and co-evolution, from
correlation due to similar evolutionary trees in general. Moreover,
the approach may suffer from several drawbacks. One problem
occurs when the tested families contain proteins from close
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organisms. The distance matrices in that case are expected to
contain many small values, regardless of the mutation rates of the
tested families. When the Pearson correlation (or any other corre-
lation measure) is used in that case, the true signal is likely to be
disturbed by noise or a few outliers, which may produce mean-
ingless results. Another drawback lies in the assumption that all
members of both families interact, which may not be true in the
general case, in particular when considering several paralogs from
the same organism. In addition, the model depends on correct
construction of the phylogenetic tree, which is hard to guarantee.
These issues and others are addressed in this chapter.

A more localized position-specific approach is the correlated
mutations method introduced by Pazos and Valencia (33). This
approach searches for correlated, compensating mutations in spe-
cific positions between two candidate interacting proteins. Their
results presented on structural subdomains seem fairly strong (34).
They later extended this algorithm to detect interacting partners
based on the ratio between intra-protein correlations and inter-
protein correlations (35).

1.1.4. Hybrid Approaches A natural progression over the previous approaches is of hybrid
methods that combine different sources of information. Jansen
et al. (36) propose an integrative approach that uses a Bayesian
network for deciding whether two proteins are interacting,
based on information from several sources including GO (37)
and MIPS (38) databases. Another integrative algorithm that is
based on Support Vector Machines (SVMs) has been proposed
in (39). Information sources for this method include sequence
similarity, homology to other interacting pairs, and relation in
the GO database. The model uses several kernel functions that
are constructed for the different information sources and used
in conjunction with each other, to train a classifier that sepa-
rates interacting from non-interacting proteins.

2. Methods I – The
Basic Model

In this chapter we test the co-evolution model for inferring pro-
tein–protein interactions and present several variants of this
model. Our basic assumption is similar to the co-evolution princi-
ple that was originally introduced in (40). Specifically, two pro-
teins that interact will tend to co-evolve in a coordinated manner,
resulting in a higher evolutionary correlation between their corre-
sponding homologs. The intuition behind this premise is fairly
simple; if one partner in a protein interaction pair mutates, then its
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counterpart will have to adapt in order to preserve the interaction.
Therefore, given two query proteins and their homologs, one can
theoretically predict an interaction if there is an evidence that the
groups co-evolve.

Correlated evolution approaches (such as mirror-tree) offer
several advantages over other methods. First, there are several
algorithms that can approximate a correlated evolution score and
also run in polynomial time. Second, the idea of correlated evolu-
tion is a priori and fits in with basic biological principles. Sequence
signatures represent an a posterior approach; consequently, they
can identify only the protein interactions similar to those found in
a training data set. Finally, co-evolution can detect proteins that
physiologically interact.

It is important to note that co-evolution does not necessarily
entail physical interaction. For example, two proteins can be part
of the same complex without interacting directly. However, even
if the proteins do not interact with each other directly, they
might still co-evolve to preserve the structural stability and func-
tionality of the complex. To determine if the proteins actually
interact, it is necessary to inspect the structure of the complex,
which is usually unknown. However, from biological (func-
tional) standpoint, proteins that are part of the same complex
are often considered as interacting proteins. Here too, we do not
make a distinction.

Any co-evolution method for protein–protein interaction pre-
diction relies on the knowledge of phylogenetic trees. However, in
practice, the exact evolutionary path of a specific protein is
unknown; therefore, one must infer a protein’s phylogeny via
careful examination of the differences between protein homologs
found in different organisms. An ideal solution to this problem
would be to reconstruct phylogenetic trees for each interacting
protein partner and its homologs (herein referred to as a protein
family) and then to compare their similarities. Unfortunately,
phylogenetic tree reconstruction is provably an NP-complete pro-
blem, and existing measures for assessing co-evolution (as the
Pearson correlation coefficient) attempt to avoid this problem by
considering all pairs of protein homologs. However, this clearly
affects the sensitivity of the method. That is one of the issues we
address in this study.

Mirror-tree co-evolution-based algorithms are usually com-
posed of the following three steps: Given two query proteins (i)
identify their homologs (family members) in a common set of n
organisms, (ii) construct distance matrices for the two families, and
(iii) measure the similarity between the two matrices using the
Pearson correlation. We start by presenting the general case (of
multiple paralogs in each organism) and then discuss methods to
reduce this set to a single protein from each organism, and elim-
inate non-interacting pairs.
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2.1. Correlated

Divergence

2.1.1. Definitions

We are given two query proteins q1, q2 and a multiple alignment of
each with other, related, database sequences. The groups of data-
base sequences are referred to as protein families F1 and F1. The
families consist of n1 (n2) sequences originated from N1 (N2)
organisms (note that usually Ni < ni). Denote the organism sets
by O1 and O2, respectively. We hypothesize that the query
sequences interact and therefore there is an evidence of co-evolution
among the two protein families.

The first step in the co-evolution algorithm is to select the
subset of organisms that are common to both protein families,
Ocommon¼O1 \O2. In each organism o2Ocommon, there exist at
least one protein in F1 and one protein in F2. Each such pair is a
candidate interacting pair. Initially, we assume that of all possible
candidate pairs in an organism, at least one interacts in a similar
way as the two query proteins; therefore, the core set of interacting
proteins consists of at least Ocommon interacting pairs. Assuming
that all proteins from a family are involved in the hypothesized
interaction, the maximal size of the set may be larger. Both these
assumptions are revised later. With a little abuse of notation we
revise our definitions of Fi, ni and Ni to the groups of proteins that
originate from the (smaller) organism set Ocommon. Denote N ¼
|Ocommon|. The set of proteins from family Fi that is found in
organism o is denoted by Fi,o.

2.1.2. Computing

Correlated Divergence

The assumption of co-evolution for interacting proteins holds
only for the interaction site; however, this information is clearly
an unknown parameter when the two query proteins are only
hypothesized to interact. Even for known interactions, the
binding box is usually unknown (Note 1). However, one
would expect interacting proteins to have similar divergence
patterns overall. Although not necessarily constrained in a cor-
related manner outside of the binding box, it is assumed that
both interacting proteins have similar rates of mutation. This is
not true for different protein families in general, as different
families have different molecular clocks, some exhibiting faster
mutation rates than others, where rapidly changing protein
might undergo significant changes in conformation. However,
since the general structure of the protein has to be preserved to
maintain a structurally and functionally active interaction site, it
is less likely that the two interacting proteins will evolve in
significantly different paces.

Our first measure attempts to detect signals of correlated
divergence and is similar to the mirror-tree approach (29). To
estimate the divergence rate, we compute the total number of
amino acid mutations between all protein pairs within a given
family. If two protein families co-evolve, these mutation levels
should correlate, indicating similar protein clocks. For each
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organism pair o1, o22Ocommon within a protein family Fi, we define
the mutation level Di(o1, o2) to be the average number of muta-
tions over all protein pairs in the cross product of Fi,O1 and Fi,O2

Diðo1; o2Þ ¼
P

p12Fi;o1;p22Fi;o2
dðp1; p2Þ

jFi;o1jjFi;o2j
;

where d(p1, p2) is the average number of mutations between
proteins p1 and p2, normalized per 100 residues to prevent biases
due to different lengths. The mutations are computed from
sequence alignments. The conservation level of p1 and p2 is defined
as 100 – d(p1, p2).

This measure was chosen as a starting point due to its simpli-
city and relative ease of implementation and computational speed.
Moreover, this measure qualifies as a distance metric, as it is sym-
metric, non-negative, and satisfies the triangle inequality. This
property is necessary to accurately estimate the distances between
entities that are evolutionarily more distant. It is also a necessary
condition for constructing a phylogenetic topology.

The correlated divergence is estimated by computing the
Pearson correlation coefficient r between the mutation levels of
organism pairs in family 1 and family 2:

r ¼
PN

i¼1

PN
j¼iþ1½D1ðoi; oj Þ � m1ÞðD2ðoi; oj Þ � m2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

PN
j¼iþ1½D1ðoi; oj Þ � m1�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼iþ1½D2ðoi; oj Þ � m2�2

q ; ½1�

where mk ¼ 2
PN

i¼1

PN
j¼iþ1 Dkðoi; oj Þ=N ðN � 1Þ. The correlation

coefficient is ranging in value from –1 (anti-correlation) to 1
(perfect correlation). Value of 0 indicates no correlation. In prac-
tice, this raw correlation score is not very robust and suffers
from several drawbacks as discussed in Section 2.1.5. An even
more stressing problem is that the method does not scale well, as
the number of pairs grows quadratically with the number of organ-
isms. If the actual subset of organisms with interacting pairs Ointeract

is much smaller than the total number of organisms (i.e.,
Ointeract<<O common), then the ratio of interacting pairs to all pairs,
jOinteractj2

jOcommonj2
, will be close to zero, making it almost impossible to detect

correlation signals. This problem will be addressed in Section 3.1.

2.1.3. Data preparation Naturally, any two sets of homologous proteins over the same set
of organisms have the same true phylogenetic tree structure with
similar distance matrices. To test if the co-evolution signal (as
approximated by the correlated divergence score) is causally
related to protein–protein interaction and not the result of corre-
lation due to similar evolutionary trees in general, we compute the
distribution of correlated divergence scores for a set of interacting
proteins and a second set of non-interacting protein pairs and
compare the two distributions. Preparation of these data sets
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should be handled with care, in order to prevent statistical biases.
Here we took special measures to make sure that our data sets of
interacting and non-interacting proteins have similar properties
and are clean from certain statistical biases that may be caused by
erroneous construction.

Interacting proteins: Our data set of interacting proteins was
derived from the Biozon database (41) and processed to eliminate
redundancy and ensure high quality of data. We started with a set
of 59,624 unique protein–protein interactions that were available
as of October 2004, gathered from BIND (42), DIP (43), and
HPRD. Many interactions were associated with multiple evidence
codes (e.g., yeast two-hybrid and immunoprecipitation). After
excluding interactions that were determined exclusively with the
yeast two-hybrid test, we were left with 13,767 unique interac-
tions that we consider to be of high quality (the break-up by
method is given in Table 4.1). The data set was further pruned
by excluding the following interactions from the initial set:

Table 4.1
Break-up of interactions by evidence codes. First column is
the number of interactions that were verified by each
method. The second is the number of interactions that were
determined only by that method

Method #interactions #interactions (unique)

Immunoprecipitation 7717 5572

Tandem affinity purification
(tap)

4108 3375

Affinity chromatography 1645 842

X-ray diffraction 688 394

In vitro binding 646 238

Cross linking 363 159

Gel filtration chromatography 351 69

Copurification 327 112

Biochemical 217 95

Competition binding 214 87

In vivo kinase activity 198 176

Immunoblotting 189 51

Biophysical 188 79

Gel retardation assays 144 52

(continued)
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Table 4.1 (continued)

Method #interactions #interactions (unique)

Cosedimentation 124 33

Alanine scanning 119 44

Three-dimensional structure 118 67

Native gel electrophoresis 114 78

Genetic 113 50

Other 99 72

Electron microscopy 86 18

Experimental 71 54

Density gradient
sedimentation

66 12

Surface plasmon resonance 62 22

Interaction adhesion assay 61 33

Filter overlay assay 58 11

Calcium mobilization assay 55 15

Autoradiography 51 4

Split ubiquitin system 48 38

Lambda fusion 46 26

Immunofluorescence 33 9

Transcription assay 30 21

Elisa 24 4

Monoclonal antibody
blockade

22 11

Immunostaining 19 6

Phage display 18 5

Fret analysis 18 11

Transient coexpression 17 9

NMR 15 3

Fluorescence spectroscopy 9 2

Nuclear translocation assay 9 1

Chemotaxis 8 7

Not specified 7 5

(continued)
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l Interactions in which one or both proteins have less than 20
homologs. This is necessary to ensure that enough information is
available for the computation of the correlated divergence score.
We also excluded proteins with more than 700 homologs.

l Interactions between homologous proteins (including self-
interaction), since these bias the correlated divergence score.

l Interactions involving proteins whose homologs from other
organisms are identical. In this case the correlated divergence
score cannot be computed.

l Interactions between proteins whose families have less than
eight organisms in common.
Finally, to minimize redundancy we picked only one pair from

all pairs of homologous interactions. After applying these filtering
criteria we were left with a set of 3192 interactions.

Non-interacting proteins: The construction of a non-
interacting data set is a little more tricky, since no database
of such proteins exists. In fact, even if such database would exist,
it would have represented only a fraction of the space of protein
pairs, which is not necessarily similar to the subspace represented
by the data set of interacting proteins. In such cases it is impossible
to know whether the results obtained are reflective of a true signal
(correlated divergence in our case) or some other property that has
nothing to do with it (e.g., high frequency of outliers or different
number of entries in the distance matrices). Therefore, it is desir-
able to neutralize such irrelevant properties by choosing a data set

Table 4.1 (continued)

Method #interactions #interactions (unique)

Immunolocalization 7 0

X-ray scattering 6 0

Isothermal titration
calorimetry

6 0

Mass spectrometry 3 1

Peptide spot assay 3 0

Microtiter plate binding assay 3 0

Photon correlation
spectroscopy

3 0

Ion exchange chromatography 2 0

Sucrose gradient
sedimentation

2 2

Neutron scattering 1 0
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composed of ingredients similar to those of the data set of interact-
ing pairs. In order to achieve this goal we constructed the data set of
non-interacting proteins so that the connectivity of proteins in this
set, namely the number of pairs in which each protein is involved,
will be similar to the connectivity of the interacting data set as much
as possible. Specifically, the pairs were constructed by pairing pro-
teins (from the same organism) that were chosen randomly from the
pool of interacting proteins according to their distribution in this
data set, and after applying the same filtering criteria that were
applied to the interacting set (Note 2). While this does not guar-
antee similar properties at the interaction/protein-pair level, it sig-
nificantly reduces statistical biases that might affect the results. This
has been verified by comparing some key properties of the interact-
ing and non-interacting data sets that can influence the Pearson
correlation, such as the distribution of |Ocommon| and the distribution
of the average number of paralogs for each organism in Ocommon (see
Fig. 4.1). This procedure left us with 3117 pairs of proteins that are
likely to be non-interacting (Note 3).
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Fig. 4.1 Comparing statistics over interacting and non-interacting data sets. Size of Ocommon in interacting and non-
interacting pairs (left ), average number of paralogs per organism in families (middle), and distribution of ML-scores
between pairs of organisms in interacting and non-interacting pairs (right ). The distributions are almost identical,
indicating that the data sets indeed bear similar statistical characteristics.
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Family construction and multiple alignments: For each pair
the analysis starts by generating multiple sequence alignments. To
generatethealignmentswecollectedasetofhomologsforeachprotein
from Biozon (these were generated using BLAST with e-value thresh-
old of 0.01). Multiple sequence alignments were then constructed
usingMAFFT(44,45)version5withthedefaultparameters (Note4).

2.1.4. Signals of Correlated

Divergence

Our first experiment tests the plain correlated divergence model,
using all organisms in Ocommon and all proteins from each organism.
This setup is similar to the one usually used in other mirror-tree
studies (49, 50). Figure 4.2 plots the distribution of correlated
divergence scores for our data sets. Both the density and the cumu-
lative functions are rather close to each other, with the interacting
pairs being assigned a slightly higher correlated divergence scores
than the non-interacting pairs, on average (see Table 4.2). Figure 4.3
displays typical scatterplots of high- and low-scoring pairs. The cor-
relation (or lack thereof) can be easily seen in these examples.

Clearly, the distributions of Fig. 4.2 cannot be used for a
reliable separation of interacting pairs from non-interacting pairs.
In the next sections we discuss some of the model’s drawbacks and
suggest possible solutions.

Fig. 4.2 Distribution of correlated divergence scores for interacting vs. non-interacting pairs. All organisms in
Ocommon with all their proteins are used. Behavior of both data sets seems to be similar, with a slight advantage for the
interacting over the non-interacting set.

Table 4.2
Simple correlated divergence statistical results

m � Score < 0.3 Score > 0.7

Interacting pairs 0.636 0.199 0.063 0.435

Non-interacting pairs 0.612 0.199 0.077 0.372
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2.1.5. Drawbacks of the

Pearson Correlation

Measure

Although widely used in mirror-tree-based algorithms, the Pearson
correlation coefficient is not a very robust test statistic and has
several properties that should be taken into consideration when
applying it for the specific task of detecting correlated divergence.

Uneven divergence rates. The Pearson correlation coefficient
assigns high scores for data points with linear correlation, regardless of
the slope of the line. This may lead to undesirable situations as pre-
sented in Fig. 4.4, in which two families are assigned high correlated

Fig. 4.4 High Pearson correlation coefficient does not necessarily indicate corre-
lated divergence. The interaction between nr|002140001532 (ribosomal protein L10)
and nr|004670000093 (presenilin 1) is assigned a high Pearson score (r ¼ 0.97), but
the divergence rates are different in the two families, with the second diverging twice as
fast as the first one. We would expect the data points of two families whose divergence
rates are in correlation due to the interaction (and not due to similar evolutionary trees in
general) to be concentrated around the y ¼ x diagonal.

Fig. 4.3 Correlation plots for interacting pairs with strong and weak correlated divergence scores. Low correlated
divergence score (r¼ 0.03, left ) is assigned to the interaction between nr|003180002190 (TATA box binding protein) and
nr|12300000009 (TBP-interacting protein 120A), while the interaction between nr|002690000168 (60S ribosomal protein
L9, mitochondrial precursor YmL9) and nr|002860000147 (60S ribosomal protein YmL6, mitochondrial precursor) shows
much stronger signs of correlated divergence (r ¼ 0.90, right ). To view the Biozon profile page of a protein with nr
identifier nr|x, follow the URL biozon.org/Biozon/Profile/x.
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divergence score despite the fact that the divergence rate of one family
is about twice as fast as the divergence rate of the other family. One
possible solution is to measure how well the data fits the line y ¼ x.

Insensitivity to the size of the data set. The Pearson score is
insensitive to the number of data points used to compute the
correlation. In general, we would consider correlation detected
in a larger set of data points more reliable than the same correlation
patterns found in a smaller set. However, the Pearson correlation
measure assigns the same values for different sets showing similar
signs of correlation, regardless of their size.

To address this problem we normalized the Pearson score with
respect to a background distribution of correlation scores of non-
corresponding proteins. This is done by randomly permuting the
organism order of one of the families and recomputing r as defined
above. From this distribution, the mean Pearson correlation score,
�r, and standard deviation, s, are calculated. Along with the true
correlation score, r*, the normalized z-score is calculated as:

z ¼ r� � �r

c
:

The z-score-based normalization mitigates the aforementioned
problem, as it assigns higher scores to larger sets. However, on
the other hand, we found that the size of the data set tends to
dominate this measure, thus creating a bias that can mask differ-
ences between signals of of correlation, either positive or negative,
between the two distance matrices. Therefore, we did not use this
normalization in the subsequent experiments.

The effect of outliers. Another issue with the Pearson score is
that it can be heavily influenced by a few outliers. Consider the
scatterplots of artificial datapoints given in Fig. 4.5. The plot on
the left shows signs of correlation, as the datapoints fit the linear
regression model quite well. The plot on the right, however, is
heavily influenced by five outliers marked by black squares. When
computing the Pearson correlation coefficient for both examples
the results are similar (r ¼ 0.69 and r ¼ 0.67 for the left and right

Fig. 4.5 Instability of the Pearson correlation coefficient. Scatterplots of artificial data. Left : a data set showing
signs of a real correlation (r¼ 0:69). Right : a data set heavily influenced by a few outliers, marked with arrows (r¼ 0.67
with outliers, r ¼ 0.17 without outliers).
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plots, respectively).When the five outliers are removed from the
right plot, however, the correlation coefficient decreases to an
insignificant score of r ¼ 0.17. The case of a few outliers is
common when using the correlated divergence model, and is
usually caused by proteins that are either very similar (almost
identical) to the query proteins or by remote homologs that are
weakly similar to the query proteins.

There are several approaches one can take to handle these kind
of situations. One possibility is to weigh the entries based on their
relative similarity, to decrease the contributions of highly similar or
highly dissimilar proteins. There are quite a few weighting schemes
that are commonly used when constructing profiles or HMMs
from MSAs, for example (e.g., (51)). However, these methods
underweight either the most similar or the most dissimilar pro-
teins, but none of them is designed to underweight both. There-
fore, we left the Pearson correlation coefficient as is.

Another possibility is to exclude outliers (above a certain thresh-
old) from the distance matrices. Very high values in the distance
matrix of one family are usually the result of comparing two distant
organisms. In such cases the real co-evolution signal, if exists, is
likely to be masked by noise due to the large number of mutations
overall, making it almost impossible to detect signs of correlated
divergence. The opposite situation in which mutation levels are too
low is undesirable as well: the proteins of two close organisms
probably did not diverge much, again making it difficult to detect
co-evolution. In order to improve the signal, we tested a variant of
the correlated diverge algorithm where all proteins that are either
more than 90% or less than 30% identical to the query proteins are
excluded. However, this approach did not improve the separation
between the interacting and the non-interacting pairs.

3. Methods II –
Improvements over
the Basic Model

Although the conceptual framework presented in the previous
section is clean and simple, in practice, many assumptions made
are in need of revision. For example, it is not uncommon to find in
a genome multiple genes that belong to the same protein family.
Even if one of them interacts with another protein, there is no
reason to assume that all its paralogs also interact with that protein
(or its paralogs, if they exist). Moreover, the interaction might
become inactive in some organisms, due to mutations after specia-
tion; such organisms may add far more noise than real data as will
be later explained. In an attempt to overcome these problems, we
considered two variations of the correlated divergence algorithm
that employ: (i) protein subset selection and (ii) organism subset
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selection. The first approach focuses on selecting a subset of pro-
teins from each family, which are more likely to interact, and the
second searches for those organisms in which the interaction is
more likely to be preserved. Next we discuss both approaches and
draw conclusions regarding the effectiveness of each one.

3.1. Protein Subset

Selection

There are two evolutionary phenomena that can explain the pre-
sence of multiple ‘‘paralogous pairs’’. In both cases the phenomena
are driven by duplication events. The difference lies in the timing:

1. At the time of speciation of o, only one protein from each
family existed. Duplication events then took place in o, possi-
bly in coordination (e.g., when the interacting genes are
located physically close to each other), forming multiple para-
logous genes and possibly multiple interacting pairs.

2. These multiple paralogous genes were in existence before
speciation occurs for o. When speciation occurred, these para-
logs were passed on to o.

Given two sets of proteins, F1,o and F2,o from families F1 and F2

in organism o, the basic method of Section 2.1.2 takes the average
over the |F1,o| � |F2,o| protein pairs. However, even if one of these
gene pairs is known to interact, it is unclear if all homologous gene
pairs can form an interaction. Actually, it is unlikely that all para-
logs from one family interact with all paralogs of the other family.
Rather, it is more likely that each paralog is ‘‘tuned’’ to perform
different functions (3, 52). Moreover, after speciation an interact-
ing pair might mutate and become non-interacting. However,
without experimentation it is hard to determine in advance
which pairs interact and which are not.

We contend that this protein multiplicity will only weaken our
co-evolutionary signal as many of the pairs considered are not inter-
acting, and therefore are likely to evolve without explicit co-evolution
constraints. It should be noted that there is an overwhelming evi-
dence that biological systems employ fail-safe, redundancy-based
mechanisms, thus suggesting that many of these pairs are actually
interacting (53, 54). Nevertheless, the maximal number of expected
interactions is of the order of O (n) while the actual number of pairs
considered in this analysis is of the order of O (n2). Thus the majority
of pairs is only indirectly constrained. In this view it is clear that one
should consider only the truly interacting pairs in the analysis, exclud-
ing all other homologs, even those that are significantly similar.

The problem has been addressed to some extent in previous
studies. The algorithm presented in (30) works on families com-
posed of exactly one protein from each organism in the common set
(picking the closest protein to Escherichia coli proteins when para-
logs were available). Two studies (49, 50) independently proposed
algorithms in which more than one protein from a single organism
may be considered. This problem is harder, since it is necessary to
decide which pairs of proteins from the same organism are the most

A Study of the Co-evolution Model 77



likely to interact. The problem is tackled by looking for the pair of
distance matrices that yields the highest correlation score. Assuming
that the distance matrix of the first family is set, these algorithms
explore the search space of all distance matrices which may be
constructed for the second family. The number of different matrices
is m!, where m is the number of proteins in each family and m! is the
number of permutations over these m proteins.

Since the search space becomes too big for large m, the algo-
rithm employs sampling algorithms to find a locally maximal solu-
tion. The problem of a huge search space was partially resolved in
(55), where only isomorphic permutations, namely permutations
that keep the tree topology, are considered. The method can
reduce the size of the search space significantly, but in the worst
case the search space remains of the order m!.

In this section we test several methods that are primarily con-
cerned with determining the true interacting subset. The first
attempts to minimize the total distance between the selected
proteins, the second more restrictive approach attempts to identify
the set of orthologous proteins, and the third attempts to identify
the subset that maximizes the correlated divergence score.

3.1.1. The Minimum

Distance Method

The minimum distance method reduces the set of proteins from
each organism in Ocommon to a single protein. This protein is
chosen such that the overall distance (approximated using the
sum of pairs (SOP) function (56)) between all protein pairs in
the family is minimal. The assumption behind this method is that
interacting proteins are likely to mutate less than their paralogs
which are not involved in the interaction, in order to preserve the
interaction. This method can be computationally intensive for
large families, containing many proteins or organisms, because of
the large number of possible combinations that have to be con-
sidered. To test this method we used smaller subsets of about 500
interacting and 500 non-interacting proteins that were con-
structed as described in Section 2.1.3, with the additional criter-
ion that the number of combinations does not exceed 107 (we
refer to these data sets as the reduced data sets). As before, we
compute the distributions of correlated divergence scores over the
interacting and the non-interacting sets, where the formula of
Eq. [1] is revised to consider only a single protein from each
organism selected using the minimum-distance criterion. The
results are presented in Fig. 4.6.

As the graphs show, the average score with the minimum
distance method increases (both for the interacting and the non-
interacting set) compared to the basic model, which suggests that
the method is effective in picking the relevant paralogs. The mini-
mum distance method also improves the separation between the
two sets. For example, 24.4% of the interacting set and 12.7% of
the non-interacting set are assigned a score > 0.9 when using all
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paralogs. With the minimum-distance method, more than 43.5% of
the interacting set are assigned a score>0.9 while only 23.7% of the
non-interacting set exceed this threshold, thus decreasing
the overlap between the two distributions at the high end of correla-
tion scores. Indeed, the Jensen-Shannon (57) distance between the
two distributions increases from DJS

all ¼ 0:064 to DJS
min�dist ¼ 0:095.

Note that when one protein is selected at random from each organ-
ism (the Random test), the correlated divergence scores decrease and
the distributions get closer, with a Jensen-Shannon distance of
DJS

random ¼ 0:035 (see right panel of Fig. 4.6).
Interestingly, the basic correlated divergence model performs

better over the reduced set and the scores are usually higher
compared to the scores computed over the larger data sets (com-
pare the left panel of Fig. 4.6 to left panel of Fig. 4.2). This might
be attributed to more accurate assessment of the phylogenetic
distances rather than co-evolution, since the reduced data sets
contain fewer organisms and less homologs for each organism.
However, it seems that the co-evolution signal also improves when
the distant homologs are eliminated.

interacting pairs
non-interacting pairs

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

correlation coefficient

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

correlation coefficient

interacting pairs
non-interacting pairs

interacting pairs
non-interacting pairs

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

correlation coefficient

Fig. 4.6 Distribution of correlated divergence scores for interacting vs. non-interacting pairs over the reduced data
sets. Density functions generated when all proteins in Ocommon are used (left ), one protein from each organism in Ocommon

is chosen by the minimum distance criterion (middle) and one protein from each organism is chosen at random (right ).

A Study of the Co-evolution Model 79



Optimizing the minimum-distance method for large
families. In order to apply the minimum distance method to
large families with large search spaces, one can apply the following
optimization algorithm:

l Input: Protein family F over a set of organisms O. The maximal
number of iterations MaxIteration.
The set Fo denotes the projection of F on o (the subset of
proteins in F from organism o2O).

l Initialize: The subset of minimum-distance proteins S¼f
and Iteration¼ 0.
For each organism o2O

Pick one protein p at random from Fo

S¼ S[p (such that So¼ p)
l Loop: Iteration¼ Iteration+1

For each organism o in O

Set p¼ So (the projection of the current set S on o)

Set S’¼ S\p

Pick one protein p’ at random from Fo s.t. p’6¼p

If SOP(p’,S’)>SOP(p,S’) then S¼ S’[p
Until: Iteration¼¼MaxIteration or if S converged.

l Output: The subset S

The algorithm attempts to improve the assignment of proteins
by iterating over all organisms, trying each of their proteins in
combination with the current best assignment of proteins from
other organisms, and picking the one that minimizes the distance.
The quality of the assignments is measured via the SOP score.
While this algorithm is much more computationally efficient
than exhaustive search over all possible assignments, it can still be
computationally demanding for large families and it is suggested to
stop it after a preset maximal number of iterations has reached.
It should be noted that the application of this algorithm to larger
data sets did not change the trends we observed with the
smaller sets.

3.1.2. The Orthologs-Based

Approach

Another variation we considered was to search for the group of
orthologous proteins, using the Reciprocal Best BLAST Hit
(RBH) algorithm (58, 59). This method was previously used
to construct the InParanoid database of eukaryotic orthologs
(60, 61) The RBH algorithm is stricter than the minimum
distance algorithm; given two proteomes A and B, the two
proteins a2A and b2B are considered orthologs if b is the
first hit in a BLAST search in which a is the query and B is
the database, and a is the first hit in the search of b against A.
The method suffers from a high rate of false negatives since
both proteins must be first in each other’s list in order to be
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considered as orthologs. While trying the method on our data
we were left with too few proteins, which did not allow us to
apply the correlated divergence model.

3.1.3. The Expectation

Maximization approach

We also tested an EM-like algorithm for protein subset selection.
In our case the hidden variables are the indicator variables that
specify if a gene interacts with another gene or not. The maximiza-
tion step selects from one organism at a time the pair of proteins
that maximizes the co-evolution signal, given the existing set. The
expectation step is essentially the averaging over all pairs in all
other genomes (Note 5).

The algorithm consists of reducing the set of interacting
proteins in each organism to a single interaction, i.e., |Fi,o|¼1
for both families and all organisms o. As discussed above, it is
very unlikely that all possible pairs interact; however, we antici-
pate that at least one pair interacts, and we target that gene
pair. Our algorithm (shown below) first iterates through all
protein organism sets and then continues these epochs until
the subset remains unchanged and the correlation scores stop
improving.
The EM Subset Selection Algorithm:

l Input: Two protein families F1,F2 over a set of common
organisms Ocommon. The maximal number of iterations
MaxIteration.

l Initialize: The subsets of proteins that maximize the corre-
lated divergence score S1¼F1, S2¼F2. Set Iteration¼0

l Loop: Iteration¼ Iteration+1

Foreach organism o in Ocommon

Set S1
0 ¼ S1\S1,o

Set S2
0 ¼ S2\S2,o

MaxCorrelation=0
Foreach p12F1,o

Foreach p22F2,o

Correlation¼CorrelatedDivergence (S1
0[p1,S2

0[p2)
If Correlation> MaxCorrelation then

S1S1
0[p1$ and S2¼ S2

0[p2

MaxCorrelation¼Correlation
Until: S1 and S2 converged or if Iteration¼¼MaxIteration

l Output: The final subsets S1 and S2.
The algorithm was implemented and tested over the interact-

ing and non-interacting data sets. However, the resulting distribu-
tions were very similar (results not shown). One deficiency of the
algorithm lies in its tendency to choose remote proteins that
maximize the Pearson correlation score (see discussion of outliers
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in Section 2.1.5). That is, the algorithm chooses members of the
two families such that their distances from the other organisms are
most alike, even if this means choosing distant members when
closer alternatives exist. This is clearly undesirable as the selection
bears no biological significance in the context of correlated diver-
gence. This phenomenon emphasizes once again one of the major
deficiencies with the Pearson correlation coefficient.

3.2. Organism Subset

Selection

Our assumption that Ocommon¼Ointeract is, in practice, not always
true. After or during speciation, a pair of interacting proteins
might lose its ability to interact. In Section 2.1, we conclude
that if Ointeract<<Ocommon, then co-evolution signals from inter-
acting proteins can quite easily be overwhelmed by data from the
numerous non-interacting pairs; therefore, we would like to mini-
mize this set to the smallest possible one, Ointeract. Here we pro-
pose two simple methods for organism subset selection.

3.2.1. Closest Organism

Criterion

Assuming that the pair of tested proteins indeed interacts, it is
more likely that the interaction exists in organisms that are closer
to the query proteins’ organism rather than in distant organisms.
Under this assumption we remove distant organisms in Ocommon.
Given the pair of query proteins p1,q,p2,q2oq, the distance between
oq and any other organism od2Ocommon is estimated by

distðoq ; odÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
evalueðp 1;dÞ�evalueðp 2;dÞ

q
; ½2�

where evalue(pi,d) is the minimal e-value assigned by BLAST to the
most similar protein in od, with pi,q as the query.

Once all distances were estimated, we choose the closest Nr

organisms and use these as our reduced set of common organisms,
Or

common, to compute the correlated divergence score as in Eq. [1].
We tested this method for Nr¼8. Our tests suggest that the exclu-
sion of remote organisms does not affect the separation. To the
contrary, the removal of the distant organisms resulted with almost
identical graphs for both the interacting and the non-interacting data
sets.

3.2.2. The Reduced

Distance Matrices for

Correlated Divergence

In the standard model of correlated mutations (as in Section 2.1),
all protein pairs are considered in Eq. [1] when evaluating co-
evolution. However, even with the minimal set of organisms and
proteins (as in Section 3.1), this model is contradictory to the
fundamental protein co-evolution assumptions. Given a phyloge-
netic tree topology representing O interact, each organism o in this
set is closely related only to a small subset of organisms. Although
indirect relationships to all other organisms can be established by
transitivity, the correlated mutations signal decreases quickly with
the evolutionary distance between species, to practically undetect-
able levels for even relatively small distances. Therefore, when
analyzing co-evolution within a protein family, one has to adjust
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the model and compare only proteins whose organisms are phylo-
genetically closely related. Sato et al. (62) suggested a variant of
the mirror-tree method, which reduces the high rate of false
positives by subtracting information about the phylogenetic rela-
tions of the proteins represented in the distance matrix, so as to
isolate and amplify the co-evolution signal. However, this
approach presents another challenge. As discussed in the introduc-
tion, phylogenetic tree reconstruction is an extremely difficult
problem, and complete phylogenetic species trees that span across
higher-order domains (i.e., Eubacteria, Eukaryote, and Archea)
are largely unavailable. To approximately define the set of relation-
ships that are induced by the true phylogenetic tree, we use the
given set of proteins from the two interacting families. However,
we do not try to recover the complete topology of the tree, since
we are only interested in organism pairs that are closely related. To
assess co-evolution we consider only the $k$ most similar rela-
tions. Specifically, for each organism we compile the list of neigh-
boring organisms based on the average SOP score of the two
homologous proteins and pick the k most similar ones. Denote
by kNN(i) as the set of k closest organisms to organism i, then the
correlated mutation score under this reduced model is defined as

r ¼
PN

i¼1

P
j2kNN ðiÞ½D1ðoi; oj Þ � m1�½D2ðoi; oj Þ � m2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

P
j2kNN ðiÞ½D1ðoi; oj Þ � m1�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

P
j2kNN ðiÞ½D2ðoi; oj Þ � m2�2

q
:

½3�

We refer to this algorithm as the kNN algorithm. We ran the kNN
algorithm on the data sets described in Section 2.1.3, with k¼8.
Our tests indicate that this method improves only slightly over the
basic correlated divergence algorithm and the minimum-distance
protein subset selection algorithm, suggesting that most interact-
ing protein pairs do not co-evolve more strongly than what is
expected in general for two sets of homologous proteins over the
same set of organisms; and if certain positions exhibit correlated
mutations, they are probably confined to the interaction site.

4. Conclusions

In this chapter we study methods to predict protein–protein inter-
actions based on the co-evolution model. The premise of co-
evolution methods was originally revealed in (29, 36, 40); how-
ever, without extensive assessment. Here we expand this model
and test different variants.

The underlying co-evolution model is very appealing at first: if
two proteins interact, one would expect to find some patterns of
constrained, correlated mutations. Detecting such patterns in
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protein pairs that have not been tested experimentally can suggest
that the proteins interact. As opposed to docking and binding site
identification methods, this method does not require knowledge
of the structure. Similar to the Rosetta stone method, it attempts
to predict interactions from sequence. Indeed, previous studies
that explored the potential of this method suggested that the co-
evolution model might be effective for the detection of novel
interactions. However, these studies focused only on a few specific
examples that appear to behave according to this model.

Motivated by this premise we tested this model and the variants
that attempt to improve the signal-to-noise ratio. However, despite
the extensions and enhancements we implemented, we were dis-
appointed to find out that it is difficult to discern co-evolution
signals due to interaction from the background evolutionary corre-
lation which exists between any two sets of homologous proteins
over the same set of organisms. A relatively small number of
interactions seem to follow the co-evolution model (under the
‘‘mirror-tree’’ assumption), and only very few interactions can be
predicted with the correlated divergence measure or its variants.
There are several possible explanations. One possible reason could
be that the data set is biased or skewed. Actually, the choice of the
data set can greatly affect the results, and early experiments that we
ran with other data sets looked promising at first. However, we soon
realized that the too-good-to-be-true results were due to uneven
sampling and statistical differences between the interacting and the
non-interacting data sets. The final data sets we used in our tests are
fairly large, were obtained from high-quality databases, and have
similar statistical properties (see Section 2.1.3). Therefore, we think
it is unlikely that the conclusions are the result of biased data sets.
Another possible reason might be that the protein sets have too few
homologs, or the chosen organisms are too close or too far. How-
ever, we believe that the main reason is that the correlated diver-
gence measure is simply dominated by the background evolutionary
correlation. Furthermore, the Pearson correlation measure is insen-
sitive to weak correlation signals and has other drawbacks as dis-
cussed in Section 2.1.5. Other correlation measures (such as the
Spearman rank correlation) might be more effective. However, we
believe that if there was a signal of co-evolution, we would have
detected it with one of the many variations we tried. Therefore, even
if the signal exists, it ought to be very weak.

Clearly, if co-evolution occurs, it will be most pronounced
in the interaction site and the correlation might be limited to
the very few residues which are located in that interaction site.
The correlated mutations between these sites, even if exist,
might be overshadowed by other sites that are not constraint
to the same extent. Moreover, the selective pressure might have
eliminated any other possible variations that could have sup-
ported this hypothesis. The assumption of the mirror-tree
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approach is that the whole protein evolves in a similar pace as
its interacting partner. However, it seems that this hypothesis
holds only in a very few cases, while in all other cases it is
essentially impossible to discern interactions from non-interac-
tions using the mirror-tree method and there is little evidence
of co-evolution pressure. Refinements of the correlated diver-
gence measure based on the minimum-distance method and the
EM algorithms improved the signal slightly. However, even
with these improvements the signal is too weak.

Our final conclusion is that the mirror-tree co-evolution
model is not powerful enough to predict protein–protein interac-
tions effectively in itself. Further enhancements, integration with
other sources of information and with other techniques, and larger
data sets with refined information about the binding site may
improve the performance in the future.

5. Notes

1. For example, out of over 10,000 protein interactions that
were available in the BIND database as of December 2003,
only about 100 have detailed binding site information.

2. In terms of graphs, the proteins are viewed as nodes and each
pair that is chosen determines an edge in the graph. The degree
of each node is the number of pairs this node participates in.
Our procedure results in two graphs (of interacting and of non-
interacting proteins) over the same set of nodes, where the
degree of each node is almost identical in both graphs.

3. It should be noted that even with a random choice of pairs,
there is a chance that some of the pairs selected are actually
interacting. If information on the subcellular locations of pro-
teins is available, the pairs can be chosen from different locations
to reduce this chance. However, subcellular location is available
for a relatively small number of proteins and the probability to
pick an interaction by chance is small to begin with; therefore,
we do not apply additional filters to the negative set.

4. Early experiments were done with ClustalW (46) and iterative
PSIBLAST (47). The correlated divergence measure can be
sensitive to the choice of the MSA algorithm and therefore we
opted for a more accurate MSA algorithm. MAFFT has been
shown to outperform ClustalW and PSIBLAST, and yet it is
relatively computationally efficient (48).

5. Formally, this procedure is not exactly an Expectation Max-
imization algorithm; however, it is inspired by the EM algo-
rithm and is therefore referred to as an EM-like procedure.
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Chapter 5

Computational Reconstruction of Protein–Protein
Interaction Networks: Algorithms and Issues

Eric Franzosa, Bolan Linghu, and Yu Xia

Abstract

Accurate mapping of protein–protein interaction networks in model organisms is a crucial first step toward
subsequent quantitative study of the organization and evolution of biological systems. Data quality of
experimental interactome maps can be assessed and improved by integrating multiple sources of evidence
using machine learning methods. Here we describe the commonly used algorithms for predicting protein–
protein interaction by genome data integration, and discuss several important yet often overlooked issues
in computational reconstruction of protein–protein interaction networks.

Key words: Protein–protein interaction, machine learning, protein network, data integration, Naı̈ve
Bayes, logistic regression.

1. Introduction

In the past few years, significant progress has been made in
genome-wide identification of protein–protein interactions,
especially in model organisms such as Saccharomyces cerevisiae
(1–6) and Caenorhabditis elegans (7), and also recently in human
(8). With the availability of these experimental interactome maps,
it is now possible for the first time to quantitatively study the
organization and evolution of biological systems at the level of
protein–protein interaction networks, and develop theoretical
models that account for the observed statistical trends (9–11).
This line of research depends crucially on the quality of the
reconstructed protein–protein interaction networks, as measured
by accuracy, completeness, and possible bias. The dependence of
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derived organizational and evolutionary hypotheses on data
quality is not always obvious; an excellent recent example is the
observation that power-law topology of the interactome map
depends on its completeness (12). Such studies underlie the
importance of rigorous assessment and subsequent improvement
of the quality of interactome maps by a combination of experi-
mental and computational methods.

Here we focus on computational reconstruction of protein–
protein interaction networks by integrating multiple sources of
evidence (13–15). Such sources of evidence can be the interactome
maps produced by different labs, other binary maps such as genetic
interaction maps, or other genomic features suggestive of protein–
protein interaction. The basic premise is simple: if multiple reliable
sources of evidence all suggest that two proteins interact, then
the probability that these two proteins interact is high. To make
this intuition precise, we need to quantify the reliability of each
source of evidence, taking into account data quality (as mentioned
above), as well as redundancy and similarity among different
sources of evidence. Machine learning methods provide a straight-
forward solution to this issue. In machine learning, we specify the
simplest possible model that, we believe, captures the dominant
structure in the data. In our case, the model relates multiple sources
of evidence to whether or not two proteins interact. We then fit the
model to a training set (selected from a small gold-standard data
set), adjusting the model parameters so as to maximize the agree-
ment between the model and the data. The performance of the
learned model on unseen data can be evaluated using a separate
testing set, again selected from the gold-standard data set. Finally,
we apply the model genome-wide to generate predictions. Here, the
complexity of the data is captured by the choice of the model. Linear
models and their variants have been widely used, because: (1) these
models often capture the dominant structure in the data: noise,
incompleteness, redundancy, and correlation; (2) many nonlinear
structures in the data can become linear after appropriate data
transformation; (3) these models are simple: efficient optimization
methods exist to fit such models to the data, and over-fitting
problem is usually minimal.

In Section 2, we describe the choice of gold-standard
positive and negative interaction data sets, genomic features
for predicting protein–protein interaction, machine learning
methods for predicting protein–protein interaction, and ways
to transform nonlinear structure in continuous and graph-
based data into linear structure. In Section 3, we describe
additional important issues in reconstructing the interactome:
the choice of the size of positive and negative examples, dealing
with features whose predictive power is difficult to quantify, and
the effect of size and bias in the experimental interactome
maps.
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2. Methods

2.1. Gold-Standard

Positive and Negative

Interaction Data Sets

There are two different ways of defining protein–protein interac-
tions. The first definition is more specific: two proteins interact
when they share a physical binding interface. This is also called
binary interaction, and can be detected with yeast two-hybrid
experiments. The second definition is broader: two proteins inter-
act when they are subunits of the same complex. This is also called
co-complex memberships, and can be detected with pull-down
experiments. Here we focus on the prediction of co-complex
memberships in yeast, but the same framework also applies to the
prediction of binary interactions.

The gold-standard positive data set, a set of protein pairs that
are known to interact, is usually constructed from known protein
complexes annotated in MIPS (14, 16). Gold-standard positive
data sets constructed in this way, although highly useful, are not
perfect: they are biased toward important, well-behaved proteins
and protein complexes associated with pronounced phenotypes or
diseases. Unless explicitly modeled, standard machine learning
methods are not able to correct such biases.

The gold-standard negative data set, a set of protein pairs that
are known not to interact, is much harder to construct (17). This is
because negative results are typically neither published nor stored
in any database. One way to solve this problem is to assume that
proteins that localize in different cellular compartments do not
interact (14). An alternative approach is to construct an approx-
imate gold-standard negative data set as all protein pairs that
do not belong to the gold-standard positive data set and to use
co-localization information as one of the many features (18, 19).
There are several advantages of this approach. First, co-localization
information is treated in the same way as all other features. Second,
a protein is estimated to interact on average with at most 10–20
proteins out of �6,000 proteins in yeast. As a result, the vast
majority (>99.5%) of the approximate gold-standard negative
data sets are in fact true negatives. Third, gold-standard data sets
do not need to be 100% accurate. A small amount of noise can be
tolerated as long as the gold-standard data sets contain strong
enough signals to guide the parameterization of the classifier.

2.2. Compiling a List

of Genomic Features

Many protein pair features correlate with interaction. Such genomic
features can be collected for each of the �18 million yeast protein
pairs. Here we list a representative subset of these features: (1)
experimental physical and genetic interaction maps from different
labs; (2) the mapping of interologs (20), i.e., conserved interactions
between two proteins or domains, from another organism to yeast;
(3) features based on comparative genomic evidence, such as
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similarity of phylogenetic profiles (21) and gene neighborhood (22),
co-evolution (23), belonging to the same gene cluster (24), and the
existence of domain fusion events in another organism (25, 26);
(4) pair protein features that are derived from single protein features
such as function (14), localization (14), mRNA expression (27, 28),
abundance (15, 18), regulation (29), and phenotype (14, 15, 30);
(5) features based on 3D structural analysis, such as multimeric
threading (31).

Missing data is a serious problem and needs to be treated
differently depending on the missing data mechanism. However,
in many cases, if feature X contains missing data, simply creating a
new binary variable ‘‘X-is-missing’’ will work well in practice.

2.3. Naı̈ve Bayes Consider the following binary classification problem. Given a
training set of independently and identically distributed samples
T ¼ fðxðiÞ; yðiÞ; i ¼ 1; . . . ;mg of feature and binary class variables
from an unknown distribution D, estimate a classifier f ðxÞ that
predicts the binary class variable y 2 f0;1g (whether or not the
protein pair interacts) from the features x. Without loss of general-
ity, suppose that we have two binary feature variables x ¼ ðx1; x2Þ,
where x1; x2 2 f0; 1g. (We will discuss continuous feature vari-
ables later.) The goal here is to come up with a classifier f ðxÞ that
minimizes the expected prediction error Eðx;yÞ2D1fy 6¼ f ðxÞg,
where 1fXg is equal to 1 when statement X is true, and 0
otherwise.

According to statistical decision theory, the optimal classifier
f ðxÞ as defined above can be written in the following way:

f ðxÞ ¼
1; when

pðy ¼ 1jxÞ
pðy ¼ 0jxÞ

41

0; when
pðy ¼ 1jxÞ
pðy ¼ 0jxÞ � 1

8
>><

>>:
½1�

Now we make the Naı̈ve Bayes assumption that features are
conditionally independent: pðx1; x2jyÞ ¼ pðx1jyÞpðx2jyÞ. Under
this assumption,

pðy ¼ 1jxÞ
pðy ¼ 0jxÞ ¼

pðy ¼ 1Þpðx1jy ¼ 1Þpðx2jy ¼ 1Þ
pðy ¼ 0Þpðx1jy ¼ 0Þpðx2jy ¼ 0Þ ½2�

The five independent parameters in the above equation can be
easily estimated from the training set.

2.4. Logistic

Regression

Equation [2] is equivalent to the following equation:

In
pðy ¼ 1jxÞ
pðy ¼ 0jxÞ ¼ w0 þ w1x1 þ w2x2 ½3�
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This equation relates linearly the posterior log-odds of an interac-
tion given the evidence with the presence or absence of each piece
of evidence.

Naı̈ve Bayes classifiers assume that features are conditionally
independent. Such assumptions are often incorrect. In logistic
regression, the linear model in Eq. [3] is fit to the data, without
the extra assumption of conditional independence (32). The
weights w0, w1, w2 are obtained by maximizing the following
likelihood function: LCðw0; w1; w2Þ ¼ Gm

i¼1pðyðiÞjxðiÞÞ:

2.5. SVM and Boosting The above maximum likelihood (ML) estimate of the weights w0,
w1, w2 is equivalent to minimizing the following function:Pm

i¼1 fLRðaðiÞÞ, where a ¼ ð2y � 1Þðw0 þ w1x1 þ w2x2Þ is called
the margin, and the loss function jLRðaÞ ¼ Inð1þ e�aÞ is a convex
surrogate for the 0–1 loss function f0�1ðaÞ ¼ Ifa50g. Let us
now relax the requirement for ML estimation and consider other
ways to estimate the weights. The different estimation
methods generally aim at minimizing the empirical classification

error 1
m

Pm
i¼1 f0�1ðaðiÞÞ, with the 0–1 loss function surrogated by a

convex loss function so as to make efficient global optimization
possible. In the case of logistic regression, this convex surrogate
loss function is jLRðaÞ ¼ Inð1þ e�aÞ. But we are free to choose
other appropriate convex surrogate loss functions; in particular,
support vector machine (SVM) and AdaBoost use different loss
functions (33): jSVMðaÞ ¼ maxð1� a; 0Þ, and fAdaBoostðaÞ ¼ e�a.

2.6. Regularization In some cases even the linear model in Eq. [3] is too complex and
causes over-fitting. For example, we usually have a small number of
annotated protein–protein interactions, and a large number of
genomic features most of which are irrelevant. In this case, we
want to make the linear model even simpler by imposing the addi-
tional constraint that only a small subset of all features has non-zero
weights. Such regularization can be done in several different ways.
For example, a feature selection step can be performed prior to
the model-fitting step. Alternatively, a regularization term can be
added to the model-fitting step to penalize complex models, as
done in SVM. Finally, AdaBoost uses greedy optimization coupled
with early stopping to control the complexity of the model.

2.7. Nonlinear

Continuous

and Graph-Based

Features

We previously focused on binary features. A categorical feature
with n categories can be easily decomposed into n binary fea-
tures. What about continuous features, such as expression corre-
lation? In general, the posterior log-odds of interaction may
depend on these continuous features in a nonlinear way. How-
ever, we can convert a nonlinear continuous feature into several
linear binary features by binning the data. For example, we can
bin the expression correlation data into three binary features:
expression-correlation-high, expression-correlation-medium, and

Predicting Protein–Protein Interactions 93



expression-correlation-low. We can then fit a linear model to the
transformed feature space, assigning three different weights to
protein pairs with high, medium, and low expression correlation.
Notice that even though the model is linear in the transformed
categorical feature space, it is actually nonlinear in the original
continuous feature space. This simple binning procedure allows
us to extend the linear model to many nonlinear cases. There
are also other more complex procedures, such as kernel-based
methods (34).

Some genomic features are based on graphs such as interac-
tome maps and genetic interaction maps. Several different metrics
have been proposed to measure the distance between a pair of
proteins in these graphs, such as diffusion distance (35), linear
kernel (36, 37), and congruence score (38). These metrics can
then be combined with the rest of the genomic features to predict
protein–protein interaction.

2.8. Decision Tree

and Random Forests

Sometimes the dependence of protein–protein interaction on
genomic features is so complex that the linear relationship in
Eq. [3] is no longer valid. The most common machine learning
method that deals with such irreducible nonlinearity is decision
tree and its variants, such as random forests. These methods have
been successfully applied to the prediction of protein–protein
interaction (39).

3. Notes

1. How large should the gold-standard negative set be? We usually
fix the size of the gold-standard positive set to be a constant,
as determined by the MIPS complex catalog, but we are
free to vary the size of the gold-standard negative set. As the
gold-standard negative set gets bigger, the classifier applies a
stricter cut-off, and as a result predicts a smaller number of
positive interactions. For all classifiers except Naı̈ve Bayes,
individual evidence weights will also change.

What, then, is the right choice for the negative example
size? Shall we pick the same number of negative examples
as positive examples? Or to the other extreme, shall we pick
a lot more negative examples than positive examples to
approximately preserve the ratio of positive to negative
interactions in the entire proteome? The right choice depends
on the prediction task at hand. If our task is not to correctly
predict all interactions but rather to come up with a list of
predicted interactions that are accurate, then none of the
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above two methods are appropriate. Rather, we should
choose the appropriate negative example size so that there
are roughly equal numbers of true and false positives in the
predicted interactions (17).

2. Features whose predictive powers are difficult to quantify. It is
sometimes difficult to assess in a quantitative way the predic-
tive powers of certain features, such as functional similarity
based on Gene Ontology annotations. Because a subset of the
Gene Ontology annotations are themselves derived from
interaction information, part of the observed correlation
between functional similarity and interaction is spurious.
One way to solve this problem is to exclude the subset of
the Gene Ontology annotations that are derived from inter-
action information (18).

Let us now consider a hypothetical situation where we
do not know which subset of the Gene Ontology annota-
tions are derived from interaction information. It then
becomes impossible to quantify the predictive power of
the functional similarity feature. However, this does not
mean that this feature is not useful at all for making new
predictions. Even without quantitative assessment, we can
infer the usefulness of this feature based on biological
common sense: interacting proteins should tend to share
common biological functions. We argue that the best way
to deal with this situation is to exclude the functional
similarity feature from training-testing so as to obtain a
conservative estimate of the prediction performance, but
then to include the functional similarity feature in the
integrated classifier for making final genome-wide
predictions.

3. Effect of size and bias in experimental interactome maps. It
is important to keep in mind that the statistical machine
learning approach outlined here can only be applied
straightforwardly to integrate large-scale, unbiased interac-
tome mapping experiments, where the overlap with gold-
standard data sets provides an accurate measurement of data
quality. However, a significant fraction (34%) of the physical
and genetic interactions contained in BioGRID (40) are from
small-scale experiments, each mapping 100 or less interac-
tions. It is difficult to assess individual small-scale data sets,
but we can assess different methods by pooling together
all data sets carried out using the same method. As shown
in Table 5.1, the predictive power for co-complex member-
ships decreases from affinity capture to two-hybrid to
genetic interaction, as expected. At the same time, co-com-
plexed proteins are significantly enriched for almost all
methods.
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Many large-scale physical and genetic interaction mapping
experiments are biased: these experiments are concerned with
a specific subset of genes that share a common biological
function or disease phenotype. Here, the use of a generic
gold-standard positive data set is questionable, as it will tend
to underestimate the data quality. For example, as shown in
Table 5.2, there are three data sets with apparently unusually
low prediction power for co-complex membership. However,
close examination reveals that they are all biased maps
that are concerned with a subset of the interactome. These
sub-networks usually involve a specific function that is not
previously well characterized and therefore underrepresented
in the gold-standard positives, such as the proteins involved in
DNA integrity and secretion, and membrane proteins. As a
result of this bias, the quality of these data sets is significantly
underestimated by standard machine learning methods. New
methods are needed to accurately assess the quality of such
biased interactome maps.

Table 5.1
The most popular methods for mapping physical and genetic
interactions, compiled from BioGRID (40). Methods are sorted by
decreasing number of interactions deposited in BioGRID, and only
methods with more than 1,500 interactions are shown. For each
method, we compute the fold enrichment, i.e., the fraction of
co-complexed protein pairs that are detected using this method,
divided by the fraction of all protein pairs that are detected using
this method. A fold enrichment larger than 1 indicates that the
method is predictive for co-complex memberships

Method Number of interactions Fold enrichment

Affinity capture – MS 18,747 166.7

Two-hybrid 9,642 75.4

Synthetic lethality 9,019 47.9

Synthetic growth defect 5,002 18.8

Affinity capture – western 3,523 354.8

Epistatic mini-array profile 3,416 7.5

Dosage rescue 2,442 138.4

Synthetic rescue 1,605 72.7

Phenotypic enhancement 1,425 80.8

Reconstituted complex 1,327 311.7

96 Franzosa, Linghu, and Xia



Acknowledgments

Y.X. thanks Mark Gerstein for advice and support.

References

1. Uetz P, Giot L, Cagney G, Mansfield TA,
Judson RS, Knight JR, Lockshon D,
Narayan V, Srinivasan M, Pochart P,
Qureshi-Emili A, Li Y, Godwin B, Conover D,
Kalbfleisch T, Vijayadamodar G, Yang M,
Johnston M, Fields S, Rothberg JM. A
comprehensive analysis of protein-protein
interactions in Saccharomyces cerevisiae.
Nature 2000, 403(6770):623–7.

2. Ito T, Chiba T, Ozawa R, Yoshida M,
Hattori M, Sakaki Y. A comprehensive
two-hybrid analysis to explore the yeast
protein interactome. Proc Natl Acad Sci
USA 2001, 98(8):4569–74.

3. Ho Y, Gruhler A, Heilbut A, Bader GD,
Moore L, Adams SL, Millar A, Taylor P,
Bennett K, Boutilier K, Yang L, Wolting C,
Donaldson I, Schandorff S, Shewnarane J,
Vo M, Taggart J, Goudreault M, Muskat B,
Alfarano C, Dewar D, Lin Z, Michalickova K,
Willems AR, Sassi H, Nielsen PA,
Rasmussen KJ, Andersen JR, Johansen LE,
Hansen LH, Jespersen H, Podtelejnikov A,
Nielsen E, Crawford J, Poulsen V,
Sorensen BD, Matthiesen J, Hendrickson
RC, Gleeson F, Pawson T, Moran MF,
Durocher D, Mann M, Hogue CW,
Figeys D, Tyers M. Systematic identification

Table 5.2
Large-scale physical and genetic interaction data sets, compiled from BioGRID.
Data sets are sorted by decreasing number of interactions deposited in BioGRID,
and only data sets with more than 1,000 interactions are shown. For each data set,
we again compute the fold enrichment. A fold enrichment larger than 1 indicates
that the data set is predictive for co-complex memberships, if we assume no biases
in these data sets

Data set Method Number of interactions Fold enrichment

Krogan et al., 2006 (6) Affinity capture – MS 7,076 275.8

Gavin et al., 2006 (5) Affinity capture – MS 6,531 287.2

Pan et al., 2006 (41) Synthetic growth defect 4,533 0.3

Ito et al., 2001 (2) Two-hybrid 3,959 43.6

Ho et al., 2002 (3) Affinity capture – MS 3,596 82.2

Schuldiner et al., 2005 (42) Epistatic mini-array profile 3,416 7.5

Tong et al., 2004 (43) Synthetic lethality 3,411 10.7

Gavin et al., 2002 (4) Affinity capture – MS 3,210 324.8

Miller et al., 2005 (44) Two-hybrid 1,941 9.4

Predicting Protein–Protein Interactions 97



of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature
2002, 415(6868):180–3.

4. Gavin AC, Bosche M, Krause R, Grandi P,
Marzioch M, Bauer A, Schultz J, Rick JM,
Michon AM, Cruciat CM, Remor M,
Hofert C, Schelder M, Brajenovic M, Ruff-
ner H, Merino A, Klein K, Hudak M,
Dickson D, Rudi T, Gnau V, Bauch A, Bas-
tuck S, Huhse B, Leutwein C, Heurtier MA,
Copley RR, Edelmann A, Querfurth E,
Rybin V, Drewes G, Raida M, Bouwmeester T,
Bork P, Seraphin B, Kuster B, Neubauer G,
Superti-Furga G. Functional organization
of the yeast proteome by systematic analysis
of protein complexes. Nature 2002,
415(6868):141–7.

5. Gavin AC, Aloy P, Grandi P, Krause R,
Boesche M, Marzioch M, Rau C, Jensen LJ,
Bastuck S, Dumpelfeld B, Edelmann A,
Heurtier MA, Hoffman V, Hoefert C,
Klein K, Hudak M, Michon AM, Schelder M,
Schirle M, Remor M, Rudi T, Hooper S,
Bauer A, Bouwmeester T, Casari G,
Drewes G, Neubauer G, Rick JM, Kuster B,
Bork P, Russell RB, Superti-Furga G.
Proteome survey reveals modularity of the
yeast cell machinery. Nature 2006,
440(7084):631–6.

6. Krogan NJ, Cagney G, Yu H, Zhong G,
Guo X, Ignatchenko A, Li J, Pu S, Datta N,
Tikuisis AP, Punna T, Peregrin-Alvarez JM,
Shales M, Zhang X, Davey M, Robinson MD,
Paccanaro A, Bray JE, Sheung A, Beattie B,
Richards DP, Canadien V, Lalev A, Mena F,
Wong P, Starostine A, Canete MM,
Vlasblom J, Wu S, Orsi C, Collins SR, Chan-
dran S, Haw R, Rilstone JJ, Gandi K,
Thompson NJ, Musso G, St Onge P,
Ghanny S, Lam MH, Butland G, Altaf-Ul
AM, Kanaya S, Shilatifard A, O’Shea E,
Weissman JS, Ingles CJ, Hughes TR, Par-
kinson J, Gerstein M, Wodak SJ, Emili A,
Greenblatt JF. Global landscape of protein
complexes in the yeast Saccharomyces cere-
visiae. Nature 2006, 440(7084):637–43.

7. Li S, Armstrong CM, Bertin N, Ge H,
Milstein S, Boxem M, Vidalain PO, Han JD,
Chesneau A, Hao T, Goldberg DS, Li N,
Martinez M, Rual JF, Lamesch P, Xu L,
Tewari M, Wong SL, Zhang LV, Berriz GF,
Jacotot L, Vaglio P, Reboul J, Hirozane-
Kishikawa T, Li Q, Gabel HW, Elewa A,
Baumgartner B, Rose DJ, Yu H, Bosak S,
Sequerra R, Fraser A, Mango SE, Saxton
WM, Strome S, Van Den Heuvel S, Piano F,
Vandenhaute J, Sardet C, Gerstein M,
Doucette-Stamm L, Gunsalus KC, Harper JW,
Cusick ME, Roth FP, Hill DE, Vidal M. A

map of the interactome network of the
metazoan C. elegans. Science 2004,
303(5657):540–3.

8. Rual JF, Venkatesan K, Hao T, Hirozane-
Kishikawa T, Dricot A, Li N, Berriz GF,
Gibbons FD, Dreze M, Ayivi-Guedehoussou
N, Klitgord N, Simon C, Boxem M, Milstein
S, Rosenberg J, Goldberg DS, Zhang LV,
Wong SL, Franklin G, Li S, Albala JS, Lim J,
Fraughton C, Llamosas E, Cevik S, Bex C,
Lamesch P, Sikorski RS, Vandenhaute J,
Zoghbi HY, Smolyar A, Bosak S, Sequerra R,
Doucette-Stamm L, Cusick ME, Hill DE,
Roth FP, Vidal M. Towards a proteome-scale
map of the human protein-protein interaction
network. Nature 2005, 437(7062):1173–8.

9. Jeong H, Tombor B, Albert R, Oltvai ZN,
Barabasi AL. The large-scale organization
of metabolic networks. Nature 2000,
407(6804):651–4.

10. Fraser HB, Hirsh AE, Steinmetz LM,
Scharfe C, Feldman MW. Evolutionary rate
in the protein interaction network. Science
2002, 296(5568):750–2.

11. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N,
Chklovskii D, Alon U. Network motifs:
Simple building blocks of complex networks.
Science 2002, 298(5594):824–7.

12. Han JD, Dupuy D, Bertin N, Cusick ME, Vidal
M. Effect of sampling on topology predictions
of protein-protein interaction networks. Nat
Biotechnol 2005, 23(7):839–44.

13. Marcotte EM, Pellegrini M, Thompson MJ,
Yeates TO, Eisenberg D. A combined algo-
rithm for genome-wide prediction of protein
function. Nature 1999, 402(6757):83–6.

14. Jansen R, Yu H, Greenbaum D, Kluger Y,
Krogan NJ, Chung S, Emili A, Snyder M,
Greenblatt JF, Gerstein M. A Bayesian
networks approach for predicting protein-
protein interactions from genomic data.
Science 2003, 302(5644):449–53.

15. Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein
M. Assessing the limits of genomic data
integration for predicting protein networks.
Genome Res 2005, 15(7):945–53.

16. Mewes HW, Heumann K, Kaps A, Mayer K,
Pfeiffer F, Stocker S, Frishman D. MIPS: A
database for genomes and protein sequences.
Nucleic Acids Res 1999, 27(1):44–8.

17. Jansen R, Gerstein M. Analyzing protein
function on a genomic scale: The importance
of gold-standard positives and negatives for
network prediction. Curr Opin Microbiol
2004, 7(5):535–45.

18. Xia Y, Lu LJ, Gerstein M. Integrated
prediction of the helical membrane protein

98 Franzosa, Linghu, and Xia



interactome in yeast. J Mol Biol 2006,
357(1):339–49.

19. Ben-Hur A, Noble WS. Choosing negative
examples for the prediction of protein-protein
interactions. BMC Bioinformatics 2006,
7(Suppl 1):S2.

20. Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y,
Han JD, Bertin N, Chung S, Vidal M,
Gerstein M. Annotation transfer between
genomes: Protein-protein interologs and
protein-DNA regulogs. Genome Res 2004,
14(6):1107–18.

21. Pellegrini M, Marcotte EM, Thompson MJ,
Eisenberg D, Yeates TO. Assigning protein
functions by comparative genome analysis:
protein phylogenetic profiles. Proc Natl
Acad Sci USA 1999, 96(8):4285–8.

22. Tamames J, Casari G, Ouzounis C, Valencia
A. Conserved clusters of functionally related
genes in two bacterial genomes. J Mol Evol
1997, 44(1):66–73.

23. Goh CS, Cohen FE. Co-evolutionary analysis
reveals insights into protein-protein interac-
tions. J Mol Biol 2002, 324(1):177–92.

24. Bowers PM, Pellegrini M, Thompson MJ,
Fierro J, Yeates TO, Eisenberg D. Prolinks:
A database of protein functional linkages
derived from coevolution. Genome Biol
2004, 5(5):R35.

25. Marcotte EM, Pellegrini M, Ng HL, Rice
DW, Yeates TO, Eisenberg D. Detecting
protein function and protein-protein inter-
actions from genome sequences. Science
1999, 285(5428):751–3.

26. Enright AJ, Iliopoulos I, Kyrpides NC,
Ouzounis CA. Protein interaction maps for
complete genomes based on gene fusion
events. Nature 1999, 402(6757):86–90.

27. Ge H, Liu Z, Church GM, Vidal M. Corre-
lation between transcriptome and interactome
mapping data from Saccharomyces cerevisiae.
Nat Genet 2001, 29(4):482–6.

28. Jansen R, Greenbaum D, Gerstein M.
Relating whole-genome expression data
with protein-protein interactions. Genome
Res 2002, 12(1):37–46.

29. Yu H, Luscombe NM, Qian J, Gerstein M.
Genomic analysis of gene expression
relationships in transcriptional regulatory
networks. Trends Genet 2003, 19(8):422–7.

30. Yu H, Greenbaum D, Xin Lu H, Zhu X,
Gerstein M. Genomic analysis of essentiality
within protein networks. Trends Genet
2004, 20(6):227–31.

31. Lu L, Arakaki AK, Lu H, Skolnick J.
Multimeric threading-based prediction of
protein-protein interactions on a genomic

scale: Application to the Saccharomyces
cerevisiae proteome. Genome Res 2003,
13(6A):1146–54.

32. Ng AY, Jordan MI. On discriminative vs.
generative classifiers: A comparison of logistic
regression and Naive Bayes. Adv Neural
Inform Process Syst 2002, 2(14):841–8.

33. Zhang T. Statistical behavior and consistency
of classification methods based on convex risk
minimization. Ann Statist 2004, 32(1):56–85.

34. Ben-Hur A, Noble WS. Kernel methods for
predicting protein-protein interactions.
Bioinformatics 2005, 21(Suppl 1):i38–46.

35. Kondor RI, Lafferty JD. Diffusion kernels
on graphs and other discrete input spaces.
In: Proc 19th International Conf on
Machine Learning. Morgan Kaufmann
Publishers Inc., 2002, pp. 315–22.

36. Rives AW, Galitski T. Modular organization
of cellular networks. Proc Natl Acad Sci
USA 2003, 100(3):1128–33.

37. Lanckriet GR, De Bie T, Cristianini N, Jordan
MI, Noble WS. A statistical framework for
genomic data fusion. Bioinformatics 2004,
20(16):2626–35.

38. Ye P, Peyser BD, Pan X, Boeke JD, Spencer
FA, Bader JS. Gene function prediction
from congruent synthetic lethal interactions
in yeast. Mol Syst Biol 2005, 1:2005.0026.

39. Lin N, Wu B, Jansen R, Gerstein M, Zhao H.
Information assessment on predicting protein-
protein interactions. BMC Bioinformatics
2004, 5:154.

40. Stark C, Breitkreutz BJ, Reguly T, Boucher
L, Breitkreutz A, Tyers M. BioGRID: A
general repository for interaction datasets.
Nucleic Acids Res 2006, 34(Database
issue):D535–9.

41. Pan X, Ye P, Yuan DS, Wang X, Bader JS,
Boeke JD. A DNA integrity network in the
yeast Saccharomyces cerevisiae. Cell 2006,
124(5):1069–81.

42. Schuldiner M, Collins SR, Thompson NJ,
Denic V, Bhamidipati A, Punna T, Ihmels J,
Andrews B, Boone C, Greenblatt JF,
Weissman JS, Krogan NJ. Exploration of
the function and organization of the
yeast early secretory pathway through an
epistatic miniarray profile. Cell 2005,
123(3):507–19.

43. Tong AH, Lesage G, Bader GD, Ding H,
Xu H, Xin X, Young J, Berriz GF, Brost RL,
Chang M, Chen Y, Cheng X, Chua G,
Friesen H, Goldberg DS, Haynes J,
Humphries C, He G, Hussein S, Ke L,
Krogan N, Li Z, Levinson JN, Lu H,
Menard P, Munyana C, Parsons AB,

Predicting Protein–Protein Interactions 99



Ryan O, Tonikian R, Roberts T,
Sdicu AM, Shapiro J, Sheikh B, Suter B,
Wong SL, Zhang LV, Zhu H, Burd CG,
Munro S, Sander C, Rine J, Greenblatt J,
Peter M, Bretscher A, Bell G, Roth FP,
Brown GW, Andrews B, Bussey H,
Boone C. Global mapping of the yeast

genetic interaction network. Science
2004, 303(5659):808–13.

44. Miller JP, Lo RS, Ben-Hur A, Desmarais C,
Stagljar I, Noble WS, Fields S. Large-scale
identification of yeast integral membrane
protein interactions. Proc Natl Acad Sci
USA 2005, 102(34):12123–8.

100 Franzosa, Linghu, and Xia



Chapter 6

Prediction and Integration of Regulatory
and Protein–Protein Interactions

Duangdao Wichadakul, Jason McDermott, and Ram Samudrala

Abstract

Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and
systems biology in any organism. While several results from genome-wide analysis of transcriptional regulatory
networks are available, they are limited to model organisms such as yeast (1) and worm (2). Beyond these
networks, experiments on TRIs study only individual genes and proteins of specific interest. In this chapter, we
present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse (3).
We describe how to compile and handle various formats and identifiers of data sets from different sources and
how to predict TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets
include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein
subcellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a
large number of organisms. The integration of experimentally verified and predicted TRIs with other known
protein–protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological
dynamics of an integrated network with gene expression under different conditions, essential for exploring
functional genomics and systems biology.

Key words: Regulog, interolog, protein–DNA interaction prediction, transcriptional regulatory
interaction (TRI) prediction, protein–protein interaction (PPI) prediction, homology-based
approach, transferability of homologs.

1. Introduction

Transcriptional regulation controls the production of functional
gene products essential for determining cell structure and func-
tion. It controls the amount of gene product and replenishment of
degraded protein. This is fundamental for the differentiation,
morphogenesis, versatility, and adaptability of the cell. Expanding
the knowledge of gene regulation and understanding how it
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relates to protein–protein interactions and gene expression pro-
vides insight into gene function and the mapping from genotypes
to phenotypes. This knowledge is fundamental for advancing
the design and development of biotechnology and medical
treatments.

Though there have been several genome-wide studies of
transcriptional regulatory networks, they have been focused on
only a few model organisms (1, 4–7). Aside from those formed
by genome-wide studies, only networks comprising small, specific,
well-studied pathways are available (8–10). Based on publicly
accessible databases of genome-wide transcriptional data and
regulatory interactions with experimental verification (9, 11–13),
several computational studies have reported the building of
transcriptional regulatory networks (14–19), based upon the
prediction of binding sequences of DNA and binding sites of
transcription factors (20–26).

Among these approaches, the transferability of biological
functions between homologous genes, originally proposed by Yu
et al. (27), has been widely studied and deployed (3, 27–35). Thus,
this chapter explores the transferability of protein–DNA interac-
tions between organisms, or regulogs. This approach presumes
that similarities in the sequence and structure of gene products
suggest similar function.

We predict TRIs for an organism based on the transfer-
ability of similar interactions from other source organisms (see
Fig. 6.1). In other words, we try to map the available TRIs in
a source organism onto the target organism to find similar
interactions.

The similarities of a predicted TRI (ITFx0!TFTy0) transferred
from a source organism is defined as the geometric mean (the
square root) of sequence similarities between (1) a transcription
factor of an interaction in a source organism (TF) and its ortholog
(Note 1) in a target organism (TF0) defined as ITF-TFx0, and (2) a
sequence of transcription factor target in the source organism
(TFT) and its ortholog in the target organism (TFT0) defined as
ITFT-TFTy0. To map a TRI from a source organism onto a target
organism, the interaction in the target organism needs to satisfy
the following three conditions (27):
i) TF and TF0 are orthologs.

ii) TFT and TFT0 are orthologs.

iii) The binding sites and binding sequences of TF appear in the
upstream region of the TFT0.
Corresponding to the above conditions, if a TF regulating a

TFT in a source organism has orthologs TF0 and TFT0 in a target
organism, the pair of the interactions TF ! TFT and TF0!
TFT0 are called regulogs (Note 2) (see Fig. 6.1). We can
improve the accuracy and coverage of the resulting predictions
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by filtering out false-positive predictions using other data
sources such as gene expression in differing cell cycle stages,
protein localization, and membership in protein families. We
have used these methods to predict regulogs for all 54 organisms
in the Bioverse (3).

The major procedures involved in the prediction and integra-
tion of regulatory protein–DNA and protein–protein interactions
include: (1) the preparation of essential data sets, including source
experimental TRIs, binding sites and binding sequences of the
experimentally verified transcription factors, the upstream regions
of genes in target organisms, and name mapping between different
identification systems; (2) the preparation of additional data sets,
such as protein localization and assignment to protein families, for
filtering and improving the accuracy of the predictions; (3) the
determination of similarity between two protein sequences;
(4) the prediction of the TRIs; and (5) the benchmarking of the
prediction (see Fig. 6.2).

Fig. 6.1. Homology-based transcriptional regulatory interaction prediction.
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While we present these steps in the context of TRI prediction,
the methods and problems of data preparation are common
steps in a large number of bioinformatics processes, especially in
large-scale systems covering the genomes of multiple organisms.
Specifically, the name mapping problem is ubiquitous; it makes all
bioinformatics of this type difficult and decreases the coverage and
certainty of predictions.

2. Methods

2.1. Preparing

Data Sets
As homology-based approaches exploit the transferability of
TRIs available in a source organism onto a target organism, the
gathering of available interactions from different source organisms
is the first essential step. This step is complicated as multiple
sources provide different sets of non-comprehensive interactions
for specific organisms, with varied data formats. The collection of
data from several different sources, however, is essential for
expanding the coverage of source TRIs for the prediction and
construction of a gold-standard test set for the benchmarking.
Table 6.1 summarizes the sources of our experimental TRIs.

2.1.1. Source Experimental

TRIs, Binding Sites, and

Binding Sequences

Source experimental TRIs, binding sites, and binding sequences
were compiled from two main sources: (1) public databases
TRANSFAC1 7.0 (12), SCPD (36), BIND (37, 38), WormBase
(39) via WormMart (40), RegulonDB (13), and DBTBS (11),

Fig. 6.2. Major steps in the prediction of transcriptional regulatory interactions.
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and (2) supplemental data from experimentally determined TRIs
described in the literature (1). As methods for gathering and
transforming experimental TRIs, binding sites, and binding
sequences into a unified format vary among different sources
(Notes 3, 4, 5), we describe each of them in the following
sections. To extend the compiled TRIs for the same organism
from different sources, see Note 6.

2.1.1.1. TRANSFAC1 TRANFAC1 (12) is a database of transcription factors, their
genomic binding sites, and DNA-binding profiles for eukaryotes.
This database has two versions: (1) TRANSFAC1 Professional,
allowing bulk data downloads, and (2) TRANSFAC1 Public
Database, for online query only. We describe how to compile the
experimental TRIs for each eukaryote in the Bioverse from the
TRANSFAC1 public database.

1. Go to the main searching page found at http://www.gene-
regulation.com/cgi-bin/pub/databases/transfac/search.cgi,
select ‘‘Factor’’ as the table to search.

Table 6.1
Sources of experimental TRIs for source organisms

Source experimental TRIs Source organisms Description

TRANSFAC1 (1)
(þ binding sites and
binding sequences)

S. cerevisiae,
H. sapiens,
M. musculus,
R. norvegicus,
D. melanogaster,
C. elegans,
A. thaliana,
O. sativa

A database of eukaryotic transcription factors,
genomic binding sites, and DNA-binding
profiles

SCPD (36) (þbinding
sequences)

S. cerevisiae The promoter database of S. cerevisiae

BIND (37, 38) H. sapiens The biomolecular interaction network
database

WormBase (39, 40) C. elegans A database for genomics and biology of
C. elegans

RegulonDB (13) E. coli A database of Escherichia coli K-12
transcriptional regulatory network, operon
organization, and growth conditions

DBTBS (11)
(+ binding sites

and binding sequences)

B. subtilis A database of transcriptional regulation
in B.subtilis

Supplemental data from
literature (1)

S. cerevisiae Transcriptional regulatory networks in
S. cerevisiae
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2. On the page ‘‘searching in table Factor,’’ select ‘‘Organism
Species (OS)’’ as the table field to search, and specify a specific
organism name (e.g., Saccharomyces cerevisiae, Homo sapiens)
as the search item. Set the limit of hits per page to the highest
available (100), and then submit the search request. Save
the results and edit them to contain only a list of accession
numbers (one per line). These accession numbers correspond
to transcription factors of the specified species.

3. Use our Python script:run_queryWeb to query detailed
information about each transcription factor listed in the
results. The Python script programmatically specifies a
CGI search for a specific transcription factor, retrieves
the search result, and writes it into a new file with a
name matching the accession number. Following this,
use the script: run_extractInfoFrom TRANSFACTFHtml-
Files to extract the transcription factors and their (1)
target genes, (2) binding sites, and (3) synonyms, into
three separate files. To extract the binding sites to binding
sequences, use script: run_extractBindingSeq.

2.1.1.2. SCPD SCPD (36) is a database of promoters found within the S. cerevisiae
genome. This database contains experimentally mapped transcrip-
tion factor binding sites and transcription start sites as main entries.
We manually compile the experimental TRIs from SCPD, using the
following steps:

1. Go to http://rulai.cshl.edu/cgi-bin/SCPD/getfactorlist,
click on the link for each transcription factor (e.g., ACE1,
ADR1), and the corresponding page will appear.

2. Click on ‘‘Get regulated genes’’ button, and a list of genes
regulated by the transcription factor will appear. Click on each
of the regulated gene, a new window will appear. Save this
window into a local file with the name of the regulated gene.
Make this local file under a directory named by the transcrip-
tion factor.

3. Make a name list of the transcription factors as an input for the
script: run_parseSCPDToGetTRIs. Use this script to extract
the source experimental TRIs for S. cerevisiae from SCPD into
a file. Append this file to the source experimental TRIs of
S. cerevisiae from other sources.

2.1.1.3. BIND BIND (37, 38) is a database of biomolecular interactions, reac-
tions, complexes, and pathway information. This database includes
imported experimental TRIs from published research. BIND now
becomes a component database of BOND (Biomolecular Object
Network Databank). In addition to TRANSFAC1, we compile
the experimental TRIs of H. sapiens described in (41–43) from
BIND, using the following steps:
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1. Go to BOND (Note 7) http://bond.unleashedinformatics.
com/Action? and register for a free account. Log in to
BOND after getting the account. A BOND search page will
appear.

2. Click on the ‘‘Identifier search’’, a new window will appear.
Select ‘‘PubMed Id’’ as the identifier from the list box on the
left, and input the PubMed identifiers (PMIDs, Note 8) of
the papers (41–43) one at a time into the text input on the
right. Then, click on the ‘‘Search’’ button. A search result
window will appear.

3. Click on the ‘‘Interactions’’ tab, a new window will appear.
On the ‘‘Export Results:’’ list box, select ‘‘Cytoscape SIF’’, a
pop-up window for saving the exported result will appear.
Save file into a local directory, edit it to have the format
ready for use by the system. Append this file to the source
experimental TRIs of human from other sources.

2.1.1.4. WormBase WormBase (39, 40) is a database of genomics and biology of
Caenorhabditis elegans and related nematodes. We compile the
experimental TRIs of C. elegans from the database using the
following steps:

1. Go to http://www.wormbase.org/ and select a tab ‘‘Worm
Mart’’ at the top of the page. A martview window will appear.

2. In this window, select the latest release of WormBase (i.e.,
‘‘WormBase Release WS198’’) for the ‘‘Version:’’ list box, select
‘‘Gene’’ for the ‘‘Dataset:’’ list box, and click on the ‘‘next’’
button. A window for filtering the queried data set will appear.

3. Under the ‘‘Identification’’ section on this window, check box
‘‘[Gene] Species’’ and select ‘‘Caenorhabditis elegans’’ in the list
box, which corresponds to the check box. Also, check box
‘‘[Gene] Status,’’ and select ‘‘Live’’ in its corresponding list box.

4. Under the ‘‘Annotation’’ section, check box ‘‘Limit to Entries
Annotated with:,’’ select ‘‘[Function] Trans. Regulator Gene’’
and ‘‘Only’’ in the corresponding list box, and radio box, respec-
tively. Leave all other boxes as defaults. Click on the ‘‘next’’
button. A new page for formatting the output will appear.

5. Under the ‘‘IDs’’ section, uncheck boxes ‘‘Gene WB ID’’ and
‘‘Gene Public Name’’. Under the ‘‘Gene Regulation’’ section,
check boxes ‘‘Regulator Gene (Public Name)’’ and ‘‘Regulated
Gene (Public Name).’’ Under the ‘‘Select the output format:’’
section, check radio box ‘‘Text, tab separated.’’ Under the ‘‘File
compression:’’ section, check the radio box ‘‘gzip (.gz).’’
Under the ‘‘Enter a name for this result set:’’ section, enter a
file name for the exported result. Leave all other boxes as
defaults. Click on the ‘‘export’’ button. Save the exported file
to a local directory.
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6. Use the script: run_parseWormBaseToGetTRIs to extract the
source experimental TRIs for C. elegans into a file. Append
this file to the source experimental TRIs of C. elegans from
other sources.

2.1.1.5. RegulonDB RegulonDB (13) is database of the regulatory network and operon
organization of Escherichia coli K-12. It is one of the two public
databases of prokaryotes from which we compile source experi-
mental TRIs. To compile experimental TRIs from RegulonDB,
use the following steps:

1. Go to http://regulondb.ccg.unam.mx/, follow the tab
‘‘Downloads’’ and click on the ‘‘Data Sets’’ item.

2. On the page ‘‘Downloadable DataSets,’’ save ‘‘File 1. TF – gene
interactions’’ (for experimental TRIs) and ‘‘TF binding sites’’
files (for binding sites and sequences) into a local directory. Edit
these two files to have the same format as of the files generated
for TRANSFAC.

2.1.1.6. DBTBS DBTBS (11) is a database of transcriptional regulation of Bacillus
subtilis. It is the other public database of prokaryotes used in this
study. This database provides online access, but does not allow
bulk download or programmatic search via CGI interface. To get
the experimental TRIs of B. subtilis, we contacted the authors of
(11) and asked for the experimental TRIs. The authors kindly gave
us the requested data set in XML format. We wrote two scripts:
run_extractDBTBSForTFsAndBS and run_extractDBTBSForTRIs
that call our Python codes to parse and extract the (1) TRIs,
(2) binding sites, and (3) binding sequences from this XML file,
and write them to the experimental TRIs, binding sites, and binding
sequence files, respectively.

2.1.2. Upstream Regions Upstream regions of transcription factor target genes were
compiled from (1) SGD (44) for S. cerevisiae, (2) UCSC (45) for
H. sapiens (46), Mus musculus (47), Rattus norvegicus (48), and
Drosophila melanogaster (49), (3) WormBase (39) for C. elegans
(50), (4) TAIR (51) for Arabidopsis thaliana (52–55), (5) TIGR
Rice Genome Annotation database (56) for Oryza sativa (57),
and (6) NCBI for all prokaryotes, including E. coli, B. subtilis,
etc. As methods for gathering and extracting the upstream regions
and transforming them into a unified format vary among sources
(Notes 9, 10), we describe these methods as follows.

2.1.2.1. SGD

for S. cerevisiae

1. Go to http://www.yeastgenome.org/ (44).

2. On the left side of this main page, in section ‘‘Download
Data,’’ select ‘‘FTP.’’ A list of a directory in a new page will
appear. From here, go into the ‘‘sequence’’ directory, then
‘‘genomic_sequence’’ directory, and then the ‘‘orf_dna’’
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directory. Copy the file orf_genomic_1000_all.FASTA.gz
into a local directory. This file contains ORF sequences with
introns, untranslated regions 1,000 bp upstream of the initial
ATG and 1,000 bp downstream of the stop codon.

3. Use our code script: run_extractUpstreamRegions_1000 bp_
saccharomyces_cerevisiae to parse and extract the saved file
into a mapping file between the ORFs and their correspond-
ing upstream regions.

See (Note 11) for an alternative way to get the upstream
regions for S. cerevisiae.

2.1.2.2. UCSC Genome

Browser for H. sapiens,

M. musculus,

R. norvegicus,

and D. melanogaster

1. Go to http://hgdownload.cse.ucsc.edu/downloads.html (45).

2. In the box ‘‘Sequence and Annotation Downloads,’’ search
for a specific organism. Select ‘‘Human,’’ for instance. This
jumps to the ‘‘Human Genome’’ box. In the box ‘‘Human
Genome,’’ select ‘‘Full data set,’’ which leads to a directory
page containing a list of finished human genome assemblies
with their descriptions.

3. Click on the upstream<xxx>.zip to download the files. These
files are zipped and are in FASTA format, with each upstream
sequence associated with an identifier system that is specific to
an organism (i.e., NM_xxxx RefSeq in case of human, mouse,
and rat, and FlyBase symbol in case of fly). The detailed
descriptions of these upstream files are described on the same
page. Basically, xxx in the name of an upstream region file
stands for 1,000, 2,000, and 5,000 to represent the number
of bases of each upstream region in each file (Note 12).

4. After downloading these files, use script: run_extract_
NP_NM_homo_sapiens to parse and extract the mapping
between NCBI GenBank identifiers (GIs) of human proteins
to their corresponding RefSeq identifiers and use run_extract
UpstreamRegions_<xxx>bp_homo_sapiens to generate a
mapping file from GIs to upstream regions ready for use by
the system.

5. Repeat Steps 1–4 for ‘‘Mouse’’ and ‘‘Rat.’’

6. Use script: run_extractUpstreamRegions_<xxx>bp_drosophila_
melanogaster to extract the upstream region file of Drosophila into
a mapping file between FlyBase symbols and their corresponding
upstream regions.

See Note 13 for an alternative way to get the upstream regions
for H. sapiens.

2.1.2.3. WormBase

for C. elegans

1. Go to http://www.wormbase.org/db/searches/advanced/
dumper (39).

2. In the ‘‘1. Input Options’’ box, type in ‘‘I II III IV V X XX
XO.’’ These correspond to the chromosomes of C. elegans. In
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the ‘‘2. Select one feature to retrieve,’’ click on ‘‘5 UTRs.’’ In
the ‘‘3. Output options,’’ check box ‘‘flanking sequences
only,’’ specify the flanking sequence lengths (i.e., 1,000 bp
50 flank, 0 bp 30 flank), leave the coordinates relative to
‘‘Chromosome,’’ select the sequence orientation as ‘‘Always
on canonical strand,’’ select the output format ‘‘Save to disk
(Plain TEXT),’’ then click ‘‘DUMP’’ button. The saved file is
in FASTA format in which each upstream region is associated
with a sequence name (gene model) and genetic nomencla-
ture for C. elegans.

3. Use script: run_extractUpstreamRegions_1000 bp_caenor
habditis_elegans to parse, extract, and transform the saved
file into a mapping file from GIs to upstream regions ready for
use by the system.

2.1.2.4. TAIR for A. thaliana 1. Go to ftp://ftp.arabidopsis.org/home/tair/Sequences/
blast_datasets/ (51).

2. Save files TAIR_upstream_xxx_yyyymmdd, where xxx repre-
sents the number of base pairs, and yyyymmdd represents
the date the files are generated. These files are in FASTA
format, with each upstream sequence associated with an
Arabidopsis Genome Initiative locus identifier (AGI ID)
(e.g., At1g01120).

3. Use script: run_extractUpstreamRegions_1000 bp_arabidopsis_
thaliana to parse, extract, and transform the saved files into a
mapping file from AGI IDs to their corresponding upstream
regions.

2.1.2.5. TIGR for O. sativa 1. Go to ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/
o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory ‘‘version_x.x,’’ where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory ‘‘all_chrs.’’
Under this directory, save file ‘‘all.1kUpstream’’ into a local
directory (Note 14).

2. Use our script: run_extractUpstreamRegions_1000 bp_TIGRRice
to parse, extract, and transform the saved file into a mapping
file from TIGR_LOCUS IDs (e.g. LOC_Os01g01030.1) to
their corresponding upstream regions.

2.1.2.6. NCBI for

Prokaryotes

1. For E. coli K-12, go to ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria, and enter the ‘‘Escherichia_coli_K12’’ directory.

2. Save files ‘‘xxx.fna’’ and ‘‘xxx.ptt’’ into<organism>_Genome.fna
and <organism>_ProteinMap.ptt, respectively, where file with
fna extension contains complete genome sequence, and file
with ptt extension contains locations, the start and stop positions,
for each gene on the genome sequence. For genomes that
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have only sequences for chromosomes such as Plasmodium
falciparum, save ‘‘xxx.fna’’ and ‘‘xxx.ptt’’ into <organism>_
chr<n>.fna and <organism>_chr<n>_ProteinMap.ptt,
respectively.

3. Repeat Steps 1 and 2 for all bacteria and other prokaryotes.

4. Use script: run_extractGIsToUpstreamRegionsFromGenome
SeqAnd ProteinMap to parse, extract, and transform the saved
files into a mapping file from GIs to upstream regions for the
organisms.

2.1.3. Name Mapping Name mapping is another essential part of data preparation. Data
sets such as transcription factors and transcription factor targets in
the experimental TRIs and the upstream regions of gene sequences
from several sources are associated with their own identifiers (e.g.,
common names of TFs and TFTs in TRANSFAC1, ORFs from
SGD, GenBank Identifiers at NCBI (GIs), gene IDs from Entrez
Gene, WormBase IDs, FlyBase symbols, and AGI IDs for worm,
fly, and Arabidopsis, and Refseq for upstream regions). Therefore,
we map these identifiers to protein identifiers in the Bioverse
(Note 15) for the prediction of protein–DNA interactions and
the integration of protein–DNA and protein–protein interaction
networks. In the following text we describe various name map-
pings required by the system.

2.1.3.1. Name Mapping

from TFs, TFTs to Protein

IDs in the Bioverse

To integrate the regulatory and protein–protein interactions,
the TFs and TFTs from source experimental TRIs described in
Section 2.1.1 map to protein IDs in the Bioverse. While the
Bioverse provides an ID-mapping file consisting of different ID
systems (i.e., GIs from NCBI, ORFs from SGD, AGI IDs from
TAIR) to protein IDs in the Bioverse, what we mainly have for the
TFs and TFTs from source experimental TRIs are their common
names. Hence, we establish an intermediate mapping that links
these common names to protein IDs in the Bioverse (Notes 16, 17).
The building process of an intermediate mapping file varies
according to the ID system that will be used as the intermediate.
We describe how to handle name mapping from the common
names of TFs and TFTs in source experimental TRIs to protein
IDs in the Bioverse, according to the formats for respective
organisms.

Saccharomyces cerevisiae

1. Go to http://www.yeastgenome.org/gene_list.shtml (44).

2. Save file SGD_features.tab into a local directory.

3. Use script: run_extractNameMappingFromSGD to extract
SGD_features.tab into a mapping file between the systematic
ORF names and their common names.
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Prokaryotes and Other Eukaryotes

1. Go to http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=
gene, on the left side, click on ‘‘Downloads (FTP).’’ A new page
of directories will appear. Go into directory ‘‘DATA’’ and save the
files gene2refseq.gz and gene_info.gz into a local directory.

2. Use scripts:run_extract_gi_to_gene_id and run_extract_
gene _id_to_names to extract the gene2refseq and gene_info,
respectively, and then use run_buildGIToNames to generate
a mapping file from GIs to names for the organisms listed as
an input of the script. For eukaryotes, we can improve the GI
to name mapping with additional synonyms extracted from
TRANSFAC1.

Homo sapiens

Human genes do not have well-defined gene names as do genes in
organisms such as yeast (Note 18). As the ID-mapping file for
human in the Bioverse largely contains GI records, we decided to
use GIs as intermediate ID mapping from a common name to a
protein ID in the Bioverse. The original mapping file from GIs to
common names is generated from gene2refseq and gene_info in
Entrez Gene as described above. To refine the name mapping file,
we combine synonyms (aliases) from additional sources such as
TRANSFAC, HUGO (58), and OMIM (59), using methods
listed as follows (Note 19).

l Method to compile and extract synonyms from TRANSFAC1

The synonyms of transcription factors are a part of the source
TRIs compiled from TRANSFAC1. Hence, we do not need a separate
compilation. As the script: run_extractInfoFromTRANSFACTF
HtmlFiles_homo_sapiens also extracts the synonyms for each human
transcription factor, we only need to combine the resulting file to the
original GI-to-name mapping file from Entrez Gene using the script:
run_addSynonyms.

l Method to compile and extract synonyms from HUGO Gene
Nomenclature Committee (HGNC)

We compile and extract synonyms from HGNC using the
following steps:

� Go to http://www.genenames.org/ and click on the
‘‘Downloads’’ button at the top. The new page of data-
base downloads will appear. Click on ‘‘Custom Down-
load’’ listed in a box at the top of the page. A ‘‘Custom
Downloads’’ page will appear.

� Check boxes: ‘‘Approved Symbol,’’ ‘‘Approved Name,’’
‘‘Previous Symbols,’’ ‘‘Previous Names,’’ and ‘‘Aliases.’’
Check boxes ‘‘Approved’’ for the select status, and ‘‘Select
all Chromosomes.’’ Scroll down and select the ‘‘ORDER
BY’’ to change to the ‘‘Approved Symbol,’’ and the
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‘‘Output format’’ to be ‘‘Text.’’ Then, click the ‘‘submit’’
button. The result of the customized query will pop up in
a new window. Save the result into a local file.

� Use script: run_extracHumanGeneSynonymsFrom-
HUGO. This script extracts approved symbols, approved
names, previous symbols, previous names, and aliases from
all approved human genes into a file that will be used by
script: run_addSynonyms to combine these names into the
human GI-to-name mapping file.

l Method to compile and extract synonyms from OMIM
� Go to http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db=OMIM. On the left side, under the FAQ section,
click ‘‘Download.’’ A new OMIM FAQs page will appear.
Under ‘‘Downloading OMIM’’ section in item 1, click on
‘‘omim.txt.Z’’ to download the complete text of OMIM
and save it into a local directory.

� Use script: run_extracHumanGeneSynonysFromOMIM
to extract the gene_ symbols and their synonyms from
file omim.txt and write these extracted names into an
output file. The script: run_addSynonyms combines
these names into the human GI-to- name mapping file.

Caenorhabditis elegans

To extend the mapping from GIs to names for C. elegans generated
by run_buildGIToNames, we compile gene aliases of C. elegans
from WormBase via WormMart using the following steps:

1. Go to http://www.wormbase.org/and select a tab ‘‘WormMart’’
at the top of the page. A martview window will appear.

2. In this window, select the latest release of WormBase (i.e.,
‘‘WormBase Release WS198’’) for the ‘‘Version:’’ list box, select
‘‘Gene’’ for the ‘‘Dataset:’’ list box, and click on the ‘‘next’’
button. A window for filtering the queried data set will appear.

3. Under the ‘‘Identification’’ section on this window, check box
‘‘[Gene] Species’’ and select ‘‘Caenorhabditis elegans’’ in the
list box, which corresponds to the check box. Also, check box
‘‘[Gene] Status,’’ and select ‘‘Live’’ in its corresponding list
box. Leave all other boxes as defaults. Click on the ‘‘next’’
button. A new page for formatting the output will appear.

4. Under the ‘‘IDs’’ section, check box ‘‘Gene Names (merged).’’
Under the ‘‘Proteins’’ section, check box ‘‘NCBI Protein GI.’’
Under the ‘‘Select the output format:’’ section, check radio box
‘‘Text, tab separated.’’ Under the ‘‘File compression:’’ section,
check the radio box ‘‘gzip (.gz).’’ Under the ‘‘Enter a name for
this result set:’’ section, enter a file name for the exported
result. Leave all other boxes as defaults. Click on the ‘‘export’’
button. Save the exported file to a local directory.
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5. Use the script: run_addSynonymsForC_elegans to append
these aliases into the available name mapping file for C. elegans.

Arabidopsis Thaliana

1. Go to ftp://ftp.arabidopsis.org/home/tair/Genes/.

2. Save file gene_aliases.20080716 into a local directory. This
file contains the mapping from AGI IDs to gene aliases in the
format ‘‘AGI ID name1 name2’’ which is ready for use by the
system.

Oryza Sativa

The ID name mapping file provided by the Bioverse for O. sativa
does not include any intermediate ID that could be linked to
the common names of transcription factors and their targets in
the source experimental TRIs of rice, so we use the following steps
to build a mapping file from the common names of rice proteins to
the protein IDs in the Bioverse.

1. Go to ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/
o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory ‘‘version_x.x,’’ where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory ‘‘all_chrs.’’
Under this directory, save file ‘‘all.pep’’ into a local directory.

2. Perform BLASTP from rice protein sequences retrieved from
the Bioverse to protein sequences in all.pep using script: run_
blastp_bioverse_<rice species>_to_TIGR-rice, where rice
species could be ‘‘oryza_sativa_japonica_fl,’’ ‘‘oryza_sativa_
japonica_syngenta,’’ and ‘‘oryza_sativa_indica_9311.’’

3. Use scripts: run_extractBLASTPSimilarity and run_extract
TIGRLOCUSTo BioverseId to extract the BLASTP result
and then transform them into a mapping file from
TIGR_LOCUS IDs to Bioverse IDs.

4. Use script: run_buildTIGRRiceCommonNamesToBid to
extract all.pep file into a mapping file from TIGR_LOCUS
to names.

2.1.3.2. Name Mapping

of an ID System Associated

with the Upstream

Sequences from Different

Sources to Protein IDs in the

Bioverse

In this section, we describe how we build a mapping from a specific
ID system associated with the upstream sequences of a specific
organism to their corresponding protein IDs in the Bioverse.

Saccahromyces cerevisiae

The upstream regions of S. cerevisiae are annotated with the same
sets of ORFs from SGD. Hence, we do not have the problem of
mapping from these ORFs to protein IDs in the Bioverse.
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Homo sapiens, Mus musculus, and Rattus norvegicus

The upstream regions of human, mouse, and rat compiled from
UCSC Genome Browser (45) are annotated with NM_xxxx,
which are the RefSeq accession numbers for nucleotide sequences.
However, the name mapping from common names to protein IDs
in the Bioverse is via NCBI GenBank Identifiers (GIs). Hence,
these RefSeq numbers are not directly usable by the system. To
handle this mapping issue, we use the following steps to transform
the RefSeq accession numbers to protein GIs.

1. Go to ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/
and save file human.protein.gpff.gz into a local directory. This
file contains GenBank records of NP_xxxx, which are the RefSeq
accession numbers for protein sequences in human that are
associated with GIs and NM_xxxx.

2. Extract the mapping between NP_xxxx, NM_xxxx RefSeq
numbers and protein GIs using our script: run_extract_
NP_NM_homo_sapiens. This code will result in a mapping
file of GIs, NP_xxxx and NM_xxxx. The extracted mapping
will be used as an input of script: run_extractUpstream
Regions_1000bp_homo_sapiens for extracting the upstream
regions mentioned in Section 2.1.2 for human.

3. Repeat Steps 1 and 2 for mouse and rat by accessing:
ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot,
and ftp://ftp.ncbi.nih.gov/refseq/R_norvegicus/mRNA_
Prot, respectively.

Oryza sativa

The compiled upstream sequences of O. sativa (cultivar Nipponbare
of Oryza sativa L. ssp. japonica) are associated with TIGR_LOCUS
IDs. As we have built a mapping file from TIGR_LOCUS IDs to
protein IDs in the Bioverse, we do not encounter the mapping
problem for this genome.

Arabidopsis thaliana

The compiled upstream sequences of A. thaliana are associated
with AGI IDs that are also available in the ID-mapping file provided
by the Bioverse, so we do not encounter the mapping problem for
this genome.

Drosophila melanogaster

While we compiled the upstream region files of D. melanogaster
from UCSC as of human, mouse, and rat, the upstream sequences
of the fly are not associated with RefSeq numbers. Instead, they
are associated with FlyBase symbols that are also available in the
ID-mapping file provided by the Bioverse. So, in case of fly, to
extract the upstream regions, we use a script similar to the script of
extracting the upstream region from FASTA format for yeast and
Arabidopsis.
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Prokaryotes

As we compile and extract the upstream regions of prokaryotes
from NCBI, where genes and proteins are already associated with
nucleotide and protein GIs, we do not have a mapping problem
from an ID system associated with the upstream sequences to
protein IDs in the Bioverse.

2.2. Preparing

Additional Data Sets

This section describes the preparation of additional data sets
utilized for improving the accuracy of TRI predictions.

2.2.1. Preparing

Protein Localization

Protein localization is employed as a filter for improving the
accuracy of the predicted TRIs. It strongly correlates with
mRNA co-expression, as well as physical and functional interac-
tions (60, 61). We compile protein localization data for S. cerevisiae
from the TRIPLES database (62, 63) and Yeast GFP Fusion
Localization database (60) (Notes 20, 21). To retrieve the protein
localization data from these databases, use the following steps.

2.2.1.1. TRIPLES 1. Go to ftp://ygac.med.yale.edu/ygac_pub_ftp/.

2. Save the file localization_pub_data_9_4_01.tab into a local
directory and use script: run_extractPLOCFromTRIPLES to
extract the ORFs and their localizations into a file ready for
use by the system.

2.2.1.2. Yeast GFP Function

Localization Database

1. Go to http://yeastgfp.ucsf.edu/.

2. Within the banner at the top of the page, click on ‘‘Go’’ for the
advanced query. A new page will appear. In this page, leave
‘‘Search Criteria’’ as default, where the inputs of all search criteria
including of the ‘‘Subcellular Localization’’ will be wildcards (*).
For the ‘‘Display Options,’’ check the box ‘‘Download the
selected dataset as a tab-delimited file’’ and box ‘‘include locali-
zation table.’’ Press the ‘‘submit’’ button. The system will write
the query result into a file ‘‘downloadxxxxxxxx.txt’’ and put it in
the ‘‘Search Results’’ section.

3. Save the result file into a local directory and use script: run_
extract PLOCFromYeastGFP to extract the ORFs and their
localizations into a file and use script: run_combinePLOCs to
combine the results from both TRIPLES and Yeast GFP into
a single file ready for use by the system.

2.2.2. Preparing

Protein Families

The protein family is considered as another filter for improving the
accuracy of the predicted TRIs. We hypothesize that a predicted
transcription factor should share protein domains with its source
transcription factor. At present, all protein families are compiled
from TRANFAC (12) (Note 22), using the following steps:

1. Go to http://www.gene-regulation.com/cgi-bin/pub/
databases/transfac/search.cgi?.
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2. On this page, click on the ‘‘Class’’ button. The new page for
searching the Class table will appear. Input a wildcard (*) in
the ‘‘Search term’’ text field. Select ‘‘Class (CL)’’ as the field to
search in the table, and ‘‘100’’ as number of hits per page.
Then, click the ‘‘Submit’’ button. The new page of protein
classes will appear.

3. Save this page into the local directory as a mapping file
between class accession numbers and their descriptions.
Then, click on each accession number in this page to save as
a file on a local directory. These saved files will be used by
the prediction method for filtering the predicted TRIs.
A predicted TRI will be filtered out if its TF has no sharing
of any protein families with the source TF (Notes 23, 24).

2.3. Finding Similarity

Among Protein

Sequences

As we use homology-based approaches for TRI prediction, the
determination of similarity among protein sequences is an essential
step. In the following section, we describe the preparation of
protein sequences and the use of alignment methods for finding
sequence similarity.

2.3.1. Preparing Protein

Sequences

We compile protein sequences for a specific organism from the
Bioverse (3), using the following steps:

1. Prepare a text file that lists the names of the organisms
(one per line), which will be queried for all protein sequences.

2. Use script: run_getMoleculeSeqsViaRPC to retrieve the
protein sequences for the organisms listed in the prepared
text file in Step 1 from the Bioverse via XML RPC server (see
Chapter 22) (Note 25).

2.3.2. Finding Similarity

Among Protein Sequences

Similarities between protein sequences can be determined using
several alternative alignment methods. We summarize each
method and discuss their effect on the results.

2.3.2.1. Alignment

Methods

1. BL2SEQ (64) is a BLAST-based tool for aligning two pro-
tein or nucleotide sequences that are presumably known to be
homologous. It utilizes the BLAST (Note 26) engine (65)
for local alignment. The main purpose of BL2SEQ is to
compare the similarity between two sequences and reduce
the processing time of using the standard BLAST program;
BL2SEQ is the fastest, but least sensitive, method compared
with the other alignment methods described here.

2. PSI-BLAST (Note 27) (Position-specific iterative BLAST)
(66) is a feature of BLAST 2.0. It improves the sensitivity of
protein–protein BLAST (BLASTP) using a position-specific
scoring matrix (PSSM) constructed from a multiple sequence
alignment of the best hits in each of the most recent iteration,
such that it refines the PSSM over sequential iterations. Each
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position in the PSSM will contain varied scores according to
the conservation of the position. A position that is highly
conserved will get a higher score. PSI-BLAST is much more
sensitive than the standard BLAST program in capturing the
distant evolutionary relationships or weak relationships
between protein sequences.

3. SSearch implements the Smith-Waterman algorithm (67, 68)
for local sequence alignment. Its main purpose is to avoid
misalignment due to high noise levels in the low similarity
regions of the distantly related sequences. Hence, it ignores
all these regions and focuses only on regions that have highly
conserved signals with positive scores. The Smith-Waterman
algorithm guarantees optimal local alignment with the trade-
off of moderately demanding computing resources. Hence, it
is too slow for searching a large genomic database such as
GenBank.

4. ClustalW (69) is a progressive global multiple alignment
method that improves the sensitivity of highly divergent
sequence alignment. It incorporates (1) an individual weight
for each sequence, (2) varied amino acid substitution matrices
at different stages of the alignment, (3) residue-specific gap
penalties, and (4) position-specific gap penalties. ClustalW
consists of three main steps: (1) performing pairwise align-
ments for all pairs of sequences in order to generate the
distance matrix, (2) building a guide tree from the calculated
distance matrix, and (3) carrying out a multiple alignment
guided by the tree.

In our benchmarking process, we search for similar protein
sequences of a source transcription factor (TF) or a source tran-
scription factor target (TFT) in a target organism using PSI-
BLAST. Then, we use ClustalW to create multiple alignments of
the source protein sequence and the similar protein sequences
found with PSI-BLAST.

2.3.2.2. Similarity

Assessment

BLASTP and PSI-BLAST assess the similarity between query and
protein sequences in a database by creating a bit score, an E value
(expectation value), and match types with identities, positives, and
gaps. The ‘‘bit score’’ is the normalized raw score (Note 28)
according to the statistical variables defined in the scoring system.
This score allows the comparison between different alignments
with different scoring matrices. The ‘‘E value’’ is the probability
that the similarity found in this alignment might happen by
chance, with a lower E value corresponding to a more significant
score. The ‘‘identity’’ is the ratio of the number of identical
residues over the total number of aligned residues and gaps
between a query and a target protein sequence. The ‘‘positive’’ is
the ratio of the number of identical plus the non-identical but
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conserved residues (represented by a minus sign in the alignment
section of the blast result) over the total number of aligned resi-
dues and gaps between a query and a target protein sequence. The
‘‘gap’’ is the number of gaps (represented by a dash symbol), either
in the query or in the target protein sequence, over the total
number of aligned residues and gaps between a query and a target
protein sequence.

SSearch assesses the similarity between two sequences via the
Z-score, Smith-Waterman score, E() value, percentage identity,
and percentage similarity. The Smith-Waterman score is calculated
from a scoring matrix that includes the match and mismatch
scores, a gap creation penalty, and a gap extension penalty. The
Z-score is a normalized score calculated from a linear regression
performed on the natural log of the sequence length of the search
set. SSearch uses the distribution of Z-scores to estimate the
expected number of sequences (represented by E() value) pro-
duced by chance with equal or greater Z-score than that attained
from the search. The greater the Z-score, the lower the E() value.
The percentage identity and percentage similarity represent the
number of identical (represented by two vertical dots in the align-
ment section of the SSearch result) and the number of conserved
but not identical (represented by a single dot) residues over the
number of overlapping amino acids, respectively.

While higher scores and lower E values imply a better hit
(such that two sequences are significantly similar), these values
are calculated based on local alignment. Likewise, the percentage
identity and percentage similarity are calculated only from aligned
segments. Hence, in the case of two sequences with distant evolu-
tionary relationships or weak relationships, these values are not
directly representative of the similarity between them. Therefore,
in our benchmarking, we assess the similarity between two
sequences using the following steps:

1. For each protein (either TF or TFT) in the test set, we use
PSI-BLAST to (i) find its top hits from all other proteins in
the test set, and (ii) find its top hits from proteins in the
Uniprot (again, we need to handle name mapping from the
Uniprot protein identifier to the protein ID in the Bioverse),
and then (iii) put these two sets of protein sequences into a file
(including the query protein sequence). The number of files
will be equal to the number of proteins in the test set (all
distinct TFs and TFTs).

2. We use ClustalW to create multiple alignments for the set of
sequences in each file. Based on the global multiple alignment
results, we assess the similarity between the query protein
sequences to every other hit sequence in the resulting file, as
the number of identical residues over the total number of
residues of the hit sequence. We call this ratio the fraction
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identity (FI). Identical protein sequences will have FI = 1.0,
while the FI between two proteins with no similar sequences
is equal to 0.0.

2.4. Predicting TRIs To predict TRIs, we developed a Python script following the
homology-based approach described in the introduction. This
code implements the following steps (as shown in Fig. 6.3).

1. For each source experimental TRI compiled in Section 2.1,
find the orthologous proteins TFx’ and TFTy’ of TF and TFT
in a target organism, from the similarity values (i.e., ITF-TFx’

and ITFT-TFTy’ in Fig. 6.3) generated in Section 2.3. The
numbers of orthologous proteins are limited by the cutoffs of
similarity values (i.e., E-values, bit score, Z-scores, percentage
identity, percentage similarity; with each varied according to
the alignment methods). The predicted TRIs stem from all
combinations of homologous TFx’ and TFTy’ in the target
organism. Each is assigned a similarity of interaction
ITFx’!TFTy’, where

ITFx0!TFTy0 ¼ sqrtðITF�TFx0 �ITFT�TFTy0 Þ

Fig. 6.3. Predicting TRIs.
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The following steps are optionally used for improving the
accuracy of TRI prediction.

1. Filter out the predicted TRIs for which functional annotation
does not include ‘‘transcription factor.’’ Note that the
annotation of a predicted TF (TFx’) is queried from XML
RPC server in the Bioverse.

2. Filter out the predicted TRIs for which an upstream region
(prepared in Section 2.1.2) of their TFTs is not found
with any binding sites and binding sequences (prepared in
Section 2.1.1) of the TF of source experimental TRI
(prepared in Section 2.1.1).

3. Filter out the predicted TRIs for which the TF and TFT do
not share any protein localization (prepare in Section 2.2.1).

4. Filter out the predicted TRIs for which the protein families
(prepared in Section 2.2.2) of its TF and of the TF of the
source experimental TRI do not overlap.

2.5. Benchmarking One of the important issues for a prediction method is its accuracy
and coverage. In this section, we describe a design experiment for
measuring accuracy and coverage for this prediction method.

2.5.1. TP and Test Set Accuracy and coverage are defined as follows.

Accuracyx ¼ A � 100=ðA þ BÞ

Coveragex ¼ A � 100=jTP j

for which:
x ¼ a similarity value cutoff of E-values, Z-scores, percentage
identity, or fraction identity used for discarding the predicted
TRIs.

A ¼ the number of predicted TRIs in the true positive set (TP) at
cutoff x.

B ¼ the number of predicted TRIs not in TP at cutoff x.

|TP| ¼ the number of source experimental TRIs in TP.

The true positive set (TP) of a target organism contains all experi-
mental TRIs of the organism. If TRIs in the true positive set
contain N distinct transcription factors (TFs) and M distinct
transcription factor targets (TFTs), the test set will contain N x
M TRIs, which result from all-against-all combinations between
TFs and TFTs in the TP (Note 29). We define accuracy as the
fraction of TRIs predicted by the system that are in TP out of all
the predicted TRIs (either in TP or not in TP) at a specific cutoff.
We define the coverage as the fraction of TRIs predicted by the
system that are in TP at a specific cutoff over all TRIs in TP. Higher
FI threshold cutoffs correspond to higher accuracy and lower
coverage.
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In general, if the system is optimized, the cross-point between
the accuracy and the coverage plots represents an appropriate
cutoff for the system to include or exclude predicted TRIs.

2.5.2. Measuring Accuracy

and Coverage

To benchmark the predicted TRIs, we measure the accuracy and
coverage of the predicted TRIs at specific cutoffs, we use the script:
run_regulogBenchmarking_<organism>_sprot, where organism
could be human, mouse, rat, yeast, and fly. This script calls our
Python code that implements the following steps:

1. For each TRI in the test set, find the source experimental
TRIs that give the TRI from the test set with the highest
geometric mean of the FI product (Note 30). Assign this
source experimental TRI and the geometric mean of the FI
product to the TRI from the test set.

2. For each FI threshold cutoff ranging from 0.0 to 0.95, count
the number of TRIs in the test set that are in TP and not in
TP, and the FIs between the source TF and target TF and the
source TFT and target TFTs at or above the cutoff.

3. Calculate the accuracy and coverage for each cutoff using the
results from Step 2 and write the results into output files.

We use the above code to benchmark the accuracy and
coverage of predicted TRIs for five organisms: human, mouse,
rat, fly, and yeast. Table 6.2 shows the numbers of pairs in
the TP, TFs in TP, TFTs in TP, and TRIs in the test set of the
five organisms. The source experimental TRIs came from the
combination of all TRIs in TP from these organisms plus the
experimental TRIs of E. coli and B. subtilis that had protein
IDs in the Bioverse. For the benchmarking, we exclude TRIs
in TP of the target organism from the source experimental
TRIs. To obtain numbers for Table 6.2 and generate the test

Table 6.2
Numbers of TP, TFs in TP, TFTs in TP, and TRIs in the test set
of human, mouse, rat, fly, and yeast used for benchmarking

Organisms TP TFs in
TP

TFTs in
TP

TRIs in the test set
(TFs in TP � TFTs in
TP)

S. cerevisiae 136 38 104 3,952

D. melanogaster 171 72 65 4,680

M. musculus 309 109 159 17,331

R. norvegicus 46 18 36 648

H. sapiens 900 118 553 65,254
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sets for the benchmarking, we use the script: run_generate-
TestsetForBenchmarking. Figure 6.4 shows the accuracy and
coverage without any filtering for the test sets of human,
mouse, rat, fly, and yeast. In general, the cross-point between
the accuracy and coverage lines could be an appropriate cutoff.
In this figure, the cross-points of the plots vary according to
the available TRIs in TP of the target organisms.

To measure the errors of the method, we generate new test
sets comprising randomly selected sets of 80% of the TRIs in TP.
We repeat this benchmarking process 50 times. Figure 6.5 shows
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Fig. 6.4. Accuracy and coverage without any filtering for the test sets of yeast, fly, mouse, rat, and human.
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the mean accuracy without any filters and the standard deviations
below and above the mean at each FI threshold. Results from
human, mouse, and yeast do not vary substantially among 50
tries. The method does not work well with fly data sets due to a
low number of significant homologs within the available source
experimental TRIs. It is likely that this also explains the results
from fly in Fig. 6.4. The high standard deviations in the case of
rat indicate heterogeneity for the rat TP. As we do not have a
complete set of TRIs in TP for any target organism, the accuracy
and coverage of predictions can only be evaluated as minimum
accuracy and coverage.

2.5.3. Correctness of

Benchmarking Method

We perform a sanity check to measure the correctness of the
benchmarking method by including TRIs in the TP of the
target organism as part of the source experimental TRIs and
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Fig. 6.5. Accuracy with error bars of the TRI prediction method without any filtering for the test sets of yeast, fly, mouse,
rat, and human. Data point represents the mean of 50 bootstrapped data sets (randomly selected 80% of TRIs in TP) and
error bars indicate the standard deviations above and below the mean.
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calculate the accuracy and coverage using high threshold cut-
offs ranging from 0.95 to 1.0. If the method is correct, then
the predicted TRIs in TP should be the same as their source
experimental TRIs and both accuracy and coverage will be
100%.

In the case of mouse TRI prediction, there is one predicted
TRI (SP1!TTF-1) that is not a TRI in TP at the FI threshold
cutoff >¼ 0.95. This TRI is transferred from the SP1!TTF-1 in
the source experimental TRIs of human. While this TRI is not in
the source experimental TRIs of mouse, it is highly likely to be a
real but not yet experimentally validated TRI.

In case of human TRI prediction, there are two predicted TRIs
(ATF-2!HIST3H2A and HOXA5!HOXA5) not in the human
TP at the FI threshold cutoff>¼ 0.95. These TRIs are transferred
from the ATF-2 ! HIST1H2AC and the HOXA5!HOXA5 in
the source experimental TRIs of human and mouse, respectively.
HIST1H2AC is transferred to HIST3H2A with the very high
cutoff value, as they are isoforms, but at the FI threshold cutoff
>¼ 0.98, only ATF-2!HIST3H2A remains (Note 31). While
HOXA5!HOXA5 is not in the source experimental TRIs of
human, it is also likely to be a real but not yet experimentally
validated TRI.

The predicted TRI of yeast (ARS!ENO1), which is not in TP
at the FI threshold>¼ 0.95, is transferred from the ARS!ENO2
in the source experimental TRIs of yeast, where ENO2 and ENO1
are isoforms.

Overall, the results of our sanity check (shown in Table 6.3)
for the five organisms confirm that the method is correct.

2.5.4. Effects of Filters Figure 6.6 shows how different filters affect the accuracy of TRI
prediction (Note 32). Judging from our results, the use of binding
sites for filtering predictions improves the accuracy of TRI predic-
tion for all organisms (except fly, due to the limited number of
source experimental TRIs) (Notes 33, 34). The use of the func-
tional annotation of ‘‘transcription factor’’ from the Bioverse as a
filter slightly improves the prediction accuracy for all organisms
except human, which might be caused by too narrow a search with
the Bioverse options limited to ‘‘transcription factor’’ or unavail-
able. In the case of yeast, the use of protein localization as a filter
slightly improves the accuracy of prediction at low-to-medium FI
threshold cutoffs. Table 6.4 shows the numbers of predicted TRIs
of different filters for the five target organisms at the FI threshold
cutoff >¼ 0.3.

We investigate how protein families relate to the pre-
dicted TRIs by counting the number of TRIs for which TFs
are sharing or not sharing protein families with their corre-
sponding source TFs. Table 6.5 lists the counting results for
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Table 6.3
Results of the sanity checks for human, mouse, rat, fly, and yeast

FI threshold TRIs in TPs TRIs not in TPs % accuracy % coverage

D. melanogaster 0.95 171 0 100 100

0.96 171 0 100 100

0.97 171 0 100 100

0.98 171 0 100 100

0.99 171 0 100 100

1 171 0 100 100

H. sapiens 0.95 900 2 99.778 100

0.96 900 2 99.778 100

0.97 900 2 99.778 100

0.98 900 1 99.889 100

0.99 900 1 99.889 100

1 900 0 100 100

M. musculus 0.95 309 1 99.677 100

0.96 309 0 100 100

0.97 309 0 100 100

0.98 309 0 100 100

0.99 309 0 100 100

1 309 0 100 100

R. norvegicus 0.95 46 0 100 100

0.96 46 0 100 100

0.97 46 0 100 100

0.98 46 0 100 100

0.99 46 0 100 100

1 46 0 100 100

S. cerevisiae 0.95 136 1 99.27 100

0.96 136 0 100 100

0.97 136 0 100 100

0.98 136 0 100 100

0.99 136 0 100 100

1 136 0 100 100
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the five organisms at the FI threshold cutoff >¼ 0.3. The
numbers of predicted TRIs that display sharing are the lar-
gest compared to the numbers of predicted TRIs not sharing
or not having protein family information, for all FI threshold
cutoffs for all organisms except yeast (data not shown here).
In case of yeast, most of the predicted TRIs are the TRIs for
which TFs or their source TFs do not have protein family
information.
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Fig. 6.6. Accuracy with no filters, accuracy with TF function filter, accuracy with binding site filter, accuracy with
localization filter (in yeast only), accuracy with all filters for the test sets of yeast, fly, mouse, rat, and human.
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3. Notes

1. Orthologs are defined as best-matching homologs between a
source and a target organism.

2. Similarly, an interolog is defined as the pair of interacting
proteins A  ! B in a source organism and its orthologous
proteins A’ !B’ in a target organism (29).

Table 6.4
Numbers of predicted TRIs (in TP, not in TP) with different filters at the FI threshold
cutoff >= 0.3 of yeast, fly, mouse, rat, and human from the benchmarking process

Organisms No filter W/TF function filter W/binding site filter W/all filters

S. cerevisiae 18, 111 11, 58 11, 7 1, 3

D. melanogaster 0, 1 0, 1 0, 0 0, 0

M. musculus 21, 126 13, 73 7, 44 5, 22

R. norvegicus 6, 5 6, 3 2, 0 2, 0

H. sapiens 13, 117 7, 70 1,9 1,7

Table 6.5
Numbers of predicted TRIs of TP and not in TP for which TFs (1) share protein
families with their corresponding source TFs, (2) have no overlapped protein
families with their source TFs, and (3) have no information of protein families, with
no filters, at the FI threshold cutoff >= 0.3

Organisms
TRIs
in TP

TRIs in
TP,
sharing
protein
family

TRIs in
TP, no
sharing
protein
family

TRIs in
TP, no
protein
family
info.

TRIs
not
in TP

TRIs not
in TP,
sharing
protein
family

TRIs not
in TP, no
sharing
protein
family

TRIs
not in
TP, no
protein
family
info.

S. cerevisiae 18 3 0 15 111 32 0 79

D. melanogaster 0 0 0 0 1 0 0 1

M. musculus 21 15 3 3 126 93 13 20

R. norvegicus 6 5 0 1 5 4 0 1

H. sapiens 13 10 0 3 117 100 3 14
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3. The sources of experimental TRIs are limited, and the ways
to access and gather them are varied. Among our source
databases, RegulonDB is the only database that provides a
way to download the TF to gene interactions in bulk. In the
case of TRANSFAC1, we needed to write a script using the
urllib module in Python to fetch data from the http server of
TRANFAC1. In case of DBTBS, we resorted to a personal
communication requesting the experimental TRIs from the
authors.

4. The formats of the experimental TRIs differ from source
to source. For instance, TRANSFAC1 provides the
experimental TRIs of eukaryotes via the records of tran-
scription factors in html files, where each record will
contain various information of the transcription factor
and its regulating genes. DBTBS provides all experimental
TRIs of B. subtilis in a single xml file. To handle these
various formats, we wrote code for extracting the experi-
mental TRIs from each specific source as described in
Section 2.1.1.

5. We encountered the same problems for gathering and pre-
paring the binding sites and binding sequences. The binding
sites in TRANSFAC1 came as a part of the transcription
factor records and linked to their own records of specific
binding sequences. Hence, we wrote code to extract the
binding site accession numbers. Then we fetched the binding
site records from the TRANFAC1 http server and parsed
these records for the binding sequences. In case of DBTBS,
the binding sites and binding sequences appeared in specific
xml tags. Hence, we developed code to parse and extract
them. As RegulonDB provides bulk download of the TF
binding sites, we only needed to edit the format of the down-
loaded file.

6. Toextenda setof experimentalTRIs for anorganismfromdiffer-
ent sources, we use the script: run_appendTRIs_<organism>,
where examples of organisms are ‘‘caenorhabditis_ elegans,’’
‘‘homo_sapiens,’’ and ‘‘saccharomyces_cerevisiae.’’ This script
calls a code that appends additional TRIs compiled from other
sources listed in an input file (e.g., ./inputs/TRIs/caenorhabdi-
tis_elegans_tris_fileList.txt,forC.elegans)totheavailableTRIfile.
For instance, the run_appendTRIs_caenorhabditis_elegans
appends the TRIs compiled from WormBase (in file ../inputs/
TRIs/WormBaseTRIs.csv) to the compiled TRIs from
TRANSFAC.

7. BIND becomes a component of BOND (Biomolecular
Object Network Databank), which contains not only BIND
but also GenBank data and related tools.
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8. We get a PubMed identifier for a paper by searching the paper
at Entrez PubMed http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?DB=pubmed.

9. The lengths of the upstream regions are specific and limited
for different sources. For instance, the UCSC Genome Brow-
ser provides the upstream regions of human, rat, mouse, and
fly with lengths 1,000, 2,000, and 5,000 bps whereas SGD
provides only 1,000 bps upstream regions. In the case of
prokaryotes, we extracted the upstream regions of each
organism from their complete genome sequences, with the
length of 500 bps (Notes 35, 36).

10. In this work, we do not take the directions (i.e., forward,
reverse) of the strand of the upstream regions into account.
Also, we do not consider the possible binding sites at the
downstream region. At present, we are interested only in
predicting the transcriptional regulatory interactions for
which transcription factors bind to specific sequences in the
upstream regions of a target gene. Nevertheless, the overall
methods described for TRI prediction should be usable for
these extensions as these affect only the scanning of the bind-
ing sequences during the filtering process. The data prepara-
tion should be extended for the downstream regions, and the
scanning of binding sites should evaluate the reverse strand
and downstream regions.

11. In the case of S. cerevisiae, instead of getting the upstream
regions via the ftp server as described in Section 2.1.2, you
might follow the following steps:

l Go to http://www.yeastgenome.org/ (44).

l On the left side of this main page, in section ‘‘Download
Data,’’ select ‘‘Batch Download.’’ A page ‘‘SGD Batch
Download Tool’’ will appear. Specify the input chromo-
some on the right-hand side of Step 1, and then specify the
type of data that you would like to retrieve in Step 2. Under
the ‘‘Sequence data’’ section, check box ‘‘Genomic DNA +
1 kb upstream and 1 kb downstream of flanking sequence,’’
and click the submit button.

l After getting the result file for each chromosome, concate-
nate these files together for the upstream regions of all
genes in the complete genome. Then, use the same script:
run_extractUpstreamRegions_1000bp_saccharomyces_ce-
revisiae to parse, extract, and transform this file into the
upstream region file from S. cerevisiae, ready for use by the
system.

12. The upstream region files downloaded from UCSC Genome
Browser contain only the upstream regions from transcription
starts annotated separately from the coding initiation region.

130 Wichadakul, McDermott, and Samudrala



So, they are not the complete sets of upstream regions. An
alternative way to compile the upstream regions of genes in an
organism is to find the location of the genes in the complete
genome sequence and extract the sequence in front of the
genes starting from their transcription start sites as the
upstream regions.

13. In the case of H. sapiens, M. musculus, R. norvegicus, and D.
melanogaster, one might use the ftp server instead of the http
server:

l Go to ftp://hgdownload.cse.ucsc.edu/goldenPath/.

l Use the code in parentheses at the first line of a specific
genome box at http://hgdownload.cse.ucsc.edu/down-
loads.html (e.g., hg18 for human genome) to select the
directory under the ftp://hgdownload.cse.ucsc.edu/
goldenPath/. Under this directory, select ‘‘bigZips’’
directory and save files upstreamxxx.zip into a local
directory. The xxx represents the number of base pairs
of each upstream region. Use our script: run_extract
UpstreamRegions_1000 bp_homo_sapiens to parse,
extract, and transform the saved files into the format
ready for use by the system.

14. TIGR uses the results from IRGSP. Hence, the upstream
regions of rice downloaded from TIGR are of the cultivar
Nipponbare of Oryza sativa L. ssp. japonica (57). The first
draft sequence of O. sativa L. ssp. indica was also available
and published in the same journal (70).

15. The naming systems of the upstream regions of organ-
isms are different from source to source. We needed to
find the appropriate mapping from a specific ID system
to the protein IDs in the Bioverse. The complexity in
finding the mapping varied according to different
sources. For instance, the upstream regions of eukaryotes
(i.e., human, mouse, rat) downloaded from the UCSC
Genome Browser were identified by RefSeq accession
numbers for nucleotide sequences. However, we only
had the mapping of NCBI GenBank Identifiers (GIs)
to protein IDs in the Bioverse for these organisms.
Hence, we needed to find the mapping from these
RefSeq numbers to the GIs. On the other hand, the
upstream regions of yeast, fly, worm, and Arabidopsis
had been annotated by their specific ID systems already
in the Bioverse. Hence, finding the mapping for these
organisms was less complex. In case of rice, as TIGR
uses TIGR_LOCUS as the main identifier for the rice
genome to refer to the upstream regions, genes, and
proteins, we needed to find the mapping from TIGR_-
LOCUS IDs to protein IDs in the Bioverse.
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16. Several names of TFs and TFTs in the source experimental
TRIs are not mapped with any intermediate ID system.
Hence, the TRIs with these TFs and/or TFTs will be dis-
carded, such that several source TRIs are lost during the
mapping process.

17. We could improve the quality of the name mappings by
finding and adding the synonyms of the common names
from different sources to the name ID mapping file.

18. Building name mapping from TFs, TFTs to protein IDs in the
Bioverse for H. sapiens is the most complicated. We encoun-
tered the following problems and limitations during the pro-
cess of building the name mapping:

l The naming of human genes is still not well defined. Even
though several sources of human genes with common
names are available, some of them are not updated and
some others are obsolete. Sources of common names for
H. sapiens are GenBank, the synonyms field associated with
each transcription factor information files compiled from
TRANSFAC1, OMIM (59), Entrez Genes (71), and
HUGO (58).

l Human genes are much more complex than yeast. Several
of them have the same common names but different protein
products according to different isoforms. Hence, a straight-
forward many-to-one mapping of a common name and its
synonyms to a specific intermediate ID (i.e., systematic
ORF name from SGD) and to a protein ID in the Bioverse
as in case of yeast is not always true in human.

19. Even though the name mapping could be refined with the
synonyms of common genes from different sources, in gen-
eral, these will not be complete. The better and more reliable
mapping from the common names of TF and TFT in the
experimental TRIs to protein IDs in the Bioverse uses
sequence mapping. However, this is not applicable because
this method involves protein sequences of all TFs and TFTs in
all experimental TRIs. Nevertheless, TRANSFAC1 provides
only the protein sequences of TFs but not of TFTs, while
other sources of experimental TRIs do not provide protein
sequences. To get protein sequences for these TFs and TFTs,
we return to the name mapping problem.

20. At present, we have only the protein localization of S.
cerevisiae from two public databases, as described in Sec-
tion 2.2.1. Also, in our current assumption for filtering
using protein localization, a predicted TRI will be dis-
carded if its TF and TFT do not share localization. This
assumption might be too restrictive and needs further
investigation.
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21. In addition to TRIPLES and YEAST GFP mentioned in
Section 2.2.1, we list additional public databases of experi-
mental protein localization compiled from a literature search
in Table 6.6 and sources of protein localization based on the
predictions in Table 6.7. Beside these two tables, additional
systems and programs for protein subcellular localization can
be found at http://www.molecularstation.com/protein/
bioinformatics/subcellularlocalization/.

22. Besides protein families compiled from TRANSFAC1, we list
other public databases of protein families in Table 6.8. Addi-
tional resources of protein families can be found at http://
www.proweb.org/other.html.

23. At present, we have only protein families compiled from
TRANSFAC1, as described in Section 2.2.2. Our current
filtering method using protein families will discard all predicted
TRIs for which the related TFs do not share any protein families
with their corresponding TFs from source TRIs. Hence, with
protein families compiled only from TRANSFAC1, the filtering
might discard the predicted TRIs that are real.

24. In addition to using protein families for filtering the predicted
TRIs as described in Section 2.2.2, we might utilize the
combination of protein domains and domain architectures
(72–75) in finding the similarity between two protein
sequences. Also, instead of assigning the same weights for all
overlapped locations between two aligned protein sequences,

Table 6.6
Public databases of protein subcellular localization from experiments

Database Description URL

UniProtKB/Swiss-
Prot (76)

An annotated protein
sequence database

http://www.ebi.ac.uk/swissprot/
FTP/ftp.html

Comprehensive Yeast
Genome Database
(CYGD) (78)

MIPs Saccharomyces cerevisiae
genome database

http://mips.gsf.de/genre/proj/
yeast/index.jsp

MitoP2 (79) A database for mitochondria-
related genes, proteins, and
diseases

http://www.mitop.de:8080/
mitop2/

LOCATE (80) A curated database of membrane,
organization and subcellular
localization mouse proteins
of RIKEN FANTOM3

http://locate.imb.uq.edu.au/
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Table 6.7
Sources of protein subcellular localization from prediction

Source Description URL

PSORT (81) Predicting protein subcellular
localization based on stored rules and
prediction of sorting signals

http://psort.hgc.jp/

Yeast Protein
Localization
Server (82)

Predicting subcellular location of
proteins in yeast using Bayesian
formalism

http://bioinfo.mbb.yale.edu/
genome/localize/

LOC3d (83) A database of predicted subcellular
localization for eukaryotic PDB chains

http://cubic.bioc.columbia.edu/db/
LOC3d/

TargetP1.1(84) Predicting subcellular localization of
protein in eukaryotes based on the
predicted presence of N-terminal pre-
sequences, chloroplast transit peptide
(cTP), mitochondrial targeting
peptide (mTP), or secretory pathway
signal peptide (SP)

http://www.cbs.dtu.dk/services/
TargetP/

SubLoc v1.0
(85)

A system for predicting protein
subcellular localization using Support
Vector Machine (SVM)

http://www.bioinfo.tsinghua.edu.cn/
SubLoc/

Table 6.8
Public databases of protein domains and families

Database Description URL

InterPro (86, 87) A resource of protein families,
domains and functional sites,
integrated from other databases
such as Pfam, PROSITE,
PRINTS, etc.

http://www.ebi.ac.uk/interpro/

Pfam (88) A database of curated protein domains
and families based on multiple
sequence alignments and hidden
Markov models

http://www.sanger.ac.uk/Software/
Pfam/

PROSITE (89) A database of protein families and
domains that consists of biologically
significant sites, patterns, and
profiles used for identifying a family
for a new protein

http://www.expasy.org/prosite/

(continued)
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Table 6.8 (continued)

Database Description URL

ProDom (90) A database of protein domain families
automatically generated from Swiss-
Prot and TrEMBL databases

http://prodom.prabi.fr/prodom/
current/html/home.php

BLOCKS (91,
92)

A database of aligned ungapped
segments derived from the most
highly conserved regions in groups
of proteins

http://blocks.fhcrc.org/

PRINTS (93) A collection of protein fingerprints,
where each is a group of conserved
motifs used to classify a protein
family

http://www.bioinf.man.ac.uk/
dbbrowser/PRINTS/

TIGRFAMs (94) A collection of curated protein
families that consists of various
models including, multiple
sequence alignments, hidden
Markov models (HMMs), Gene
Ontology (GO) assignments, and
literature references, for instance.

http://www.tigr.org/TIGRFAMs/

SYSTERS (95) A database of protein families based on
graph-based algorithms for protein
sequences partitioning, clustering,
and searching

http://systers.molgen.mpg.de/

SCOP (96, 97) A database of proteins ordered by
structural classification; protein
domains are classified into families,
superfamilies, folds, and classes

http://scop.mrc-lmb.cam.ac.uk/scop/

SMART (98) A web-based tool and database, which
allows the identification of signaling
domains, the genetically mobile
domains, and the analysis of domain
architectures

http://smart.embl-heidelberg.de/

SUPERFAMILY
(99, 100)

A database of hidden Markov models
(HMMs) of known structures with
protein domain classification based
on SCOP

http://supfam.org/SUPERFAMILY/

CATH (101) A database of protein domain
structures, which categorizes
proteins at four levels: Class (C),
Architecture (A), Topology (T), and
Homologous superfamily (H)

http://www.cathdb.info/

(continued)
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we need to give more weight for the locations that are con-
sidered protein domains. This higher similarity specificity
should help to improve the accuracy of prediction.

25. Instead of getting protein sequences from the Bioverse via an
XML RPC server, we might get protein sequences from other
sources such as protein database at NCBI, UniProt (the uni-
versal protein resource) (76), TAIR for A. thaliana, TIGR
Rice Genome Annotation for O. sativa, WormBase for C.
elegans, FlyBase for D. melanogaster, and SGD for S.
cerevisiae.

26. For BLAST practical usage, see BLAST tutorial at http://
www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html
for additional information.

27. For PSI-BLAST practical usage, see PSI-BLAST tutorial at
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/
psi1.html for additional information.

28. Raw score, ‘‘S’’, is calculated as the sum of the substitution
and gap scores (source: http://www.ncbi.nlm.nih.gov/Edu-
cation/BLASTinfo/Blast_output.html).

29. We define accuracy as the fraction of TRIs predicted by the
system that are in true positive set (TP) over the total predicted
TRIs at a specific cutoff. As we did not have a set of false positives
(FP), we define the test set of the TRIs that includes all combi-
nations of individual TF to individual TFTs in the TP set. This
means that if we have 121 TRIs in the TP which consists of 49

Table 6.8 (continued)

Database Description URL

Gene3D (102) A database of combined structures,
functions, and evolutions of
proteins, with HMMs based on
CATH domain families, for
structural annotation

http://gene3d.biochem.ucl.ac.uk/
Gene3D/

PIRSF (103) A super family classification system
based on the relationships of protein
evolutions

http://pir.georgetown.edu/pirsf/

PANTHER
(104, 105)

A database of protein families,
subfamilies, functions, pathways,
and sequence and function
evolutions

http://www.pantherdb.org/

CDD (106) A conserved domain database at NCBI
for protein classification

http://130.14.29.110/Structure/
cdd/cdd.shtml
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TFs and 83 TFTs, then the test set will consist of 49�83 =
4,067 TRIs. Note that it is possible that some TRIs in the 4,067
that are not in the TP might be real. Hence, what we have for
accuracy calculation is minimum coverage. To improve accuracy
and coverage, we need to find a gold standard of TP for which
TRIs are known with high confidence so that any other TRI is
not possible among the set of their TFs and TFTs.

30. The FI product is the multiplication of fraction identity (FI)
between a source TF and a target TF and a source TFT to a
target TFT. The fraction identity is the number of identical
amino acids that are overlapped between the aligned source
and the target TFs (or source and target TFTs) over the total
number of amino acids of the target TF (or target TFT).

31. The predicted TRIs that have high similarity of interaction
but are not in the TP might come from isoforms. To clean up
accuracy and coverage at the high similarity of interactions for
benchmarking, we omit the predicted TRIs resulting from the
isoforms of target TF and TFT.

32. The available experimental TRIs are incomplete. Even
though we tried to gather the experimental TRIs of each
source organism from different sources such as public data-
bases and supplemental data from the literature, there is no
way to compile the complete set of true positives for a target
organism. This resulted in lower accuracy and coverage in
benchmarking the TRI predictions for almost all target
organisms. This is a limitation of the available data set. In
fact, predictions that are not in our TP might be real TRIs.

To alleviate this limitation, we attempt to filter out the
predicted TRIs using additional data sets such as binding
sites, binding sequences, protein localization, protein
families, and functional annotation. Also, several predicted
TRIs are the same among organisms (Note 37). Even though
they are not yet verified by experiments, nor are they in the
TPs, we consider them as real interactions that should be
removed from the set of predicted TRIs not in the TP.

33. The available binding sites and binding sequences are incom-
plete. We cannot determine a predicted TRI as false even
though the upstream region of the TFT of the predicted TRI
does not have the binding sites and binding sequences of the
TF of its source experimental TRI. It is possible that the TF
might have alternative sites and sequences that are not yet
studied. Hence, we mainly use the available binding sites and
binding sequences for improving the confidence of prediction.

34. The location of binding sites and their sequences do not need
to be exactly the same between the TF of the source experi-
mental TRI and the TF of a predicted TRI. Hence, we relaxed
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this restriction using 80% matching for scanning the binding
sequences with the varied lengths of upstream regions of
target TFT in the predicted TRI. Note that the scanning of
binding sequences of B. subtilis needed a special treatment,
such that some of its binding sequences required exact match-
ing while others could be relaxed.

35. We could change this length of upstream regions and rerun-
ning the extraction.

36. RegulonDB also provides promoters of E. coli K-12. How-
ever, we have not integrated these promoters as part of the
extracted upstream regions of E. coli.

37. A predicted TRI in a target organism is considered the same as
a source experimental TRI if its TF’ and TFT’ have the same
names as of the TF and TFT of the source experimental TRI.

38. Databases at NCBI such as Nucleotide, Protein have been
providing XML as an alternative formats for their download-
able data.

4. Conclusions

Data preparation and integration is one of the major tasks in our
prediction of TRIs by a homology-based approach. As data from
different sources have different formats, we need to handle them
differently. In this chapter, we provide a set of Python programs
and shell scripts that help to retrieve and manipulate data from
various sources. Definitely, these make this process easier. How-
ever, public data sets are being released every day, and they might
have rearrangements of data formats and identifiers. Hence, in the
long term it would be better if various sources provide their data
sets in a standard data exchange format like XML (Note 38) and/
or provide standard interfaces (e.g., SOAP, RPC, Web Services)
for remote programs to be able to automatically interconnect and
work together with each other. In terms of name mapping, while
different sources might have their own identification systems, it
would be much easier for users if they also provided a mapping
from their ID to a standard ID. Hence, while what we presented in
this chapter seems straightforward, it becomes very complicated in
terms of bookkeeping, and this is very rarely talked about explicitly
in papers that describe results like these.

The compiled experimental TRIs and the predicted TRIs can
be integrated with protein–protein interactions (PPIs) and other
data types such as gene expression for investigating specific path-
ways. Figure 6.7 shows an example of the integrated network
between TRIs and PPIs for investigating the regulation of CBF1
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to MET28 (CBF1!MET28) and their related genes, proteins,
and interactions, in yeast cell cycle phase S. Figure 6.7a, b and c
represent the integrated networks with different settings and
filtered by differentially expressed genes downloaded from
Luscombe et al. (77).
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Chapter 7

Detecting Hierarchical Modularity in Biological Networks

Erzsébet Ravasz

Abstract

Spatially or chemically isolated modules that carry out discrete functions are considered fundamental
building blocks of cellular organization. However, detecting them in highly integrated biological networks
requires a thorough understanding of the organization of these networks. In this chapter I argue that many
biological networks are organized into many small, highly connected topologic modules that combine in a
hierarchical manner into larger, less cohesive units. On top of a scale-free degree distribution, these
networks show a power law scaling of the clustering coefficient with the node degree, a property that
can be used as a signature of hierarchical organization. As a case study, I identify the hierarchical modules
within the Escherichia coli metabolic network, and show that the uncovered hierarchical modularity closely
overlaps with known metabolic functions.

Key words: Networks, modularity, hierarchical organization, clustering coefficient, metabolism.

1. Introduction

The identification and characterization of the system-level features
of biological organization is a key issue in post-genomic biology
(1–3). The concept of modularity, the assumption that cellular
functionality can be partitioned into a collection of well-defined
units (1, 4–8), is a very popular paradigm of this field, attempting
to connect structural elements of living systems to the functions
they perform. Spatially and chemically isolated molecular machines
or protein complexes (such as ribosomes and flagella) are promi-
nent examples of such functional units, but more extended mod-
ules, such as those achieving their isolation through the initial
binding of a signaling molecule (9), are also apparent. Simulta-
neously, it is recognized that the thousands of components of a
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living cell are dynamically interconnected, so that the cell’s func-
tional properties are ultimately encoded into a complex intracel-
lular network of molecular interactions (2–6, 8). In biological
systems networks emerge in many guises, from food webs in
ecology to various biochemical nets in molecular biology. During
the past decade, genomics has produced an incredible quantity of
molecular interaction data, contributing to maps of specific cellu-
lar networks. Extensive protein–protein interaction maps have
been generated for a variety of organisms including viruses (10,
11), prokaryotes, like Helicobacter pylori (12), and eukaryotes, like
Saccharomyces cerevisiae (13–19), Caenorhabditis elegans (20) and
Drosophila melanogaster (21). Mapping out the genetic regulatory
interactions is central to uncovering the cellular program encoded
in the genome; several incomplete networks have been compiled
from literature searches (8, 22–26) as well as system-level experi-
ments (27). Beyond the current focus on uncovering the structure
of genomes, proteomes, and interactomes of various organisms,
some of the most extensive data sets are the metabolic maps (28,
29), catalyzing an increasing number of studies focusing on the
architecture of metabolism (19, 30, 31).

Networks offer us a new way to categorize systems of very
different origin under a single framework (32–41). This approach
has uncovered unexpected similarities between the organization of
various complex systems, indicating that the networks describing
them are governed by generic organizational principles and
mechanisms. Two properties of real networks have generated con-
siderable attention. First, many networks are fundamentally mod-
ular: one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no links
to nodes outside of the group to which they belong. Each module
is expected to perform an identifiable task, separate from the
function of other modules (1, 3, 4, 8). For example, in protein–
protein interaction networks such modules represent protein
complexes like the ribosome. This clearly identifiable modular
organization is responsible for the high clustering coefficient
(42) (the average probability that a node’s two first neighbors
are also connected) seen in many real networks. Empirical results
indicate that the average clustering coefficient is significantly
higher for many real networks than for a random network of
similar size (32, 34, 42), and it is to a high degree independent of
the number of nodes in the network (32). At the same time, many
networks of scientific or technological interest, ranging from bio-
logical networks (19, 31, 43, 44) to the World Wide Web (45),
have been found to be scale-free (46, 47); there is no well-defined
‘‘connectivity scale’’ that approximates the degree (number of
connections) of most nodes in the system. Instead, the distribu-
tion of degrees follows an inverse power law with exponents
between 2 and 3, indicating that these systems have very large
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connectivity fluctuations. Most nodes have one or two links, but
there are a few hubs with very large degrees. The scale-free prop-
erty and strong clustering are not exclusive, but they coexist in a
large number of real networks including metabolic webs (31), the
protein interaction network (43, 44), the WWW (45), and some
social networks (48–50).

In order to bring modularity, the high degree of clustering and
the scale-free topology under a single roof, we assume that mod-
ules combine with one another in a hierarchical manner, generat-
ing what we call a hierarchical network (51–53). The presence of a
hierarchy and the scale-free property impose strict restrictions on
the number and degree of cohesiveness of the different groups
present in a network. This can be captured in a quantitative man-
ner using a scaling law that describes the dependence of the
clustering coefficient on the node degree. We can use this scaling
law to look for the presence or absence of hierarchical architecture
in real networks.

Here we focus on the topological organization of cellular
metabolism, a fully connected biochemical network in which
hundreds of metabolic substrates are densely integrated through
biochemical reactions. Within this network, modular organiza-
tion (i.e., clear boundaries between subnetworks) is not imme-
diately apparent. The degree distribution P(k) of a metabolic
network decays as a power law P(k)5 k�g with g ¼ 2:2 in all
studied organisms (19, 31), suggesting that metabolic networks
have a scale-free topology. This implies the existence of a few
highly connected nodes (e.g., pyruvate or coenzyme A), which
participate in a very large number of metabolic reactions. With a
large number of links, these hubs seem to link all substrates into a
single, integrated web in which the existence of fully separated
modules is prohibited by definition. Nonetheless, a number of
approaches for analyzing the functional capabilities of metabolic
networks indicate the existence of separable functional elements
(54, 55). Also, metabolic networks are known to possess high
clustering coefficients (31) suggestive of a modular organization.
We show that hierarchical modularity reconciles all the observed
properties of metabolic networks within a single framework (51).
Moreover, the hierarchical module structure can be easily uncov-
ered and it corresponds to known functional classification of
metabolic reactions.

Hierarchical topology gives a precise and quantitative meaning
to network modularity. It indicates that we should not think of
modularity as the coexistence of relatively independent groups of
nodes. Instead, we have many small clusters that are densely inter-
connected. These combine to form larger but less cohesive groups,
which combine again to form ever larger and less interconnected
clusters. This self-similar nesting of different groups or modules
into each other forces a strict fine structure on real networks.
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2. Methods

2.1. Scaling of the

Clustering Coefficient:

A Signature of

Hierarchy

A hierarchically organized network is made of numerous small,
highly integrated modules, which are assembled into larger ones
(see an illustration on Fig. 7.1). These in turn are less integrated
but still clearly separated from each other, and they in turn com-
bine into even larger, less cohesive modules and so on. This type of
hierarchy can be characterized in a quantitative manner using the
finding of Dorogovtsev et al. (56) that in certain deterministic
scale-free networks the clustering coefficient of a node with k links
follows the scaling law C(k) < k�1. This scaling law quantifies the

Fig. 7.1. Hierarchical model network (n¼ 2, p¼ 3/5). Its construction starts with a small
core of five nodes, all connected to each other. In step 1 (n = 1) four copies of the five-
node module are made, then a fraction p of the newly copied nodes are picked at random
and connected to a node from the central module (following preferential attachment (46,
47): the probability that a selected node connects to a node i of the central module is
ki=
P

j kj , where ki is the degree of node i and the sum goes over all nodes of the central
module). In the second step (n¼ 2), another four identical copies are created of the 25-
node structure obtained thus far, but only a p2 fraction of the newly added nodes are
connected to the central module in step n¼ 0 (the original five nodes). Subsequently, in
each iteration n the central module of size 5n is replicated four times, and in each new
module a pn fraction is connected to the previous central module (i.e. the network at step
n–2), requiring the addition of (5p)n new links (52).
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coexistence of a hierarchy of nodes with different degrees of clus-
tering. Nodes in the numerous small and cohesive modules have
very large clustering coefficients. Nodes that hold together the
larger but less cohesive modules have smaller clustering coeffi-
cients, indicating that the higher a node’s degree the smaller its
clustering coefficient becomes, asymptotically following the 1/k
law. In contrast, Ref. (47), the Erdõs-Rényi random network
model (57, 58) or various small world models (42, 59), the cluster-
ing coefficient is independent of k.

The presence of such a hierarchical architecture reinterprets the
role of the hubs in complex networks. Hubs, the highly connected
nodes at the tail of the power law degree distribution, are known to
play a key role in keeping complex networks together, playing a
crucial role from the robustness of the network (60, 61) to the spread
of viruses in scale-free networks (62). In a hierarchical structure the
clustering coefficient of the hubs decreases linearly with their degree.
This implies that while the small nodes are part of highly cohesive,
densely interlinked clusters, the hubs are not, as their neighbors have
a small chance of linking to each other. Therefore, the hubs play the
important role of bridging many small communities of clusters into a
single, integrated network. Most interesting, however, is the fact that
the hierarchical nature of these networks is well captured by the C(k)
curve, offering us a relatively straightforward method to identify the
presence of hierarchy in real networks (see Note 1). The scaling law
does not have to have a universal exponent –1; the idea is that larger
nodes have low clustering coefficients; their role is to integrate the
smaller tight clusters on all scales (52).

Figure 7.2 shows examples of three types of biological networks
displaying hierarchical scaling: metabolic (28, 43, 51), protein–
protein interaction (16, 63, 64), and genetic regulatory networks
(8, 22–27).

c)

E. Coli, Alon’s lab 
S. Cerevisiae, Alon’s lab
S. cerevisiae, Young’s lab
1/k

1 10 100 1000
k

10–4

10–3

10–2

10–1

C
(k

)

10–4

10–3

10–2

10–1

C
(k

)

DIP
UETZ
1/k

1 10 100
k

1 10 100
k

0.01

0.1

C
(k

)

Aquifex aeolicus
Escherichia coli
Saccharomyces cerevisiae
1/k

b)a)

Fig. 7.2. Dependence of the clustering coefficient on the node’s degree in three classes of biological networks: (a) metabolic
networks of Aquidex aeolicus (archaea), Escherichia coli (bacterium), and Saccharomyces cerevisiae (eukaryote) (19, 51);
(b) protein–protein interaction networks from the DIP database (63, 64) and from an extensive yeast two-hybrid experiment
(16); (c) genetic regulatory interaction networks from the RegulonDB database (8, 22–26) (network data downloaded from
Uri Alon’s lab, http://www.weizmann.ac.il/mcb/UriAlon/) and a system-level experiment in yeast (27).
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2.2. Method for Finding

Network Modules

A key issue from a biological perspective is to identify the hier-
archically embedded modules of biological networks, and under-
stand how the uncovered structure relates to the true functional
organization of the system. To this end we use a standard cluster-
ing algorithm that uses a similarity measure between nodes to
group them onto a hierarchical tree (for a different clustering
method see Note 2). We define the node-to-node distance
through a measure we call topological overlap.

2.2.1. The Topological

Overlap Matrix

In order to quantify whether two nodes are closely linked into the
same local cluster, we introduce the topological overlap matrix, OT

(i,j). Topological overlap of 1 between substrates i and j implies
that they are connected to the same substrates, whereas a 0 value
indicates that i and j do not share a link, nor links to common
substrates among the metabolites they react with. Defining the
adjacency matrix, Ai,j, of the network as

Ai;j ¼
1 if i and j are connected

0 if i and j are not connected

�
;

the elements of the overlap matrix are given by

OTði; jÞ ¼

PN

k¼1

Ai;k �Aj ;k þAi;j

minðki; kj Þ þ 1�Ai;j
:

As the topological overlap matrix is expected to encode the
comprehensive functional relatedness of the biological network, we
expect that functional modules encoded in the network topology
can be automatically uncovered by a standard clustering algorithm.

2.2.2. Hierarchical

Clustering Algorithm

We choose the unweighted average linkage algorithm (or
Unweighted Pair Group Method with Arithmetic Mean) known
as UPGMA (65, 66) for our hierarchical clustering method. This
algorithm first finds the largest overlap present in the matrix, joins
the corresponding nodes u and v to a branching point on the tree,
and substitutes them with a ‘‘new’’ cluster u; vf g. This new unit
replaces the original u and v in the overlap matrix. It has an overlap
with an arbitrary substrate (cluster) w given by

OTð u; vf g;wÞ ¼ nu �OTðu;wÞ þ nv �OTðv;wÞ
nu þ nv

;

where nu is the number of components in cluster u. This definition
ensures that all original overlap values are represented with the same
weight in the overlap value of the joint cluster, hence the method’s
name ‘‘unweighted average linkage clustering.’’ Repeating this rule
eventually shrinks the overlap matrix to a single unit, corresponding
to the root of hierarchical tree. Thus, we obtain a tree with all the
original substrates as its end-leafs, grouped naturally on branches
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reflecting their hierarchical overlap. When overlap values between
clusters are redundant (i.e., there are at least two groups of clusters
with the same overlap value), the program automatically joins the
pair found first. The ordering of two branches under a junction is
irrelevant, thus arbitrary. The distance between (height of) two
junction levels is defined to be one (Note 3).

We can follow how the clustering algorithm works on a small
hypothetical network shown in Fig. 7.3a. The method placed
those nodes that have a high topological overlap close to each
other (Fig. 7.3b), correctly identifying the three distinct modules
built into the network. It also identified the relationship between
the three modules, as EFG and HIJK are closer to each other in a
topological sense than the ABC module.

2.3. A Case Study: The

Escherichia coli

Metabolic Network

To uncover potential relationships between the topological mod-
ularity and the functional classification of different metabolites we
concentrate on the metabolic network of Escherichia coli, whose
metabolic reactions have been exhaustively mapped and studied
(29). Here we used the network data complied from the WIT
database (19, 28, 51). In order to make our final module map
smaller and easier to study, we take advantage of a few peculiarities
of metabolism and generate a reduced network before we start the
clustering procedure.
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Fig. 7.3. Uncovering the underlying modularity of a complex network. (a) Topological overlap illustrated on a small
hypothetical network. On each link, we indicate the topological overlap for the connected nodes; and in parentheses next
to each node, we indicate the node’s clustering coefficient. (b) The topological overlap matrix corresponding to the small
network shown in (a). The rows and columns of the matrix were reordered by the application of an average linkage
clustering method to its elements, allowing us to identify and place close to each other those nodes that have high
topological overlap. The color code denotes the degree of topological overlap between the nodes. The associated tree
reflects the three distinct modules built into the model, as well as the fact that the EFG and HIJK modules are closer to
each other in the topological sense than to the ABC module. (see Color Plate)
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2.3.1. Generating the

Reduced E. Coli Metabolic

Network

Metabolism relies heavily on the usage of a few substrate pairs,
which undergo very generic chemical changes in a large number of
reactions of all types. A representative example is the ATP–ADP
pair, the cell’s energy fuel molecules. As a phosphate group is
broken off ATP (adenosine triphosphate), the energy released
from the chemical bond fuels the chemical change of the sub-
strate(s) which ATP reacts with. This mechanism is so generic
that ATP and ADP are the greatest hubs of our network: they are
linked to a significant fraction of all substrates. A link from ATP,
ADP, water, etc. to a metabolite A often carries little biologically
relevant information about the function of A. There are many
different reactions where other pairs of metabolites help some
reactions to take place: exchange of a proton or a methyl group,
for example. In order to focus on biologically relevant substrate
transformations, we have performed a biochemical reduction of
the metabolic network. Our guiding principle was to maintain the
main line of substrate transformation on each pathway (Fig. 7.4).
It is important to note that the reduction process is completely
local: it takes place at the level of each reaction, and does not result
in the removal of metabolites, but only in the removal of links from
the graph representation.

To further reduce the complexity of the metabolic graph, we
continue with a two-step topological reduction. Many pathways
uncovered by the first reduction are connected to the rest of the
metabolic network by a single substrate, or represent a long chain
of consecutive substrates that appear as an arc between two

Fig. 7.4. Biochemical reduction of the pathways of the metabolic network. The middle
panel shows the full graph theoretic representation of the path way shown in the left
panel (19). The right panel displays the pathway after biochemical reduction.
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substrates, and have no other side connections. Since the topolo-
gical location of the strings of substrates depend only on one or
two multiply connected terminal substrates, we can temporarily
remove the long non-branching pathways or replace them with a
direct link, without altering the topology of core metabolism. We
define hairs as all sets of nodes that can be separated from the
network by cutting one link. An arc is an array of nodes connected
by only two links to the rest of the metabolism, leading from one
well-connected substrate to another. To generate the reduced
metabolic network we have removed all hairs from the network
and replaced all arcs with a single link, directly connecting the
substrates at the two ends of an arc (Note 4). While the substrates
removed during the topological reduction process are biologically
important components of the network, their removal does not
change the way in which subunits that they were removed from
connect to other parts of the metabolism. In this sense they are
topologically irrelevant (Note 5).

2.3.2. Finding the Hierarchy

of Modules

After reducing the metabolic network to a representative core,
we proceed to break it up into clusters based on its wiring
diagram. The ordering of the overlap matrix according to a
substrate’s horizontal location on the hierarchical tree leads to
Fig. 7.5. This figure provides us a global topological representa-
tion of the metabolism. Groups of metabolites forming tightly
interconnected clusters are visually apparent along the diagonal
line of the matrix; and upon closer inspection, the hierarchy of
nested topological modules of increasing sizes and decreasing
interconnectedness can also be seen. To visualize the relationship
between the topological modules and the known functional
properties of the metabolites, we color-coded the branches of
the derived hierarchical tree according to the predominant bio-
chemical class of the substrates it produces, using a standard,
small molecule biochemistry-based classification of metabolism
(28). The biochemical classes we used to group the metabolites
represent carbohydrate metabolism (blue), nucleotide and
nucleic acid metabolism (red), protein, peptide, and amino acid
metabolism (green), lipid metabolism (cyan), aromatic com-
pound metabolism (dark pink), monocarbon compound meta-
bolism (yellow), and coenzyme metabolism (light orange) (Note
6). The color-coding of the hierarchical tree according to bio-
chemical classification of the metabolites proved a very good
agreement between the uncovered modular hierarchy and the
standard classes of the metabolism. As shown in Fig. 7.5, we
find that most substrates of a given small molecule class are
distributed on the same branch of the tree. Therefore, there
are strong correlations between shared biochemical classification
of metabolites and the global topological organization of E. coli
metabolism (Fig. 7.5, bottom).
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2.3.3. Biochemical

Pathways in the Pyrimidine

Module

To correlate the modules obtained from graph theory–based ana-
lysis to actual biochemical pathways, we concentrate on the path-
ways of the pyrimidine metabolism. The clustering method divides
these pathways into four modules, as shown in Fig. 7.6. All highly
connected metabolites (red boxes) correspond to their respective
biochemical reactions within pyrimidine metabolism, together
with those substrates that were removed during the original net-
work reduction procedure, and then re-added (Fig. 7.6, green
boxes). However, it is also apparent that the putative module
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boundaries do not always overlap with intuitive ‘‘biochemistry-
based’’ boundaries. For instance, while the synthesis of UMP from
L-glutamine is expected to fall within a single module based on a
linear set of biochemical reactions, the synthesis of UDP from
UMP leaps putative module boundaries.

3. Conclusions

Using the above-presented method revealed that the system-level
structure of cellular metabolism is best approximated by a hier-
archical network organization with seamlessly embedded modu-
larity. In contrast to the intuitive picture of modularity, which
assumes the existence of a set of modules with a non-uniform
size potentially separated from other modules, we find that the
metabolic network has an inherent self-similar property: there are
many highly integrated small modules that group into a few larger
modules, which in turn can be integrated into even larger mod-
ules. This is supported by visual inspection of the derived hierarch-
ical tree (Fig. 7.5), which offers a natural breakdown of
metabolism into several large modules, which are further parti-
tioned into smaller, but more integrated, sub-modules. We expect
the method to be very useful for automatically uncovering func-
tionally relevant modules in many types of biological networks.

4. Notes

1. While the presence of C(k) scaling law is a good indication of
hierarchical network architecture, there are known excep-
tions. There is a model proposed by Klemm and Eguı́luz
(67), which obeys the scaling law, it is nonetheless not com-
posed of hierarchically embedded modules. Instead, the
topology of the networks generated by the model is similar
to a chain of locally connected dense clusters (68). In the
Klemm-Eguı́luz model a new node joins the network in each

Fig. 7.6. (continued) pathways branching from a metabolite with multiple connections. Blue- and black-outlined boxes
show the connections of pyrimidine metabolites to other parts of the metabolic network. Black-outlined boxes denote the
core substrates belonging to other branches of the metabolic tree, and blue-outlined boxes denote non-branching
pathways (if present) leading to those substrates. The shaded blue boxes along the links display the enzymes catalyzing
the corresponding reactions, and the arrows show the direction of the reactions according to the WIT metabolic maps (28)
(see Color Plate).
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time step, connecting to all active nodes in the system. At the
same time an active node is deactivated with probability p �
1/k. Thus, by constantly deactivating the less connected
nodes, there is always a central core to which the incoming
nodes tend to link. Once deactivated, a node (and in general
its neighborhood) does not receive more links, and the cluster
it sits in is not embedded in larger and looser structures.
Rather, a series of power-law size-distributed clusters follow
each other along a chain. This model draws attention to a
shortcoming of the C(k) scaling as an indicator of hierarchy: a
collection of internally homogeneous modules of different
sizes neighboring each other (with just a few links to join
them into a network) can also give rise to C(k) < k�1. Thus,
even if the scaling law holds for a particular network, one
should check if the found modules do indeed form a hierarchy
or they are a loosely linked collection of simple modules.

2. Other approaches to module detection in metabolic networks
are based on the idea that edges along a large number of
shortest paths are likely to link different modules of the net-
work (69, 70). Edges on the largest number of paths were
iteratively removed, slowly breaking the network into its
functional modules.

3. The height of a junction could, in principle, contain informa-
tion about the module represented by the branch under it.
For example, the average overlap between metabolites located
at the leaves of the branch could determine the height of the
junction. However, this additional information does not
change the structure of the tree and the way the modules
are organized.

4. Note that we do not repeat the reduction process on the once
reduced network. Thus, after the reduced network is ready, it
can have arcs and hairs in it. These appear, for example, when
two linked nodes both have hair on them, and they both have
three links. After the reduction they are left with two links and
thus are parts of a newly created arc.

5. Removing the ‘‘hairs’’ from a network does not alter the way
its core nodes connect to each other and form modules.
However, the shortening of arcs only makes sense if the net-
work carries some type of conserved flow. In case of the
metabolic network two substrates are usually connected via
a long arc (pathway) not due to functional distance but due to
chemical constraints. Enzymes catalyzing the steps along this
pathway typically make small alterations to a molecule. Thus
some changes take many steps that are part of the same
process of converting A to B. In other types of networks a
link may signify a very different relationship; for example, if
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two proteins in the protein–protein interaction network are
connected via a long arc, there is no reason to believe that they
are closely related by function. In this network a link means
physical binding; the lack of a direct link indicates that the two
proteins probably do not work together. As a consequence,
the protein interaction network should be analyzed without
the shortening of its arcs.

6. The functional groups mentioned above are defined by series
of reactions; thus many metabolites belong to more than one
functional category. The color (category) we choose to repre-
sent the metabolite on the tree was the one that matched the
color (category) of its neighbors on the tree, indicating that it
has stronger connections to this group than any other.
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Chapter 8

Methods to Reconstruct and Compare Transcriptional
Regulatory Networks

M. Madan Babu, Benjamin Lang, and L. Aravind

Abstract

The availability of completely sequenced genomes and the wealth of literature on gene regulation have
enabled researchers to model the transcriptional regulation system of some organisms in the form of a
network. In order to reconstruct such networks in non-model organisms, three principal approaches have
been taken. First, one can transfer the interactions between homologous components from a model
organism to the organism of interest. Second, microarray experiments can be used to detect patterns in
gene expression that stem from regulatory interactions. Finally, knowledge of experimentally characterized
transcription factor binding sites can be used to analyze the promoter sequences in a genome in order to
identify potential binding sites. In this chapter, we will focus in detail on the first approach and describe
methods to reconstruct and analyze the transcriptional regulatory networks of uncharacterized organisms
by using a known regulatory network as a template.

Key words: Transcriptional regulatory network, network reconstruction, template-based method,
network motif, lifestyle, statistical significance.

1. Introduction

Advances in genome sequencing techniques are yielding complete
sequences of genomes of several organisms. Although methods to
identify protein-coding genes within these genomes are highly
advanced today, what this information does not tell us, however,
is how the products of these genes interact and how they are
regulated. In recent years, a variety of high-throughput techniques
have been developed and employed to generate vast amounts of
data that could be used to bridge this gap. For instance, high-
throughput microarray experiments are providing expression data
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for a number of genes under a variety of conditions (1–3);
large-scale experiments using chromatin immuno-precipitation
combined with microarray hybridization (ChIP-chip) are giving
us specific evidence of the regulatory proteins binding to
stretches of DNA (4–7), and additionally, large amounts of data
on protein–DNA interactions from individually conducted
experiments over the years are collected in databases, resulting
in a wealth of literature on gene regulation (8, 9). For some
model organisms, such as Escherichia coli and yeast, these data
have been integrated to produce comprehensive models of their
transcriptional regulatory interactions in the form of networks
(10, 11). The challenge that we currently face is to develop
computational techniques that would allow us to make the most
of this information in order to understand regulation in organ-
isms that are poorly characterized.

There are three fundamental approaches that can be taken to
infer the structure of the organism’s regulatory interaction net-
work from these data, at varying levels of resolution. These are
(i) Template-based methods: This approach exploits the princi-
ple that orthologous transcription factors generally regulate the
expression of orthologous target genes. Thus, in this network
reconstruction method, one starts with a known regulatory net-
work and transfers the information about interactions to genes
that have been determined to be orthologous in a target genome
of interest (12–14). This principle works best in prokaryotes,
where orthologous one-component or two-component transcrip-
tion factors effectively respond to the same signal and tend to
regulate similar sets of target regulons. (ii) Reverse engineering
using gene expression data: In this approach, one scans for
patterns in gene expression data from time-series experiments
and from experiments conducted across several different condi-
tions. If a gene is upregulated following an increased production of
a transcription factor, or downregulated following a knockout of a
transcription factor, a regulatory interaction between the two is
inferred. In the case of expression analysis over different experi-
mental conditions, one infers sets of genes with a similar expres-
sion profile across many conditions to be co-regulated by the
same set of transcription factors (15–19). Such inferences
become more accurate as the number of measurements over a
certain period of time (the time-scale resolution of the data)
increases, since this allows direct regulatory interactions to be
distinguished from indirect (multi-step) regulation. (iii) Infer-
ring networks by predicting cis-regulatory elements: The
third approach makes use of the information about experimen-
tally well-characterized transcription factor binding sites to
make inferences about regulatory interactions. In this method,
promoter regions in the genome of interest are scanned using
known binding site profiles of characterized transcription factors.
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The set of genes that are predicted to have a binding site is
hypothesized to be regulated by the corresponding transcription
factor (20–23).

While the methods mentioned above exploit three different
principles, there have been considerable efforts to develop a
combined approach to predict regulatory interactions with a
higher degree of confidence (10, 24–28). For instance, while
analyzing microarray expression data, initially determined sets
of co-regulated genes can be refined by investigating whether
or not the same transcription factor actually binds to all of them
by predicting the presence or absence of a binding site in the
promoter regions of these genes. In this way, we can distinguish
directly regulated genes from the ones that are regulated through
more complicated network motifs or even genes that just ran-
domly happen to show a similar expression profile.

In this chapter, we will primarily focus in detail on the tem-
plate-based method (12). In order to know more about the other
methods discussed, the reader is asked to refer to other chapters in
this book, which explicitly deal with network reconstruction pro-
cedures using gene expression data and binding site data. For
further information, the reader might visit http://www.mrc-
lmb.cam.ac.uk/genomes/madanm/blang/methods/. In this
companion website, we have provided a comprehensive review of
additional published work that exploits these different methods.

2. Methods

The set of all transcriptional regulatory interactions within a cell
can be conceptualized as a network, which is best modeled as a
graph (10, 11). In such a network, nodes represent genes that are
transcription factors or targets and edges represent direct tran-
scriptional regulatory interaction. A number of recent studies on
transcriptional networks in prokaryotes and eukaryotes have
shown that the structure of such networks can be differentiated
into three distinct levels of organization (10). At the most basic
level, the network consists of a single regulatory interaction
between a transcription factor and its target gene (Fig. 8.1a). At
the intermediate level of organization, studies have uncovered
that the basic unit is organized into fundamental building blocks
of transcriptional regulation, called network motifs (Fig. 8.1b).
These motifs are discrete functional units and are defined as small
patterns of interconnections that are seen in several different con-
texts within the network (6, 29). Finally, at the global level of
organization, the set of all transcriptional regulatory interactions
in a cell forms the global structure, which has been shown to have a
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hierarchical and a scale-free topology (30–32). In other words, the
global structure is characterized by the presence of many transcrip-
tion factors, which regulate few genes, and the presence of a few
transcription factors, the regulatory hubs, which regulate many
genes (Fig. 8.1c).

In the following section, we describe the network reconstruc-
tion procedure to reconstruct conserved transcriptional regulatory
interactions in a genome of interest using a template network (12).
Having obtained the reconstructed networks, we then describe
methods to analyze the networks at different levels of organization
and methods to assess significance of the evolutionary conserva-
tion. Finally, we will also describe methods to correlate the con-
served network structure with the lifestyle of the organism in order
to obtain insights into interactions that are particularly important
for the organism of interest. Throughout this section, we will be
describing the methods by using the E. coli transcriptional network
as the template network.

2.1. Procedure to

Reconstruct the

Transcriptional

Network in a Genome

of Interest Using a

Template Network

2.1.1. Network

Reconstruction Procedure

1. The transcriptional regulatory network for E. coli was used as
the basis to reconstruct networks for other genomes simply
because this is one of the best characterized bacterial networks
that are currently available. Information about regulatory
interactions was obtained from RegulonDB (8). Thus the
template network consisted of 1,295 transcriptional interac-
tions involving 755 proteins (112 transcription factors).

2. Orthologous proteins were identified in the genome of inter-
est using the method described below. If orthologs were
identified for an interacting transcription factor and target
gene, then an interaction was inferred to be present in the
genome of interest (Fig. 8.2). Note that this method can be
readily extended to any starting template network.

Structure of the transcriptional regulatory network

Transcription
Factor (TF  )

Target Gene (TG )

Local structure
(motifs)

Components
(genes & interactions)

Global structure
(scale-free topology)

a b c

Fig. 8.1. Organization of the transcriptional regulatory network into (a) components,
(b) local structure, and (c) global structure. Black and gray circles represent transcription
factors (TFs) and target genes (TGs) and an arrow represents a direct regulatory interaction.
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2.1.2. Orthology Detection

Procedure

Detecting orthology is a non-trivial exercise and can be confounded
by paralogs or sequence divergence in a genome of interest. After
testing various orthology detection procedures (bidirectional best
hit, best hits with defined e-value cutoffs, etc), we arrived at a hybrid
procedure that was used to reliably identify orthologous proteins in
a genome of interest (see Note 1 and Fig. 8.3).

Template based method to reconstruct transcriptional network

Step 1 Step 2 Step 3

Define the TFs
and TGs in the 

template network

Identify orthologous
proteins in the genome 

of interest

Infer interactions if 
orthologous TFs and TGs exist in 

the genome of interest

Fig. 8.2. Method to reconstruct the transcriptional network for a genome of interest
starting from an experimentally characterized template regulatory network. Black circles
represent transcription factor proteins in the network, gray circles represent target
genes, and black arrows represent direct regulatory interaction. Light gray circles
represent proteins that are absent in the genome of interest for which an interaction is
known in the template network.

Fig. 8.3. Hybrid method to detect orthologous proteins from the genomes of interest.
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2.1.2.1. Bidirectional

Best-Hit Procedure

1. For each protein P in the template network, a BLAST search
was performed against the genome of interest (x).

2. The best hit, sequence Px from genome x, was then used as a
query and a BLAST search was carried out against the E. coli
genome.

3. If the best hit using Px as the query happens to be P in the
template genome, then P and Px were considered as ortholo-
gous proteins.

4. If however Px does not pick up P from the template genome
as its best hit, then a BLASTclust procedure was adopted.

2.1.2.2. BLASTclust

Procedure

1. For each of the proteins P in the template network for which
the above-mentioned procedure did not pick up orthologous
proteins, the best-hit sequences Px (using P as the query
against genome x) for each genome was obtained. Thus, for
every protein P, this procedure gave us a set of proteins, which
were the best hits from genomes where the bidirectional best-
hit procedure failed.

2. The set of sequences thus obtained along with the query
protein was taken through a BLASTclust (33) procedure
using length conservation (L) of 60% and a score density (S)
of 60% (see Notes 2, 3, 4).

3. All sequences belonging to the cluster that also contains the
query protein P from the template network were considered
as orthologs (Fig. 8.3).

However, it should be kept in mind that these automated
procedures for ortholog identification always yield a certain num-
ber of false positives.

2.1.3. Method to Create

Random Networks to

Assess the Significance of

Trends Observed in

Reconstructed Networks

To assess the significance of trends observed in real network, it is
essential to ensure that the observed trends are meaningful and are
not something that is expected by chance. To this end, the gen-
eration of random networks provides a good way of assessing the
statistical significance of the trend. The method below (Fig. 8.4)
details the procedure to generate several random networks similar
to what is seen in the reconstructed network. The random net-
works generated will be used in the next sections to explain how
statistical significance is computed.

1. The number of transcription factors and target genes were
defined in the reference network.

2. Orthologs of transcription factors and target genes were
detected in the genome of interest and the numbers of TFs,
x and TGs, y are noted.

3. To generate the random network, x TFs and y TGs were
randomly chosen and the network was reconstructed based
on the randomly chosen x TFs and y TGs.
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2.2. Methods to

Analyze Genes and

Regulatory Interactions

2.2.1. Procedure to Analyze

the Conservation of Genes

and Regulatory Interactions

1. Interactions in the template network were ordered and indexed.
For every genome, the reconstructed network was represented
as a vector of 1 and 0. 1 represents the presence of an interaction
and 0 represents the absence of an interaction. Note that a
similar vector can be generated to create a transcription factor
presence/absence profile for all the genomes of interest.

2. Having constructed the vector for every genome, the distance
between the vectors (which represents the similarity in the
interactions conserved between a pair of genomes) was calcu-
lated (Fig. 8.5). A tree representing the similarity of interac-
tions (or genes) conserved in the different genomes was
obtained using the distance matrix.

3. Alternatively, the vectors can be clustered using standard
clustering programs such as Cluster (34) and visualized
using Matrix2png (35). This provides a visual representation
of the interactions conserved in the genomes of interest
(see Notes 5, 6, 7).

4. It should be noted that a similar exercise performed on the pre-
sence/absence profile for transcription factors would allow us to
group genomes based on similar transcription factor content.

Reference network
#TFs = 8
#TGs = 9

#interactions = 21

Ortholog detection
#orthologous TFs = 4
#orthologous TGs = 7

Reference genome Genome of interest Genome of interest

Reconstructed network
# orthologous TFs = 4
#orthologous TGs = 7

#reconstructed interactions = 9 

Select 4 TFs and 7 TGs randomly
n-times from the reference network

Random network 1 
(4 reconstructed interactions)

Random network 2
(8 reconstructed interactions)

Reconstruct network
based on reference network

Reconstruct network
based on reference network

Random network ‘n’
(9 reconstructed interactions)

Reconstruct network
based on reference network

Generating ‘n’ random networks of similar size (as seen in genome of interest)

Fig. 8.4. Procedure to generate random networks to assess statistical significance.
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2.2.2. Procedure to Analyze

the Significance of

Conservation of Genes and

Interactions

To assess if the genome of an organism living in a particular envir-
onment has conserved regulatory interactions differently from what
would be expected by chance, we employ the following procedure.

1. For each of the genome of interest, we generated 10,000
random networks as described in point 1 of Section 3.1.

2. For each of the genomes of interest, the mean m and standard
deviation s of the fraction of interactions (or genes) conserved
for the 10,000 random networks and the reconstructed net-
work were obtained.

3. The P-value, a measure of statistical significance, was calcu-
lated as the fraction of the runs where the fractional conserva-
tion was greater than or equal to the observed value for a
genome of interest.

4. The Z-score, a measure of how significantly the value deviates
from the expected value, was calculated as Z¼ (mobs – mmean)/s.

2.3. Methods to

Analyze Local Network

Structure

Studies on the local level of transcriptional regulatory network
have elucidated the presence of small patterns of interconnections
called network motifs. It is now generally accepted that three kinds

organism A
interaction 0001: yes
interaction 0002: yes
interaction 0003: yes
interaction 0004: no
interaction 0005: yes
interaction 0006: no
.
.
interaction 1295: yes

organism B
interaction 0001: yes
interaction 0002: no
interaction 0003: yes
interaction 0004: yes
interaction 0005: yes
interaction 0006: no
.
.
interaction 1295: yes

.....

organism Z
interaction 0001: no
interaction 0002: no
interaction 0003: no
interaction 0004: yes
interaction 0005: yes
interaction 0006: no
.
.
interaction 1295: no

Interaction conservation profile

interaction     1  2  3  4  5  6  .  .   1295
organism A    1  1  1  0  1  0  .  .   1 
organism B   1  0  1  1  1  0  .  .   1
.
organism Z   0  0  0  1  1  0  .  .    0
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....Z
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view using standard programs interaction     6  4  2  1  3  5  .  .   1295
organism A    0  0  1  1  1  1  .  .   1 
organism B   0  1  0  1  1  1  .  .   1
.
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DE
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G H
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Fig. 8.5. Method to analyze interactions and genes conserved in the genomes of interest.
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of network motifs dominate these networks in prokaryotes and
eukaryotes. These are the (i) feed forward motif, (ii) single input
motif, and (iii) multiple input motif. In the following section, we
describe the procedure to analyze the conservation of network
motifs in the genomes of interest.

2.3.1. Procedure to Analyze

the Conservation of

Network Motifs

1. Network motifs in the template network were identified using
the Mfinder program.

2. All identified motifs in the template network were ordered
and indexed.

3. A motif was considered to be absolutely conserved from a
template to a target genome if all the genes constituting the
motif in the template network were found to be conserved in
the genome of interest. If some genes were missing, the
fraction of conserved interactions in the motif was noted
(Fig. 8.6).

4. Thus for each genome, an ordered n-dimensional vector
(motif conservation profile) is created, where n is the number
of motifs considered. The values represent the fraction of the
interactions forming the motifs that are conserved (Fig. 8.6).

F1 Fn S1 Sn M1 Mn

Template 
network ... ...

F1 Fn S1 Sn M1 Mn
organism A ... ...

F1 Fn S1 Sn M1 Mn
organism B ... ...

....Z

.

.

.

.

....

(1/3).(3/3)B

(1/3).(3/3)A

FnF2F1Org

....Z

.

.

.

.

....

(3/3).(2/3)B

(3/3).(2/3)A

SnS2S1Org

....Z

.

.

.

.

....

(4/4).(1/4)B

(4/4).(2/4)A

MnM2M1Org

motif conservation
profile

feed-forward motifs single input modules multi input modules

standard clustering of motifs e.g. K-means standard clustering of motifs e.g. K-means

...

...

...

Fig. 8.6. Procedure to analyze conservation of network motifs in the genomes of interest.
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5. This matrix was then subjected to the procedure explained in
point 1 of Section 3.2 to identify organisms that have a
similar motif conservation profile.

2.3.2. Procedure to Analyze

the Significance of

Conservation of Network

Motifs

1. In order to assess if interactions in motifs are selectively con-
served, it becomes important to evaluate whether interactions
in a motif are more conserved than any interaction in the
network. We introduce a term called conservation index
(C.I.) that allows us to assess this trend.

C:I:
genome X ¼ log2

Rmotif

Rall

� �

Rmotif ¼
I motif

genome X

I motif
template

and Rall ¼
I all

genome X

I all
template

In this definition, I motif
genomeX is the number of interactions that

forms a motif in the template network, which has been con-
served in genome X. I motif

template is the number of interactions in a
motif in the template network. I all

genomeX is the total number of
interactions that have been conserved in genome X and
I all

template is the total number of interactions in the template
network (see Note 8).

2. To assess if the C.I. value could be obtained by chance,
the same value was calculated for 10,000 random networks
generated using the procedure described in point 3 of
Section 3.1.

3. For each of the genomes of interest, the mean m and standard
deviation s of the C.I. value for the 10,000 random networks
were obtained.

4. The P-value, a measure of statistical significance, was calcu-
lated as the fraction of the runs where the value of C.I. was
greater than or equal to the observed value for a genome of
interest.

5. The Z-score, a measure of how significantly the value
deviates from the expected value, was calculated as Z ¼
(mobs – mmean)/s.

2.4. Methods to

Analyze Global

Network Structure

2.4.1. Procedure to Analyze

Global Network Structure

The distribution of outgoing connectivity is a parameter that is
indicative of the large-scale structure (topology) of a network. It is
well established that the outgoing connectivity for the E. coli
network follows a scale-free behaviour, i.e., the distribution is
best approximated by a power-law function T ¼ aK–b where T is
the number of transcription factors with K connections. To eval-
uate the distribution for the reconstructed networks we describe
the following procedure:
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1. For each of the reconstructed networks of the genomes of
interest, the distribution was approximated by a linear func-
tion (T ¼ a + bK), exponential function (T ¼ ae–Kb; log T ¼
log a – Kb log e) and a power-law function (T¼ aK–b; log T¼
log a – b log K).

2. The function that best approximates the observed distribu-
tion is identified as the one that has the lowest standard
error.

2.4.2. Procedure to Analyze

the Significance of

Conservation of Global

Network Structure

To identify the trend in random networks the following procedure
was carried out:

1. For each of the genomes of interest, we a created 10,000
random networks as described in point 3 of Section 3.1.

2. The procedure explained above (point 1 of Section 3.4) was
executed on each of the 10,000 networks to get the function
that best approximates the distribution for the random
networks.

3. For each of the genomes of interest, the mean m and standard
deviation s for the power-law exponent over all 10,000 ran-
dom networks were computed.

4. As before, the P-value was calculated as the fraction of the
runs where the value for the exponent was greater than or
equal to the observed value.

5. As before, the Z-score was calculated as Z ¼ (mobs –
mmean)/s.

2.5. Method to

Co-relate Lifestyle Data

with the Conservation

of Regulatory

Interactions and

Network Motifs

2.5.1. Lifestyle-Based

Network Similarity Index

(LSI)

1. For each organism studied, lifestyle information was collected
from the literature and from various sources, including the
NCBI genome information website, Brocks Manual of
Microbiology, and Bergey’s Manual of Determinative and
Systematic Bacteriology.

2. The following attributes were used to define the lifestyle class
of an organism (see Note 9):
a. Oxygen requirement (aerobic, anaerobic, facultative,

microaerophilic)

b. Optimal growth temperature (hyperthermophilic, ther-
mophilic, mesophilic)

c. Environmental condition (aquatic, host-associated, multi-
ple, specialized, terrestrial)

d. Pathogen (yes, no)

3. The lifestyle (LS) of an organism is defined as a combina-
tion of the above four properties. For example, E. coli
would be classified as ‘‘facultative:mesophilic:host-
associated:no’’.
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4. Similarity measure between any two organisms was defined as
the similarity in the ‘‘interaction conservation profile’’ or the
‘‘network motif conservation profile’’.

5. Normalized similarity based on the interaction and motif
conservation is calculated for each pair of lifestyle classes
(Fig. 8.7).

6. Lifestyle-based network similarity index (LSI), which is an
indication of how often organisms with similar lifestyle con-
serve similar interactions or network motifs (see Note 9), was
calculated as:

LSI ¼
Average similarity between organisms

belonging to the same lifestyle

Average similarity between organisms
belonging to different lifestyles

¼

P
Diagonal elements

Number of diagonal elementsP
Off diagonal elements

Number of off diagonal elements

2.5.2. Procedure to Assess

Significance of the

Observed LSI Values

To test the significance of LSI values, we perform randomization
experiments.

1. First, 176 random networks of the size similar to each
genome studied were generated.

2. Next, the LSI value was calculated for the random network
using the definition of the lifestyle class defined in point 1 of
Section 3.5.

3. This procedure was carried out 1,000 times, and the P-value
was calculated as the number of times the LSI values in the
simulation were greater than the observed value.

Fig. 8.7. Lifestyle and similarity in the interactions conserved. LS: lifestyle class, O:
organism.
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4. The Z-score was calculated as the ratio of the difference
between the observed and the average LSI value to the stan-
dard deviation in the observed distribution of LSI values for
the 10,000 random networks.

3. Materials

3.1. Hardware

Requirements
1. Personal Computer with at least 512 MB memory, 10 GB

hard-disk space, and a processor of at least 1 GHz or
better.

2. Access to a Linux or a UNIX workstation.

3. Stable connection to the Internet.

3.2. Software

Requirements

1. A recent version of PERL installed on a Linux or UNIX
environment (freely available for download at: http://
www.perl.com)

2. A versatile Windows text editor such as TextPad for win-
dows (available at http://www.textpad.com) or nedit for
Linux

3. A recent version of the NCBI BLAST suite of programs (36)
for Linux (freely available from the NCBI website at: http://
www.ncbi.nlm.nih.gov/ftp/)

4. A recent version of the motif finding program Mfinder (37)
for Windows (freely available from the Weizmann Institute at:
http://www.weizmann.ac.il/mcb/UriAlon/groupNetwork
MotifSW.html).

3.3. Template

Transcriptional

Regulatory Network

Information on transcriptional regulation is available for several
model organisms. The following websites provide a list of regula-
tory interactions in different organisms. The networks have been
manually curated in several cases and contain regulatory interac-
tions inferred from large-scale functional genomics experiments in
the case of yeast. For the method described in this chapter, we use
only the E. coli regulatory network as the template. It should be
noted at this point that any network can be potentially used as a
template network.

1. Escherichia coli: RegulonDB (8) (http://regulondb.ccg.
unam.mx/index.html)

2. Bacillus subtilis: DBTBS (38) (http://dbtbs.hgc.jp/)

3. Corynebacterium species: Coryneregnet (9, 39) (https://
www.cebitec.uni-bielefeld.de/groups/gi/software/cory-
neregnet/)
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4. Saccharomyces cerevisiae: A curation of regulatory interactions
from several different small-scale and large-scale studies (40, 41)
(http://www.mrc-lmb.cam.ac.uk/genomes/madanm/
tfcomb/tnet.txt).

3.4. Complete Genome

Sequences and

Lifestyle Information

for Organisms of

Interest

1. The complete genome sequence and the predicted proteome
of several prokaryotic and eukaryotic genomes can be
obtained from the NCBI genomes website at: http://
www.ncbi.nlm.nih.gov/genomes/lproks.cgi

2. Detailed and systematic information about the lifestyle of
different completely sequenced genomes can be obtained
from the same website by clicking on the ‘‘organism info’’
tab. If this information is not available, the reader is suggested
to obtain it from the publication describing the genome
sequence or refer to the Brock’s Biology of Microorganisms
or Bergey’s Manual of Determinative and Systematic Bacter-
iology (available at: http://www.cme.msu.edu/Bergeys/)

4. Notes

1. Bidirectional best hit is a very conservative approach to detect
orthologs. It performs best for closely related organisms and may
fail to pick up orthologs from distantly related organisms. The
best-hit method using specific cutoffs is too liberal, and may
result in false-positive hits when the genomes compared are
distantly related or when there are many closely related paralogs
in the genome of interest. So our hybrid orthology detection
method uses a combination of both methods as described above.

2. The BLASTclust procedure first carries out an all-against-all
sequence comparison and produces clusters of sequences
using the single linkage-clustering algorithm. This will ensure
that orthologous proteins in distantly related organisms
would still be picked up reliably through the sequences from
intermediately distant genomes.

3. Manual analysis of the clusters obtained using various combina-
tions of values for the parameters revealed that the parameters
score density S¼0.6 and length overlap L¼0.6 perform best,
with an optimal coverage and the lowest false-positive rate.

4. In the BLASTclust algorithm, score density (S) is defined as
the ratio of the number of identical residues in the alignment
to the length of the alignment. Detailed documentation for
BLASTclust is available at: ftp://ftp.ncbi.nlm.nih.gov/
blast/documents/blastclust.html.
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5. Cluster is a versatile program that allows users to cluster
vectors representing the conserved network. It provides
several clustering methods such as (i) hierarchical clustering,
(ii) K-means clustering, and (iii) self-organizing maps. Hier-
archical clustering can be done using (a) single linkage,
(b) multiple linkage, (c) centroid linkage, and (iv) average
linkage methods. The program also allows the use of different
distance measures to cluster vectors such as Pearson’s correla-
tion coefficient, Euclidean distance, Spearman’s rank correla-
tion, etc. In our experience, we find that either K-means
clustering or hierarchical clustering using the single linkage
method and Pearson’s correlation coefficient distance mea-
sure gives the best results. The cluster software can be down-
loaded from: http://bonsai.ims.u-tokyo.ac.jp/�mdehoon/
software/cluster/.

6. Matrix2png is a simple and powerful program that can be
used to visualize the vector representation of the conserved
networks in the genomes of interest. It generates PNG format
images from tab-delimited text files of vector data. This soft-
ware can be downloaded from: http://www.bioinformatics.
ubc.ca/matrix2png/.

7. The distance matrix representing the similarity between the
vectors representing the conserved networks can be visualized
as a tree by using the treeview package. Treeview can be
downloaded from: http://taxonomy.zoology.gla.ac.uk/
rod/treeview.html.

8. In the calculation of the conservation index (C.I.) for network
motifs, the log2 of the ratio ensures that selection for and
against are represented symmetrically in the graph. For exam-
ple, if Rmotif = 0.9 and Rall = 0.6, C.I. can be calculated as log2

(0.9/0.6) = 0.58. Thus if interactions in motifs are selected
for, then the C.I. value will be greater than 0; if not, the value
will be less than 0.

9. It should be noted that other features, such as salinity, pressure,
tolerance to damaging radiation, can also be used as additional
attributes to define lifestyle class. It is worth mentioning our
observation that organisms with similar lifestyle can be very
distantly related and organisms that are close evolutionary
relatives very often tend to colonize different ecological niches.

10. In the example described in point 1 of Section 3.5, LSI can
be calculated as: [(0.90 + 0.85)/2)/[(0.4 + 0.4)/2) = 2.18
(i.e., the ration of the average of the diagonal elements to the
average of the off-diagonal elements). In other words, if the
organisms with a similar lifestyle have higher similarity in
motif or interaction content than the organisms with dissim-
ilar lifestyle, then the LSI should be greater than 1.
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11. From our analysis of the reconstructed regulatory networks,
we observed that transcription factors are typically less con-
served than their target genes and evolved independently of
them, with different organisms evolving distinct repertoires of
the transcription factors responding to specific signals. We
identified that prokaryotic transcriptional regulatory net-
works have evolved principally through widespread tinkering
of transcriptional interactions at the local level by embedding
orthologous genes in different types of regulatory motifs.
Different transcription factors appear to have emerged inde-
pendently as dominant regulatory hubs in various organisms,
suggesting that they have convergently acquired similar net-
work structures approximating a scale-free topology. We also
noted that organisms with similar lifestyles across a wide
phylogenetics range tend to conserve equivalent interactions
and network motifs. Thus, it appears that organism-specific
optimal network designs have evolved due to the selection for
specific transcription factors and transcriptional interactions
that allowed responses to prevalent environmental stimuli.
The methods for biological network analysis introduced
here can be applied generally to study other networks, and
the predictions available in the supporting website (http://
www.mrc-lmb.cam.ac.uk/genomes/madanm/evdy/) can
be used to guide specific experiments.

Supplementary
Information

See http://www.mrc-lmb.cam.ac.uk/genomes/madanm/blang/
methods/ for an overview of literature in the field of transcrip
tional network reconstruction.

See http://www.mrc-lmb.cam.ac.uk/genomes/madanm/evdy/
for detailed supplementary material and reconstructed networks
for 175 prokaryotic genomes.
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Chapter 9

Learning Global Models of Transcriptional Regulatory
Networks from Data

Aviv Madar and Richard Bonneau

Abstract

Organisms must continually adapt to changing cellular and environmental factors (e.g., oxygen levels) by
altering their gene expression patterns. At the same time, all organisms must have stable gene expression
patterns that are robust to small fluctuations in environmental factors and genetic variation. Learning and
characterizing the structure and dynamics of Regulatory Networks (RNs), on a whole-genome scale, is a
key problem in systems biology. Here, we review the challenges associated with inferring RNs in a solely
data-driven manner, concisely discuss the implications and contingencies of possible procedures that can
be used, specifically focusing on one such procedure, the Inferelator. Importantly, the Inferelator explicitly
models the temporal component of regulation, can learn the interactions between transcription factors and
environmental factors, and attaches a statistically meaningful weight to every edge. The result of the
Inferelator is a dynamical model of the RN that can be used to model the time-evolution of cell state.

Key words: Network inference, biclustering, network reconstruction, microarray, data-integration,
cMonkey, archaea, the Inferelator.

1. Introduction

1.1. Introduction and

Structure of this

Chapter

In this chapter we discuss the methods for learning Transcriptional
Regulatory Networks (TRNs) from data in a cost-effective manner.
There are numerous mechanisms by which cells regulate the activ-
ity and relative concentrations of different gene products
including, but not limited to, chromatin structure, transcriptional
regulation, translational regulation, post-translational modifica-
tion, and degradation. In the end, mechanisms for biological
regulation define the control of a wide number of possible cell
states: developmental, physiological, etc. It is well agreed that
transcription factors (TFs) determine a major part of the gene
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expression profile within each cell type. TFs, in turn, are controlled
by the cell’s environment. Taken together, TFs or regulators and
their effect on their target genes constitute a TRN. In this review,
we will (1) define the problem of TRN inference; (2) shortly
review the relevant experiments and data types that we consider
relevant for TRN inference, and discuss their implications, limita-
tions, and contingencies; (3) discuss the design principles that
underlie TRNs and the cognate challenges associated with infer-
ring TRNs; (4) generally outline, what we consider to be, the
requirements of a good solution for TRN inference; (5) introduce
Bayesian networks and their possible use for TRN inference fol-
lowed by a description of one previously described method of our
own construction; and, lastly, (6) summarize the chapter and
conclude that for prokaryotic systems, we can already learn pre-
dictive dynamical models from sequence, expression, and ChIP-
chip data. We do not aim to provide the reader, herein, with an
encyclopedic knowledge of all methods for TRNs inference, rather
intend to introduce a complete set of foundational concepts and
then end with a complete description of one method, the
Inferelator (1).

1.2. Classical and

Modern Study of TRNs

The study of genetic regulatory networks has evolved greatly in the
past 10 years due to the influx of high-throughput technologies, but
has been central to molecular biology since the inception of classical
biochemistry and genetics. Jacob and Monod’s groundbreaking
work on the Lac operon (Note 1) (2) provided an initial paradigm
for genetic control in all cells, and helped to establish the concept
that certain proteins can interact with DNA regulatory sequences
and small molecules, and that their interactions can bring about
adaptive changes in cellular state. Following their work, several
other small-scale TRNs were resolved to a great extent, such as the
development of the sea urchin embryo (3, 4) and the progression of
cell cycle in yeast (5). However, the experimental methods available
at the time limited their scope, while also requiring a labor- and time-
intensive study over several decades for their construction. Today,
with many genome projects completed, and emerging genomic
techniques enabling system-wide measurement of key mRNA, pro-
tein, and protein–DNA affinity, a significant volume of research is
directed at developing learning methods – computational, machine-
learning, and statistical methods – that use genome-wide data to
produce models of TRNs which can predict the dynamical behavior
of cells in diverse cell states. The introduction of microarrays – assays
that measure global mRNA levels – initially spurred a large effort to
improve our ability to elucidate TRNs directly from data. Other
technologies – including proteomics, metabolomics, and studies of
protein post-translational modification – further increase the need
for methods that learn directly from data.
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2. Review
of Functional-
Genomics Data
Types with Respect
to TRNs

2.1. Microarrays

We start with a short review of the most common system-wide
techniques currently available for researchers looking at global
regulation and their implications for network inference.

Microarrays are predominantly used to explore the profile of
gene mRNA expression pattern of thousands of genes simulta-
neously. Briefly, on a substrate, a dense two-dimensional grid is
created by either chemically synthesizing or depositing short DNA
oligonucleotides at specific locations. Each short oligonucleotide
and its location on the grid can be called a feature, and many features
can be contained on one array spanning the genome of interest.
Depending on the technology used, each array can have several
thousand to approximately one million features. Each probe is
designed to recognize a specific gene by the process of complemen-
tary hybridization. By extracting and labeling mRNAs from experi-
mental samples, and then hybridizing those purified mRNAs to the
array, the amount of labeled mRNA specifically binding to each
complimentary feature can be estimated at each feature, by measur-
ing the fluorescence intensity at each feature’s location. The overall
process enables a global measurement of the expression level in
a given sample. The necessity to perform biological replicates is
undisputed as the measurement of the biological repeats allows
us to assess the level of measurement variability and biological
variance, thus enabling statistically sound downstream analysis.
Multiple features on the chip can correspond to the same gene,
thus providing a form of replicate measurement commonly
referred to as a technical replicate. Alternatively, repeating the
experiment wholesale on similarly prepared but separate biologi-
cal sample can be referred to as a biological replicate. Both types
of replicates are necessary for high-quality data. Depending on
the biological question, and the experimental design, microarray
data preprocessing – e.g., normalization (Note 2) and transfor-
mation (Note 3) – is commonly done with the purpose of redu-
cing the inherent noise and facilitating further analysis of the
expression profile.

A wide range of methods for microarray data analysis have
evolved, ranging from simple fold-change approaches that test
for differential gene expression between two experimental condi-
tions to more complex and computationally demanding
techniques. Many early techniques cluster genes – i.e., grouping
genes with correlated expression over all different experimental
conditions. However, when analyzing a large data set, composed of
hundreds to thousands of experimental conditions, a large
portion of the genes may be co-expressed under a subset of the
experimental conditions in the data set. Pre-grouping co-expressed
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genes under subsets of relevant conditions is termed ‘‘bicluster-
ing’’ (Note 24), and several algorithms that do so have been
described (6–12). As clustering is a key first step prior to or in
conjunction to TRN inference, it receives a thorough discussion
at the Notes section.

To date mRNA measurements have played an essential role
in learning TRNs, due to their availability, cost-effectiveness,
and reliability when used properly. Global measurements of
mRNA (by Microarrays, LYNX MPSS (13), SAGE (14) or as
of yet unimagined technologies) will continue to be a central
technology supporting TRN inference, as changes in transcrip-
tion (of mRNA) are the direct effects of transcriptional control
by any mechanism. Microarrays are not, however, in-and-of-
themselves sufficient for elucidating TRNs; TFs are active at the
protein level, not the mRNA level.

Limitations and contingencies: (1) Methods should be
designed to tolerate error expected with microarray measure-
ments. (2) A large number of experimental repeats are needed
to allow a later, rigorous statistical analysis, bringing the cost up.
(3) There is no standard analysis method for microarrays, making
the comparison of results obtained from different groups proble-
matic. We must, therefore, combine the data obtained from
microarrays with additional complementary technologies as
detailed below.

2.2. Direct Assays of

Protein–DNA

Interactions

Direct measurement of possible regulatory factors binding sites in
vivo (and at different cell states) has recently become possible on a
genome-wide scale with the emergence of Chromatin immuno-
precipitation (Note 4) on-chip (ChIP-chip) (15–17). The purpose
of ChIP-chip is to determine whether a protein, most commonly a
TF, binds to particular regions in the genome – e.g., promoters
and enhancers that the TF recognizes. Briefly, DNA-binding pro-
teins are covalently bound to the DNA on which they are situated,
via in vivo cross-linking. Once the proteins have been immobilized
on the chromatin, DNA is broken to short segments (0.2–1 Kb) by
sonication, or some other method of fragmentation. The protein–
DNA complexes are then immunoprecipitated using an affinity
purification method (the protein of interest being ‘‘tagged’’
prior). In the original protocol this was achieved by adding a
multi-protein repeat to the termini of the proteins of interest and
then using an antibody to this ‘‘tag’’ to purify only the specific
protein of interest. The result is an enrichment of the DNA
sequence fragments that were bound by the TF under examina-
tion. The fraction of DNA/protein is then separated, the cross-
links are reversed, and the resulting DNA sequence (the target
of the TF) is fluorescently labeled. At this stage the isolated DNA
is hybridized to a microarray that represents the intergenic-
regulatory sequences of the organism. The resulting analysis ideally
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pinpoints the positions on the DNA where the TF is binding and
the sequences it recognizes. The regulatory regions can than be
mapped to the genome and suggest which genes are being regu-
lated by the TF. Results from several Chip-chip experiments can
be combined to produce a putative protein–DNA interaction
network.

Limitations and contingencies : (1) The method is labor-intensive
– requiring an experiment per protein of interest, per cell state of
interest. (2) It measures protein–DNA interactions, but does not
reveal whether the binding is functional, non-functional, activator,
repressor, part of a multi-protein complex, etc. (3) Moreover, the
results can suffer from a large percent of false positives (Note 5)
and false negatives (Note 6). Thus, integration with expression
and protein measurements is required for using this data as part of
a TRN inference procedure.

2.3. Functional

Annotations

(Constraints from Prior

Functional

Information)

For illustration purposes we focus here on the gene ontology (GO)
database (18); however, other databases for functional annotations
are available, to name a few: KEGG and EcoCyc (19, 20) for meta-
bolic pathways, TRANSFAC (21) for protein–DNA interactions
and SWISS-PROT (22) that provides high level of annotation such
as the protein function, its domain structure, and post-translational
modifications. The gene ontology encodes a consistent descrip-
tion of function, localization, and cellular processes of gene pro-
ducts. The GO project has three major vocabularies (ontologies) that
describe gene products in terms of their associated biological pro-
cesses, cellular components, and molecular functions in a species-
independent manner. The ontologies are structured as directed
acyclic graphs, which are similar to hierarchies but differ in that a
child, a more specialized term, can have multiple parents. Com-
monly, researchers check for co-function of genes in order to decide
if a group of genes (e.g., a cluster) shares a function and then use that
information to guide clustering or classification of functional mod-
ules prior to inference of TRNs. A commonly accepted assumption
is that genes that share the same function – e.g., GO molecular
function – are likely to be co-regulated. Even in primarily data-
driven methods we can use co-association of functional terms as
an overall sanity check after running the method in question, i.e.,
this step is usually done after the biclusters have been assigned
and is used as overall check of the validity of the results.

Limitations and contingencies : (1) Out of all the annotated
genes, only a small portion has been experimentally determined.
(2) Annotations for non-model organisms had been determined
based on homology to experimentally verified functional annota-
tions; thus the annotations for small or model organisms will tend
to be much more useful than for humans, for example. (3) A given
gene may not share an exact term with another gene but may be
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connected to it via a common parent; there is no standard protocol
for deciding how near in the hierarchy the parent should be to
designate the genes as sharing function. Therefore, although GO
terms can be useful, they too should be considered indicative of
gene function, and preferably integrated with the analyses of
microarrays and other data types.

2.4. Protein–protein

interactions

Yeast Two-Hybrid (Y2H) and Mass Spectrometry (MS): Multi-
protein complexes are commonplace in the cellular environment
and critical to nearly all biological processes. It has been observed
that often these molecular machines are co-regulated and share TF
binding sites in their regulatory region. Conversely, if proteins
are shown to interact, this can suggest that they are co-regulated.
Y2H (23) and MS (24) are tools that suggest physical interactions
between proteins; although these methods have no direct rele-
vance for regulatory network inference, they are often used to
constrain learning of regulatory modules (12, 25). We will not
focus heavily on the use of physical interactions in constraining
TRNs inference herein.

2.5. Systems Biology

Data Quality

The data types discussed above are relatively novel, and a complete
discussion of the dramatically different data qualities one can
expect from different applications of these technologies is beyond
the scope of this chapter. Factors affecting data quality range from
those associated specifically with different technologies (different
platforms, different methods) to factors associated with experi-
mental design (such as sampling rate, number of replicates used
per experiment) to the error associated with random (or non-
systematic) noise. One of the most important concepts in
designing and carrying out a biological assay is to enforce strict
quality control measures. For example, microarrays explore the
mRNA levels of thousands of genes in a single experiment, and
thus have many possible factors that can bias the results.

Therefore, it is important that variable factors be well con-
trolled and well accounted for if the desire in a given experiment is
to probe the effect at the transcript level of a single factor.
Combinatorial design – i.e., varying multiple genetic and/or
environmental factors simultaneously – can also be useful if the
end goal is to integrate all data for a given organism to infer global
regulatory networks. Overall, correct experimental design is essen-
tial to the success of any network inference procedure (26), but is
not discussed here. Several examples of the measures taken to
ensure quality of microarray experiments follow: (1) the use of
arrays from the same similar batch or the use of assays with some
measure of continuity, this goes for all other consumables such as
dyes, prep kits, etc. (all of which can have strong, sometimes
sequence dependant, effects on experimental outcome); (2) All
experiments need to be done with uniform lab protocols, with all
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meta-data – i.e., data describing experimental setup and environ-
mental factors – properly recorded; (3) Having a large number of
biological replicates (Note 7) for each experiment is essential for
providing a statistical backbone for the results. Lack of sufficient
number (Note 8) of replicates may produce erroneous data that
will derail future analysis including network inference; (4) Data
preprocessing including normalization and transformation is often
used to reduce the variability across the different experiments and
allow the data collected from different groups and possibly differ-
ent platforms to be used under one data set. Other data types have
multiple similar considerations that must be considered, e.g.,
ChIP-chip produces a large number of false positives and hence
should be used as suggestive and not necessarily recapitulating real
biological relevant protein–DNA interactions.

An emerging consensus is that time series measurements, i.e.,
dynamical observations, are essential to learning truly causal rela-
tionships, and thus true regulatory interactions, and this need for
kinetic (or time-series) data is well established in other fields, such
as financial forecasting (1). We will address this experimental
design consideration more below, in Section 4.

3. Design
Principles
Characteristic
for TRNs As transcriptional regulatory networks are being characterized with

increasing speed, it is worthwhile to look for underlying principles in
the design of these control systems (27, 28). Let us begin by con-
sidering a biological example – The induction of the Lac operon in
E. coli – presenting common requirement for TRNs. When lactose is
the only carbon source available (Note 9), E. coli induces the Lac
operon, which contains LacZ, LacY, and LacA. The regulatory
network is expected to (1) maintain a stationary basal level of b-
galactosidase (the lacZ gene product) in the absence of lactose
(Note 10); (2) dynamically increase the expression level when the
level of lactose increases; and (3) maintain the high level of expres-
sion as long as stationary levels of lactose are present. Already in the
simple example of the Lac operon three TRN design principles are
illustrated, namely: (1) the regulatory network function requires the
induced and the basal states to be stable; (2) the system has to
operate in a manner that is robust to environmental changes; and
(3) the system has to respond quickly to changes in metabolites, it
has to be induced quickly in response to lactose. Stability, robust-
ness, and responsiveness are therefore intrinsic properties of the
lactose system, and are prevalent attributes of many TRNs. Four
common themes seem to be intrinsic to many biological regulatory
networks – depending on the function of the regulatory network –
and we will go through these themes one at a time:
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1. Stability: the ability of a system to return to steady state after a
transient disturbance.

2. Robustness: the ability of a system’s steady state to remain
unchanged, or not significantly changed, when the parameter
values of the system significantly changes.

3. Responsiveness: the ability of a system to settle quickly into a
new steady state after an environmental change.

4. Modularity: the structure of the system regulatory network is
separated into modules; each module has a function and is
highly connected (contain many interactions) within, but has
fewer interactions with other modules.

Importantly, robustness, or insensitivity to parameter variation, has
long been used as performance criterion for TRN. All or several of these
design principles are expected to be present in any TRN. Ideally, criteria
based on these network properties could be used to decide between
alternate regulatory network models or possibly used as priors.

4. The Challenge of
Inferring TRNs

Deciphering TRNs from large genomic, proteomic, and expres-
sion data sets is one of the most interesting problems for computa-
tional biologists. It is clear that many challenges are still waiting to
be met by the top researchers as well as the coming new generation
of researchers in the field of computational biology.

4.1. Challenges and

Possible Solutions

1. The dimensionality of the data sets used for network inference is
vast, composed of thousands of genes over hundreds to thou-
sands of conditions. Add to that the number of possible predictors
and we have a very large problem space indeed. To reduce the
dimensionality of this problem, with little cognate loss in predic-
tive performance, we can perform several steps either prior to
network inference or in conjunction with the network inference
procedure. A common technique used is to group the genes
together based on clustering or biclustering algorithms. After
such a step, one can reduce the expression patterns of all the
individual genes in the cluster into one expression pattern of the
bicluster (one way is to take the mean expression of all the genes).
Another common technique is to limit the number of predictors
to well-characterized genes known to act as transcription factors.

2. As combinatorial control has been shown to be commonplace
in TRNs – i.e., genes are regulated by combinations of TFs
(Note 11) and different combinations account for different
expression patterns – it should be incorporated in some way in
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all TRN learning algorithms. A flawed simplification, often
made, is to model elementary TRN in which gene expression
is regulated by a single TF or additive combinations of TFs.
This representation, however, fails to capture combinatorial
control (logic) – ‘‘AND’’ cannot be modeled by additive
combinations of single predictors – and an explicit interaction
term is needed, to model even the simplest of regulatory logic
(see Section 6.4 for details). A biologically driven TRN infer-
ence procedure needs to allow for explicit modeling of combi-
natorial interactions between the regulators. However, future
methods must strike a balance between having the flexibility to
model combinatorial TF interactions, resulting in a more com-
plex network, and overfitting the model to the training set,
thus loosing predictive power.

3. Two major types of microarray experimental designs are (1)
equilibrium or steady state (Note 12), and (2) time series or
kinetic (Note 12). Importantly, time series data allow us to
observe the dynamics that underlie the shift from one tran-
scription profile to a new one. For example, the genes com-
posing the flagellar motor in Caulobacter crescentus are
transcribed in one of four distinguishable, consecutive stages
of the bacteria’s life cycle, as elegantly shown by the time
series microarray experiments analyzing Caulobacter’s cell
cycle (29). One drawback is that extensively sampled time
series are expensive to collect (multiple time points per per-
turbation/cell state) and thus a cost-effective balance
between equilibrium and time-series designs may be ideal
for many inference/functional genomics projects. Both the
experiment design types, when analyzed simultaneously,
work synergistically, providing supporting evidence for a
given regulatory model. Therefore, it is beneficial to have an
algorithm that can learn from both the experiment design
types simultaneously.

4. A TRN model should, ideally, describe the system and its
response to new combinations of environmental and genetic
factors – i.e., a model that can predict the transcriptional
response to newly measured cell states. Global prediction of
system behavior when the system is confronted with novel
stimulatory factors or a novel combination of perturbations is
essential, but is rarely achieved in previously described studies.
Moreover, the reader should be aware that there is little
agreement in the manner by which different regulatory
network inference methods developed to date have been
validated, i.e., the validity and strength of different methods
developed to infer regulatory systems from global genomic
data sets is judged in many ways, across the works published
to date. One possible way to determine the validity, and also
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the usefulness (Note 14), of the different methods is their
ability to predict new expression states as functions of tran-
scription factors (or any other predictors of transcription that
are used within a given model).

5. Properties of a
Good Solution for
the Problem of TRN
Inference Before moving forward or discuss examples of detailed solutions to

the problem of TRN inference, we want to, at the risk of redun-
dancy, summarize what we consider a good solution to the
problem. The following points characterize some general features
of what we consider a ‘‘good solution’’:

1. Model complexity: In spite of dramatic advances in our ability
to measure mRNA and protein levels in cells, nearly all
biological systems are underdetermined with respect to the
problem of TRN inference. Also, learning complete regula-
tory networks is computationally demanding and is therefore
constrained by the efficiency of our algorithms. Hence, the
methods made for inferring and modeling of regulatory net-
works must strike a balance with regard to model complexity;
a model must be both sufficiently complex to describe the
system accurately and sufficiently constrained to allow for
learning parsimonious – a simple model is less likely to overfit
the model to the training set – models from limited data in
reasonable time.

2. Statistical soundness: When inferring a regulatory network,
decisions must be made in an astronomically large space of
possible regulator–target interactions. It is clear that some of
these interactions will have more supporting evidence than
other interactions. In many cases previously developed statis-
tical methods give us a solid framework for model selection,
model constraint, and model parameterization, as well as the
estimation of model confidence and expected predictive per-
formance. In any case, a rigorous statistical method is
required to approach this problem.

3. Integration of equilibrium and kinetic data sets: Combining
both types of experiment in one data set results in a more
complete representation of the system, which enables much
of the regulatory network to be learned (see Section 4 for
further discussion).

4. Allowance of combinatorial interactions between predictors
(Note 15): To describe the complexity underling many
biologically solved TRNs, a good solution must allow
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combinatorial control of gene expression by TFs. Although,
allowing such interactions increases the complexity of the
model, and possibly the chance of overfitting, it is required
to model a biologically relevant TRN (see Section 4 for
further discussion).

5. Reducing the dimensionality of the TRN inference problem:
The amount of data that is required in order to learn regula-
tory networks for a whole organism is immense and hampers
TRN inference. Any method that tries to learn a whole organ-
ism TRN needs to find ways to reduce the dimensionality of
the problem in a way that conserves the majority of the
information inherent to the system.

6. Predictive power and clear route to validation: There is a dis-
tinction made between building a model that describes the data
in our training set and building a model that is also able to
describe not yet known results (true predictive power). To
build a predictive model, one needs to first recognize several
simple truths: (1) we do not have enough data to fully describe
the physiology of even the simplest of organisms; (2) our
methods for learning regulatory networks are limited by our
desire to strike peace between model complexity and our ability
to model such complexity; hence our methods are not perfect,
each has its own set of pros and cons; and (3) we need to strike a
balance to avoid overfitting the data.

7. Modeling feedback loops: Feedback loops are ubiquitous in
regulatory networks and have central roles enhancing, buffer-
ing, and filtering changes that occur within a global regula-
tory system. Negative feedback in many cases is used to
stabilize the system (e.g., a thermostat) and can play a key
role in homeostasis. Positive feedback can be used to enhance
a certain stimulus and thus fix a transition from one stable cell
state to another. Feedback loops represent multiple impor-
tant regulatory motifs and should be modeled properly if we
are to capture dynamical aspects of global control in our
models. Modeling and learning of feedback loops, however,
presents several difficult challenges (alas, several popular
methods are unable to learn loops of any kind). Therefore,
the ability of a method to learn feedback loops will enable the
resultant model to recapitulate/predict properties of real bio-
logical TRNs, namely stability, robustness, and responsive-
ness, as discussed in Section 3.

Taken together, it seems that there is no single good solu-
tion that fits all the requirements currently in existence; one
therefore needs to decide what properties are more important
to model, given the need of specific projects/problems, and
choose the methods employed to accommodate these require-
ments accordingly.
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6. Examples of
Methods

6.1. A Glance at the

Myriad Methods for

Modeling of TRN

All methods for TRN inference must face similar challenges as
described in Section 4, and no one method can fit all require-
ments given the diversity and inadequacies of data types. Each
method has its own set of strengths and weaknesses, and the
usefulness of the method is dependent on the specifications of
the problem at hand. In general, methods that try to capture
the system’s state in detail (e.g., ordinary differential equations)
need a large amount of data, or very well-studied sub-circuits,
in order to produce meaningful results, and are therefore lim-
ited to small-scale, well-studied cases. Primarily, these methods
make valid contributions to the modeling of already determined
circuits (as opposed to the learning of global regulatory net-
works), while methods that simplify the states of the system,
e.g., Boolean networks, perform better when larger data sets,
which are incomplete in respect to the full physiological states of
the system, or high-error measurements are used. In learning
from a large data set with thousands of genes and only dozens
to hundreds (to possibly thousands) of conditions, it is impor-
tant to incorporate some measure of significance and confidence
to the results; thus approaches that have a strong statistical
foundation are potentially preferable.

6.2. Ordinary

Differential Equations

Formalism for TRNs

Ordinary differential equations (ODEs) have been widely used
in science to model dynamical systems. For the case of gene
regulation, ODEs model the concentration of mRNAs Y ¼
{y1,.,yi,.,yn}, using a rate equation that measures the production
rate of mRNA yi as a function of the concentration of other
components X ¼ {x1, x2,...,xn} of the system (e.g., activating
and repressing TFs). The mathematical form of the rate
equation is

@yi

@t
¼ fi Xð Þ;

where
@yi

@t
is the production rate of mRNA yi, andfi Xð Þ is a function

of the system’s components that affect the synthesis or degrada-
tion rate of mRNA yi. Notice that for each yi the chosen function
fi Xð Þ is different and is composed of the specific effectors of gene’s
i transcript level. This formalism is key to modeling of TRNs and
we will encounter ODEs again in Section 6.4, where we will
discuss the Inferelator (1), an algorithm for learning TRNs directly
from systems biology data sets.
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6.3. Introduction to

Bayesian Networks

and their Possible use

for TRN Inference

A Bayesian network (Note 16) is an efficient and intuitive repre-
sentation of the joint probability distribution of a set of variables.
Bayesian network approaches generally model the structure of
regulatory networks (e.g., transcriptional regulatory network) as
a Directed Acyclic Graph (DAG) (Note 17), where the nodes of
the graph represent the variables and the edges represent condi-
tional relationships between the variables. Associated with each
node (variable) in the graph is a set of conditional probabilities
describing the possible states of the variable, given its parents. By
definition each node in a Bayesian network is independent of its
non-descendants. In other words, variables in the network can
only have conditional relationships with those variables that are
their parents.

Let us begin with a simple example of a Bayesian network, after
which we will briefly explain how these can be extended to repre-
sent TRNs. Consider a case where a physician needs to decide
whether a patient has ‘‘Diabetes Mellitus’’ (DM). As our physician
is a bit of a statistics buff, he chooses to use a Bayesian network that
will help him evaluate the probability that a patient of his has
diabetes. As he is also an expert in diabetes, he knows a number
of factors that can help indicate whether or not a patient has
diabetes, such as ‘‘high blood glucose’’ (HBG) and ‘‘urinating
frequently’’ (UF). In addition, because some of these factors can
also indicate ‘‘kidney disease’’ (KD), he also includes this as a
possible explanation. Moreover, as none of these factors will posi-
tively determine whether or not a patient has diabetes, he assigns a
probability for each patient having (or not having) diabetes given
each possible combination of the factors. Finally, as both diabetes
and kidney disease are present in only a certain proportion of the
population, he assigns probabilities to represent what he believes
to be their relative frequency within the population. Figure 9.1
would be an example of a Bayesian network created by the
physician.

Inherent to the structure of any Bayesian network is the rule that
each variable is independent of its non-descendants, given its parents.
For example, in Fig. 9.1, knowing the value of GU is necessary and
sufficient to determine the probability distribution of UF (if GU is
true, then the probability of UF is 0.7). The structure of thisBayesian
network also contains a set of conditional independence statements
(UsingI(A;B|C)tonotethatAis independentofB,given itsparentC):
I(DM; KD), I(HBG; KD, GU, FU| DM), I(GU; HBG| DM, KD),
and I (FU;HBG, DM, KD| DU). Given these set of independence
statements, the joint distribution for the network is simply: P(DM,
KD, HBG, GU, FU)¼ P(DM)*P(KD)*P(HBG| DM)*P(GU|DM,
KD)*P(FU|DU) (30, 31).

We can now use the network to resolve diagnosis, for exam-
ple, Does a patient have diabetes given that he has high glucose
in his blood but he does not frequently urinate? What if he
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frequently urinates but his blood sugar level is normal? The
conditional probabilities for these cases are P (DM | HBG, not
UF) and P(DM | not HBG, UF), respectively. Typically, we will
have prior knowledge on the state of some of the variables (e.g.,
UF and HBG), and the evidence will iteratively change the con-
ditional probabilities of conditionally dependent nodes – know-
ing that someone has high glucose in the blood will increase the
chances of the variable DM being true. The crucial principle that
makes our Bayesian network so useful is the rule that each vari-
able is independent of its non-descendants, given its parents,
resulting in a set of independencies between the variables, which
then simplify the computation of the joint probability and allow
us to query even complex joint probability distributions via sim-
ple operations on the Bayesian network.

Bayesian networks are particularly useful when trying to model
a situation in which causality plays a role, but we have incomplete
data (these methods are robust to missing data). In such a case, a
probabilistic description of the possible states is naturally used.
Moreover, TRNs are sparse, i.e., a gene is usually regulated by a
small number of TFs that directly affect its transcription, and
Bayesian networks are particularly suited for learning under such
conditions. However, Bayesian networks are generally directed
acyclic graphs (DAGs) and thus are unable to model feedback
loops, which are a major control mechanism in all known TRNs.
To extend the use of Bayesian networks for learning of TRNs, let
us briefly review the main concepts of the algorithm developed by
Friedman et al (31). The structure of a genetic regulatory system is
represented as a DAG:

Fig. 9.1. An example of a simplified Bayesian network. In the figure each node
(balloon) represents a variable and each edge corresponds to a conditional dependency
between two variables. A table is attached to each variable, the left column shows the
whole combination of states the parents of a variable can have, while the right column
holds the probability of the variable being true for any combination of parental states.
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G ¼ V ;Eh i:
The vertices i 2 V ; 1 � i � n, represent the transcript level of

the gene that correspond to random variables X = {x1, x2, ., xi, ., x10},
where xi is the expression level of the ith gene. Given a set of
independent values of X, the algorithm learns a network structure
that fits the data based on a scoring function. More precisely, the
algorithm does not learn one particular network that have the highest
score, but focuses on features that are common to multiple high-
scoring networks. Particularly, the algorithm searches for Markov
relation and order relations between pairs of variables xi and xj.
Markov relation occurs when xi belongs to the minimal set of vari-
ables that shields xj from the rest of the variables – i.e., the minimal set
of a variable’s parents that appear in all of the high-scoring networks,
while an order relation happens when xi is the parent of xj in all of the
graphs in an equivalence class (Note 18). Knowing the Markov and
order relations should be considered as an indication of causality in
the network, and added with biological prior knowledge, can suggest
the relationships between transcription factors and their putative
targets. For a more detailed discussion of the algorithm and Bayesian
networks, we refer the reader to (30–32).

6.4. The Inferelator: A

Walk Through Example

of An Algorithm for

Learning Regulatory

Networks from

Systems Biology Data

Sets

The Inferelator was built with the purpose of learning TRNs from
systems biology data sets in a solely data-driven manner. The
method is intended to be paired with an integrative-biclustering
method, such as cMonkey (12). We will begin by reviewing the
end result of running the Inferelator algorithm on a comprehen-
sive data set of 268 microarray experiments (each derived from 16
biological and technical replicates) done for the archaeon
(Note 19) Halobacterium NRC-1, followed by a step-by-step
tutorial of the Inferelator: algorithm and model formalism. At
this point we believe, the reader should read Notes 24 and 25,
and only then step into the Inferelator tutorial.

Figure 9.2a illustrates:
1. The network is learned globally with biclusters representing

regulons as the basic units of response (rectangular nodes)
and TFs and environmental factors (e.g., oxygen level) as
predictors (circular nodes).

2. Edges are weighted based on a given predictor’s influence on
a given bicluster.

3. Combinatorial control is commonplace in this learned net-
work (interactions between TFs are shown as triangular
nodes), graphically suggesting that this part of the Inferelator
procedure is important to predictive performance.

The algorithm recovered known and novel regulatory interactions
and several of the novel regulatory interactions have been subsequently
verified experimentally. Figure 9.2b, for example, shows a novel
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Fig. 9.2. The inferred regulatory network of Halobacterium MRC-1. The inferred regulatory network of Halobacterium
NRC-1, visualized using Cytoscape (41) and Gaggle (42). (a) The full inferred regulatory network. (b) Example regulation of
Bicluster 76. The Inferelator selected sirR, kaiC, VNG1405C, and VNG2476C as the most likely regulators of the genes in
bicluster 76 from the set of all (82) candidate regulators. The relative weights, �, by which the regulators are predicted to
combine to determine the level of expression of the genes of bicluster 76, are indicated alongside each regulation edge.
The TFs VNG2476C and kaiC combine in a logical AND relationship. phoU and prp1 are the TFs belonging to bicluster 76.
Taken from (1).

Key Figure 9.2:

‘ Bicluster – A subset of genes under a subset of experimental conditions, grouped together based on correlation in transcription pattern

and other data types (see Note 24 for more details on the biclustering algorithm used in this example).

* Predictor – Transcription factors expression levels and the levels of external stimuli are treated as predictors.

� Interactions – The Inferelator allows for some combinatorial regulation in which two predictors can function together to bring about a

response. Combinatorial logic such as AND OR XOR is allowed.

/&&& Edges – There are three types of edges in the regulatory network:

1. arrow head – represents repression.

2. diamond head – represents interactions (AND logic).

3. straight line – represents TFs that belong to the bicluster (these TFs have a high correlation with the bicluster, but we cannot

determine if they regulate it).

The thickness of the edges corresponds to the strength of the regulation as predicted by the Inferelator (the � parameter values,

explained in Model formulation).
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regulatory interaction (SirR control of metal transport in
Halobacterium) that has been validated by a combination ChIP-chip,
knock out experiments, and subsequent microarray experiments (33).

Figure 9.3 illustrates the predictive performance of the
inferred TRN.

Following is the tutorial on the Inferelator algorithm, for a
more detailed discussion of the novel and known regulatory net-
works that were learned for Halobacterium NRC-1 by the
Inferelator we refer the reader to the Inferelator paper (1).

6.4.1. Inferelator Tutorial

and Formalism

A simple way to model gene transcription is using an ODE to
represent the rate of production/degradation of each component
of the system (in this case mRNA levels of genes and/or biclusters)
as a function of the concentrations of other components, the ODE
has the mathematical form:

@yi

@t
¼ kyi þ gyi þ gðX Þ: ½1�

Here, X ¼ {x1, ., xi, ., xn} is the vector of all the regulatory factors,
and the coefficients k> 0, g< 0 are the production and degradation
coefficients of gene yi, respectively. The function gðX Þ represents
the combined effect of all the regulators on the transcript levels of
gene yi. To simplify the model, we assume that k and g have similar
values or that b (introduced shortly) can account for any difference
in k and g. Also, we name yi – the gene of interest – simply y. The
ODE can now be represented as

t
@y

@t
¼ �y þ gðb �X Þ; ½2�

Fig. 9.3. Predictive performance of the predicted TRN. (a) The root mean square deviation (RMSD) error of predicted
response in comparison with the true response for the 3,00 predicted biclusters evaluated over the 268 conditions of the
training set. (b) The RMSD error of the same 300 biclusters evaluated on new data (24 conditions) collected after model
fitting/network constructions (1).
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where t is the time constant that represents the level of gene y in the

absence of external determinants, b̂ ¼ b1; b2; . . . ; bp

� �
are the regres-

sion coefficients (see Notes for more details on how we choose b̂) that
indicate which of the possible covariates (regulatory factors) is more
influential on the response, and b �X ¼

P
bj xj is simply the

weighted sum of each regulator xi multiplied by its corresponding
coefficient bi. In order to allow combinatorial control in which two
regulators can work together to produce a response that is not simply
the weighted sum of each of the two regulators alone – for example,
consider a case where two TFs dimerize and only then become active –
Eq. [2] is enhanced to the form of

t
@y

@t
¼ �y þ gðb � Z Xð ÞÞ; ½3�

where Z(x)¼ (z1[X1], z2[X1], . . ., z12[X1,X2]) (hereafter notated as
Z) is a set of functions of the regulatory factors X as before. How-
ever, single and multiple factors can be inputs to these functions
depending on whether the functions represent single or combina-
toric regulation, respectively. The coefficient bj for {j¼ 1, 2, . . ., P}
now describes the influence of each element of Z, with positive
coefficients corresponding to inducers of transcription and nega-
tive coefficients to transcriptional repressors. The simple choice of
zj xð Þ ¼ xj amounts to the simple weighted linear combination of
influencing factors b � Z ¼

P
bj xj , as is used in Eq. [2]. To

accommodate combinatorial logic for transcriptional control, we
use a more general form for the function Z:

Z ¼ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5

þ b6 minðxi; xj Þ þ b7 minðxi0 ; xj 0 Þ:
½4�

Equation [4] allows combinatorial control to be modeled, but
limits the set of possible regulators to seven for each response
variable (bicluster expression level), and is an example of balancing
our desire to model the complexity of the problem with our ability
to model it without overfitting. The combinatorial control portion
of Eq. [4] is accounted for by the two last terms
b6 minðxi; xj Þ þ b7 minðxi0 ; xj 0 Þ. Here, for each bicluster/singleton
(hereafter simply bicluster, a singleton is a gene that had not been
included in any of the biclusters), we choose a limited set of
predictors, five single predictors and two ‘‘interactions’’
(Note 20) – that best describes the expression level of the
bicluster. The seven predictors are chosen prior to multivariate
regression, in order to reduce the set of possible predictors which
the Inferelator has to choose from. We perform a first round of
shrinkage in which for each bicluster we choose the limited set of
predictors that best describes it in the following manner: (1)
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perform linear regression using only one predictor at a time in order
to evaluate how well that predictor explained the expression level
of the bicluster – the smaller the residual between the predicted
and the real values of the bicluster expression level, the better the
bicluster expression was explained; (2) similarly, perform linear
regression for each pair of predictors, using the minimum of their
expression level to evaluate how well the pair-wise predictors
explained the bicluster; (3) rank all single and pair-wise predictors
based on the residual values that measure how good the prediction
was; and (4) for each bicluster in the response vector choose a
subset of five single predictors and two ‘‘interaction’’ predictors
that had the smallest residual.

Various functional forms can be adopted for function g. In the
Inferelator method we adopt the following function, as it allows
for simultaneous determination of b at several values of the shrink-
age parameter t (see Notes):

g b � Zð Þ ¼
b � Z : min yð Þ5b � Z5max yð Þ

max yð Þ : b � Z4max yð Þ
min yð Þ : b � Z5minðyÞ

8
><

>:
½5�

The simplified kinetic description of Eq. [3] encompasses
essential elements to describe gene transcription, such as control
by specific TFs, activation kinetics, and transcript decay, while at
the same time facilitating access to computationally efficient meth-
ods for searching among a combinatorial large number of possible
regulators. The reason to put a constraint on the value of gðb � Z Þ
is to limit maximum y value and minimum y value to realistic levels
(look at Eq. [3]); y is not likely to have a larger amount of
transcript than the maximum value taken from all the microarray
experiments, thus the value of gðb � Z Þ should be constrained as
described in Eq. [5].

As discussed in Section 4, integration of kinetic and equili-
brium (Note 21) datasets enables a better representation of the
system and allows more of the TRN to be learned. In order to use
the data from both classes, we need to combine both types of
measurements into a single expression on which we learn the
model parameters b and t.

For a steady-state measurement,
dy

dt
¼ 0, Eq. [3] reduces to:

y ¼ g b � Zð Þ: ½6�

For time-series measurements, taken at times t = (t1, t2, . . ., tT),
Eq. [3] may be approximated as follows:

t
ymþ1 � ym

Dtm
þ ym ¼ g

XP

j¼1

bj � zmj

 !
for m ¼ 1; 2; :::;T � 1; ½7�
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where Dtm ¼ tmþ1 � tm is the time interval between consecutive
measurements, and ym and zmj are, respectively, the measured
values of y and zj at time tm. With this formulation we place no
requirements on the regularity of Dtm, and can readily use data
with differing time intervals between measurements (Note 22).

As a result, the right-hand side of both Eqs. [6] and [7] are
identical – the algebraic interpretation of a scalar product is shown
in Eq. [7] – allowing for simultaneous model fitting using equili-
brium and time-series data (Section 4 – challenge three met).
Taken together all steady-state measurements and time course
measurements, the left-hand sides of Eqs. [6] and [7] can be
combined into a single response vector (Y), allowing b to be fit
with one of the many available methodologies for multivariate
regression (see Notes for discussion of LASSO).

There are two parameter types that we have to determine in
our TRN: the set of ts and the set of bs for each predictor surviving
the first round of shrinkage. The set of bs are being fit using
multivariate regression, however, both b and t need to be deter-
mined together. To optimize tau and beta we use an iterative
approach.

Beginning with an initial guess for t, first we find the regres-
sion solution for b using the multivariate regression methods of
LASSO; second, we solve for a new t that minimizes the

prediction error S b̂
� �

between the prediction vector m̂ and the

training set of known bicluster expression values y.

S b̂
� �

¼ y � m̂k k2¼
Xn

i¼1

yi � m̂ið Þ2: ½8�

Subject to the constraint,

Xm

j¼1

b̂j

���
��� � t bOLSj j: ½9�

Third, we repeat the first two steps until convergence.
|bOLS| is the Ordinary Least Squares (OLS) estimate of b, and is the
maximum norm b can have. Therefore, t , the shrinkage parameter
can range from 0 to 1. The limit t ¼ 0 amounts to selection of the
null model (y ¼ |y|), meaning we do not have data to learn any
predictor. In the limit t ¼ 1 we have the OLS estimate for b. In
order to determine the optimal value for the shrinkage parameter,
we minimize the prediction error, which is estimated using tenfold
cross-validation (Note 23), as shown in Fig. 9.4.

For each value of the shrinkage parameter we then measure the
error estimate under the ten leave-out cases:

ErrCV ¼

Pn

i¼1

yi � m̂ið Þ2

n
: ½10�
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Thereafter, the error estimate is taken to be the mean over each
of the ten leave-out cases, which also allows us to measure the
standard deviation of the ten individual leave-out error esti-
mates (the error bars in Fig. 9.4). Remember that the smaller
the values of t we choose, the more parsimonious the model is.

We find the minimum on the CV error curve, move up on the
error bar for that minimum point, and then take a horizontal step
toward t ¼ 0 until we hit the error curve again – this is the value we
choose for t – resulting in a parsimonious estimate of the shrinkage
parameter t . In this manner a separate value of the shrinkage
parameter t is chosen for each bicluster we attempt to model.
The result is a predictive, dynamic function for each bicluster for
which the method did not select the null hypothesis t ¼ 0. More-
over, the values of b capture information about the influence each
covariate has on the bicluster. Importantly, all data used in the
procedure are normalized to have variance of one prior to network
inference. Thus, for a given influence on a given bicluster, we can
uniformly interpret the magnitude of b and use this value to rank
the individual interactions by significance. Taken together, the set
of bs and ts for all the biclusters/genes constitute the full model
for the TRN. Following is the outline of the method:

6.4.2. Inferelator Summary

For each (bicluster k) {
For each (TF or environmental factor i){

Update list of best single influences
For each (TFj){

Update list of best
interactions list (min[i,j])

Fig. 9.4. Selection of model using Cross-Validation (CV). The ordinate represents an
estimate of prediction error (ErrCV) from tenfold CV (the mean of the error in the ten
leave-out samples used is the CV error estimate). The shrinkage parameter t allows us to
select subsets of predictors continuously. We evaluate our fitted model for a range of
values of t (with t ¼ 0 [the null model] and t ¼ 1 [the ordinary least squares solution]).
The error bars denote the standard error of ErrCV (the standard deviation of the ten leave-
out samples’ error estimates). The red line shows the value of t selected for our final
model for this cluster – the most parsimonious model within one standard error of the
minimum on the ErrCV versus t curve. Figure taken from (1).

Global TRN Inference 201



}
}

}
Select from predictors and estimate model
parameters (b and t) using LASSO/cross
validation.
Store model for gene/bicluster k
Combine models for individual biclusters into
global network
Process network for viewing (beyond the scope
of this chapter)

7. Coda

Inferring regulatory networks has become increasingly more feasi-
ble with the advent of genomics and systems biology. Commonly
used whole-genome techniques (e.g., microarrays), however, often
suffer from large amounts of random and systematic error and high
dimensionality that makes learning non-trivial. A strong, statistically
based model has to satisfy three main requirements: (1) the model
should be able to capture the relationships between the variables;
(2) the data used for learning should have a sufficient number of
replicates, sufficient sampling with respect to the complexity of the
organism, and correct experimental design (including time series);
and (3) the learning process should be constrained by additional
data types besides expression data. Here, we described in detail one
method that can infer TRNs, the Inferelator (1), from systems
biology data and from association networks. Our long-term goal
is to develop methods capable of distilling physical and dynamical
network models from sets of error-prone or indirect biological
associations; attempting to directly learn these physical underpin-
nings will increase the accuracy and interpretability of the resulting
validated regulatory and interaction networks. As a field we have
recently shown that, for prokaryotic systems, we can learn predictive
dynamical models from sequence, expression, and chip-chip data.

8. Notes

1. Operon: a genetic unit or cluster that consists of one or more
genes that are transcribed as a unit and are expressed in a
coordinated manner. This work awarded Jacob and Monod
the 1965 Nobel Prize in Physiology and Medicine.
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2. Normalization: the process by which microarray spot inten-
sities are adjusted to take into account the variability across
different experiments and platforms.

3. Transformation: the application of a specific mathematical func-
tion so that data are changed into a different form. The most
common data transformation in microarray studies is log2.

4. Immunoprecipitation: the process of precipitating a protein/
protein complex from a complex mixture, using a specific
antibody against a protein of interest.

5. False positive (also known as type 1 error): The rejection of a
true null hypothesis, e.g., declaring that a TF binds a DNA
sequence, when it, in fact, does not.

6. False negative: the acceptance of a false null hypothesis, e.g.,
declaring a TF does not bind a DNA sequence, when it, in
fact, does.

7. Biological replicate: mRNA from different biological cases (a
case is the biological unit under study – one mouse, one batch
of cells, etc.) treated under the same experimental conditions
is taken.

8. The number of biological replicates required is still the pro-
cess of investigation.

9. The actual signal that induces lactose catabolism is allolactose,
which is a catabolic intermediate of lactose.

10. Basal level of b-galactosidase is essential, as the induction of
this system is done by allolactose – a catabolic intermediate –
and allolactose will be present only after b-galactosidase
degraded lactose. The basal amount is very small and after
induction boosts up to 500 times the basal amount.

11. It is however possible that other factors may regulate the gene
network, for example, other proteins such as kinases, some of
which may relay the environmental affect to a molecular
response.

12. Equilibrium is an assumption made by the researcher that
under the experimental design the system is stable. In practice
‘‘equilibrium’’ or ‘‘steady state’’ data is simply data for which
we attempt to allow the system to reach equilibrium and do
not record/observe multiple time points.

13. Kinetic measurement (time series) measures the change in the
system’s expression pattern from the time the stimuli (e.g., shift to
lactose as carbon source) were administered until the system has
established a new equilibrium point under the new constraint.

14. In addition to the contributions these works make to basic
science/biology, these works will soon (in fact are already
beginning to) make direct impact on a number of

Global TRN Inference 203



economic/industrial activities, as TRN inference will allow
for more rational engineering of bacteria (and eventually
more complex systems as well). Knowing the TRNs of several
organisms will inevitably aid both industrial and pharmaceu-
tical biosynthetic activities as well as the efforts to use prokar-
yotes as platforms for bioremediation. Resolving the TRNs of
these industry workhorse bacteria will have immense implica-
tions on the biotechnological industry.

15. Predictor: A predictor is either an experimental condition or a
transcription factor. We use the same definition for a predictor
as the one used in the next section describing the Inferelator.

16. Also commonly named a ‘‘belief network’’.

17. DAG is a directed graph in which there is no path starting at
node (i) and returning to the same node.

18. A Bayesian network structure G implies a set of independence
assumptions (as explained in Fig. 9.1). However, more than
one graph can imply exactly the same set of independencies.
For example, consider graphs over two variables X and Y. The
graphs X ! Y and X  Y both imply the same set of
independencies.

19. Many books and articles still refer to them as ‘‘Archaebac-
teria;’’ this term has been abandoned because biochemically
and genetically they are as different from bacteria as
eukaryotes.

20. By interactions we refer to TF –TF interactions, such as dimer-
ization, and to TF –environmental-factor interactions. Both
kinds of interactions are allowed, as both of these factors are
included in the set of predictors. To encode interactions the
minimum expression value of the two predictors is taken as
the expression value for the interaction, because it is the
limiting factor (you cannot have more dimers than that
value).

21. The experimental conditions are classified either as belonging
to a steady-state experiment or a time-series experiment. In
some cases, we refer to conditions as ‘‘equilibrium’’ or ‘‘steady
state’’ measurements out of convenience, but cannot know
whether the system, in any strict sense, is at equilibrium.

22. Note that if the interval was longer than the time scales in
which possible regulatory interaction occur, those interac-
tions will be missed.

23. A method of estimating the accuracy of a regression model.
The data set is divided into several parts, with each part in turn
used to test a model that was fitted to the remaining parts.
The samples are partitioned into subsamples, an analysis simi-
lar to the one used on whole the sample is used on several of
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the subsamples, while further sub samples are retained
‘‘blind’’ for subsequent use in confirming and validating our
initial analysis.

24. Biclustering as a first step to TRN inference
Coverage: To learn a TRN, the data set we use should

describe the behavior of the system under as many possi-
ble experimental conditions and cell states. Primarily, this
means that the data set we use should be comprehensive,
containing possibly hundreds to thousands of different
conditions; one must also take care that the set of experi-
ments used span different distinct cell states.

Motivation for biclustering: As we approach the data sizes
needed to solve the TRN inference problem, a new pro-
blem emerges: as the data set grows bigger, it becomes
less probable that genes will have trivial co-expression
patterns across all observations. Thus, it is less likely to
find clusters – i.e., groups of genes with correlated
expression pattern over all the experimental conditions
composing our data set. Rather, it is more likely to find
biclusters – i.e., groups of genes with correlated expres-
sion pattern over a subset of the experimental conditions
composing our data set – because genes are often under
the control of different set of regulators when exposed to
different environmental conditions. In general, there is no
reason to believe that co-regulated genes will have a cor-
related expression pattern across all conditions in any
large compendium of experiments.

Co-expression vs. co-regulation: Co-regulated genes are
genes that share similar DNA sequences (i.e., TFs
binding motifs) in their regulatory regions, which make
them the target of a similar set of TFs. As assumed by
several clustering algorithms, the genes often recog-
nized as co-regulated are usually co-expressed. Con-
versely, the assumption that co-expression equals co-
regulation is incorrect (34). Co-regulated genes are
also often functionally (physically, spatially, genetically,
and/or evolutionary) associated, and such a priori
known associations can provide support for appropri-
ately grouping genes into co-regulated groups.

Biclustering of co-regulated genes as a first step prior to TRN
inference: Without biclustering, the inference algorithm
has to exhaustively check which possible TFs control
each and every gene, and also has to resolve exponen-
tially larger numbers of causal symmetries (such as
activators of activators). However, by biclustering
genes, prior to inference, the TRN inference problem
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conveniently becomes which TFs regulate each biclus-
ter, rather than which TFs regulate each gene. More-
over, biclustering genes into co-regulated groups serves
to reduce the amount of possible TFs to putative target
bicluster interactions – and hence make the problem of
learning a whole genome TRN realistic.

Integrative biclustering methods: A biclustering algorithm
that combines microarray data with other data types (such
as interaction networks and motif discovery) is termed
‘‘integrative biclustering’’ algorithm, and is more efficient
in learning true co-regulated groups of genes, in com-
parison to learning merely co-expressed (that may or may
not be co-regulated) groups obtained using only micro-
array data. An integrative biclustering algorithm will thus
reduce dramatically the number of unresolvable situa-
tions, when inferring TRNs, caused by ‘‘false biclusters’’ –
i.e., biclusters that although co-expressed are not co-
regulated. Importantly, TFs binding motifs shared
between genes can aid in finding true co-regulated
groups. However, a large number of these motifs in the
regulatory regions are still not well defined, hence inte-
grating the de novo detection of regulatory binding
motifs into the biclustering algorithm is essential even for
the most well-studied organisms. Biclustering methods
that use de novo motif detection – i.e., checking if co-
expressed genes also share common DNA sequences in
their regulatory regions – to constrain the bicluster pro-
cedure produce better results than clustering when one is
interested in finding novel regulatory interactions.

cMonkey – an integrated biclustering algorithm designed to
group genes based on co-regulation: Here we review an
integrated biclustering algorithm, cMonkey (12), that
groups genes and conditions into biclusters on the basis of
(1) coherence in expression data across subsets of experi-
mental conditions, (2) co-occurrence of putative cis-acting
regulatory motifs in the regulatory regions of bicluster
members, and (3) the presence of highly connected sub-
graphs in metabolic (35) and functional association net-
works (36, 37). Because cMonkey was designed with the
goal of identifying putatively co-regulated gene groupings,
we use it for ‘‘pre-clustering’’ genes prior to learning
TRNs. Importantly, for following TRN inference, cMonkey
identifies relevant conditions in which the genes within a
given bicluster are co-regulated, and the inferred regula-
tory influences on the genes in each bicluster pertain to
(and are fit using) only those conditions within each
bicluster.
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25. Model selection in the context of multiple linear regression using
the Lasso: Lasso, or L1-shrinkage (38), is a method for
estimating the relative value of multiple predictors and ideally
selecting the most parsimonious subset of predictors with
maximum predictive power. We describe the application of
model shrinkage to a simple additive-model here, but these
concepts can be extended to several model types. The variable
of interest, Y, is often called the ‘‘response variable’’ and is
linearly dependent on the values of two or more ‘‘predictors’’
or ‘‘explanatory variables’’, X. The Inferelator uses transcrip-
tion factors and environmental factors affecting mRNA
expression as predictors. In Section 6.4, the Inferelator
describes each bicluster/gene expression level as a weighted
sum of the levels of its most likely predictors. Let us consider a
hypothetical example that will make the concepts underlying
multiple linear regression much more clear. Table 9.1 shows
the summary of ten baseline variables (m ¼ 10), age, sex, and
eight serum measurements that were obtained for each of n =
450 patients with high cholesterol and patients with normal
cholesterol levels.

The goal is to construct a model that predicts response,
y ¼ {y1, y2, . . ., yn} (cholesterol level), from covariates, X ¼ {x1,
x2, ..., xm} (age, sex, and eight serum measurements). Because the
scales of each variable and the responses are different, we use scale
transformation to make the covariates standardized with mean of
zero and unit length and the response with mean of zero.

Table 9.1
Patients measurements of cholesterol level together with ten possible explanatory
variables (modified from (38))

Age Sex Serumm Measurements Response

Patient x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

1 50 1 123 33.6 102 94.1 70 15.3 4.5 86 182

2 45 2 171 44.2 88 105.2 38 13.4 3.8 69 215

3 73 1 192 51.3 91 131.3 44 18.2 4.7 71 195

4 38 1 133 61.0 96 97.3 41 17.3 3.6 86 98

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

449 48 2 98 41.2 86 122.4 47 12.7 5.1 72 260

450 61 1 115 51.4 102 111.1 94 18.1 4.4 66 120
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Xn

i¼1

yi ¼ 0;
Xn

i¼1

xij ¼ 0 and
Xn

i¼1

x2
ij ¼ 1 for j ¼ 1;2; . . . ;m:

Again, our goal here is to predict the response based on the
covariates. For illustration purposes we choose a simple linear
additive model here:

m̂ ¼
Xm

j¼1

xj b̂j ¼ X b̂j Xn�m ¼ x1; x2; . . . ; xmð Þ½ �;

where b̂ ¼ b1; b2; . . . ;bmð Þ are the regression coefficients – i.e., b̂
represent which of the possible covariates is more influential on the
response, and m̂ is the prediction vector – i.e., our estimation of y
given X and b̂.

We want to choose b̂ values that will make our estimation, m̂, of
cholesterol level similar to the real measured values y.

Therefore, we search for the set b̂ that will minimize the total
squared error S b̂

� �
:

S b̂
� �

¼ y � m̂k k2¼
Xn

i¼1

yi � m̂ið Þ2:

The set b̂ that minimizes the prediction vector is named the Ordin-
ary Least Squares (OLS) solution b̂OLS .

However, minimizing S b̂
� �

should be constrained by our desire to
keep the model parsimonious. For example, it might be that three of the
covariates (say: age, lipids in blood and blood glucose) are enough to
give us a very good estimate of y. This estimate would never be better
than the estimate we get by incorporating all of the covariates in our
model, but a parsimonious model is easier to interpret and is less likely
to overfit the model to the training set, hence loosing predictive per-
formance of the model.
Therefore, let T b̂

� �
be the absolute norm of b̂, and k be the

number of covariates the LASSO chooses to incorporate into our
model:

T b̂
� �

¼
Xk

j¼1

b̂j

���
���: 1 � k � m;

Xk

j¼1

b̂j

���
��� � t bOLSj j: 0 � t � 1;

where t ranges from 0 to 1 – i.e., when t = 0 no covariates are used
in the model, and when t ¼ 1 all the covariates are used and we get
|bOLS| the OLS solution.

The Lasso algorithm chooses a subset of the set of b̂ by mini-

mizing S b̂
� �

subject to bound t on T b̂
� �

:

Minimize S b̂
� �

subject to T b̂
� �

� t bOLSj j:
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Hence:

0 � T b̂
� �

�
Xm

j¼1

b̂j

���
���
OLS

The so-called shrinkage parameter t essentially controls/con-
strains how many covariates we use in our linear model, and the
parsimony property should be taken into account when choosing t .
In the cholesterol example, it might be that not all of the covariates
we have measured are indicative of the response, and in a case like
this we would like to pick out only the covariates that are potent
predictors. By constraining t we can limit the amount of covariates
incorporated in our model. Choosing t ¼ 1 results in the OLS
solution to the problem and in most cases also causes overfitting.
It is therefore important to choose a value of t carefully. In the
Inferelator we chose the value of t using cross-validation (CV) (39)
(Fig. 9.4 and discussion at Section 6.4).

An advantage of this method is that it draws upon well-
developed techniques from the field of statistical learning for
choosing among several possible models and for efficiently fitting
the parameters of those models. For more detailed discussion we
refer the reader to (38, 40).
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Chapter 10

Inferring Molecular Interactions Pathways from eQTL Data

Imran Rashid, Jason McDermott, and Ram Samudrala

Abstract

Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype,
gene expression levels, and phenotype. However, standard statistical genetics can only attribute the
changes in expression levels to loci on the genome, not specific genes. Each locus can contain many
genes, making it very difficult to discover which gene is controlling the expression levels of other genes.
Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for control-
ling the expression levels. Here we describe a series of techniques for finding explanatory pathways by
exploring the graphs of molecular interactions. We show several simple methods can find complete
pathways that explain the mechanism of differential expression in eQTL data.

Key words: eQTL, pathway inference, gene regulation, signaling pathways.

1. Introduction

Recent studies on expression quantitative trait loci (eQTL) have
revealed that differential gene expression is sometimes tightly
linked to variation in specific chromosomal locations (1, 2).
When gene expression is also associated with phenotypes such as
disease, there is great interest in discovering the pathway connect-
ing genetic variation and differential expression. However, this
remains a difficult task. The chromosomal locations generally
include many candidate causative genes. Genetic markers are able
to narrow the genetic variation down to a region of roughly ten
genes. When the expression level of a gene is strongly linked to one
locus, genetic variation in one of these genes is presumably causa-
tive for the differential expression. However, linkage only cannot
tell us which gene out of all the genes in the locus is causative.
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Furthermore, even when the causative gene is known, it is very
difficult to predict all the molecules involved in the regulatory
pathway. In some situations, the differentially expressed gene
falls within the locus it is linked to – in this case (cis-regulation),
we assume that changes in the gene’s promoter, enhancer, or other
cis-regulatory sites effect mRNA expression levels. In many cases,
however, the differentially expressed gene is physically very distant
from the linked locus. We assume the locus contains genes that
regulate the differentially expressed gene, potentially through a
long and intricate pathway (see Fig. 10.1). However, uncovering
the precise pathway that regulates transcription remains difficult.
This is because genes, proteins, and other biological molecules
form highly context-dependent interaction networks, allowing for
many possible paths from a causative gene in the linked locus to the
differentially expressed gene. Here, we consider several approaches
to solving this problem by searching graphs of known molecular
interactions. Given the broad scope of this problem, we focus on
differentially expressed genes that are strongly linked to exactly
one locus. The methods section describes the techniques for
determining linked loci, various methods to find pathways in
interaction graphs, and several approaches to evaluating these
methods. Finally, we discuss an evaluation of these methods and
the pathways they discover, along with possible future extensions
to these methods.

Chromosome 2

16 Genes in Linked Locus

Differentially 
Expressed Gene

?Regulatory 
Pathway

Fig. 10.1. Finding regulatory pathways. eQTL studies lead us to believe that genetic variation within the linked locus is
responsible for the differential expression of another gene. However, we do not know which gene in the locus is
responsible for regulating the expression. Furthermore, even if we did know which gene in the locus was responsible, we
would still not know the regulatory pathway responsible. Here, we survey several methods for finding potential regulatory
pathways from databases of known molecular interactions. This example is from eQTL studies in yeast (1), where the
differentially expressed gene YJR123W has been linked to a locus with 16 genes in it.
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2. Methods

Given a set of differentially expressed genes and their linked loci,
we wish to find pathways from each locus to each differentially
expressed gene, such that the differential expression can be
explained by the pathway. This involves both discovering which
gene in the locus is causing the differential expression as well as
finding a coherent pathway from that gene to the differentially
expressed gene, i.e., the mechanistic basis of the wiring diagram
that explains the gene expression.

2.1. Finding Linked

Loci

The first step in analyzing eQTL data is determining linkage. There
has already been a great deal of work to find linked loci through
quantitative methods. Those methods are not the focus of this
chapter; here we highlight a few techniques to direct further explora-
tion of the reader. All of these methods involve assessing the effect
each locus has on the expression level of every gene. The most direct
approaches use a Wilcoxon ranksum test to assign statistical signifi-
cance to each locus (1, 3). More sophisticated techniques include
calculating linkage by simultaneously considering multiple markers
and intervals, as well as additional corrections for multiple testing
(1, 4–6). Though we only focus on analysis once linkage information
is in hand, we want to emphasize the strong dependence of all
methods on the assessment of linkage; clearly, it is very important
to determine linkage very carefully and rigorously (see Note 1).

2.2. Building a

Molecular Interaction

Graph

We wish to find pathways where each interaction is a known
interaction between two molecules. This requires assembling a
catalog of all interactions, to facilitate searching. Thus far, we
have focused on protein–protein, transcription regulation, and
phosphorylation interactions. There are several publicly available
databases of this information, including many high-throughput
experiments (7–10). We have also included predicted protein–
protein interactions from Bioverse (http://bioverse.compbio.
washington.edu) (11), determined through the interolog method.
Note that this does not represent all known interactions; further
work must explore the inclusion of metabolites as well as the effect
of non-coding RNA (see Note 2). Related chapters discuss the
techniques for reconstructing interaction graphs.

The most natural way to store these interactions is in the form of
a graph, with nodes for each molecule and edges for each interac-
tion. Due to the sparseness of these graphs, an adjacency list is the
most efficient way to store the edges of the graph. The directionality
of each edge should correspond to the type of interaction, e.g.,
physical interactions are bidirectional while transcription regulation
interactions are directed from transcription factors to their targets.
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2.3. Finding Pathways

Between Differentially

Expressed Genes and

Linked Loci

With a set of differentially expressed genes and their linked loci, as
well as an interaction graph, we can formulate our problem of
finding plausible causative pathways. All of these methods attempt
to find the causative gene and pathway in the same step. We will
search all paths from the differentially expressed gene to all genes in
the linked locus; the most plausible causative path should lead to the
correct causative gene. In the next few sections, we will examine
several methods for determining which pathways are the most
plausible.

2.3.1. Finding Linear Paths

Through Directed Graph

Searching

The simplest formulation of a pathway is a linear sequence of
interactions, from the causative gene to the differentially expressed
gene. Our only obstacle is the choice of method for evaluating
pathways and choosing the best one. Searching a graph for linear
paths is already a well-studied problem. We explain a variety of
different evaluating pathways, beginning with very simple
approaches and building up to more complex procedures. The
most straightforward method of evaluating a pathway is by its
length. Clearly, a shorter pathway is more believable than a very
long one. We can find the shortest path from genes in the linked
locus to the differentially expressed gene through a standard
breadth-first search (BFS). For efficiency, instead of searching for
pathways from each gene in the linked locus to the differentially
expressed gene, we can reverse the direction of all edges in the
graph and search for paths from the differentially expressed gene to
each gene in the linked locus. BFS is guaranteed to find the short-
est path to every node, and is very fast and efficient.

Unfortunately, path length alone is an insufficient criterion for
determining the most likely causative pathway. Often there will be
many pathways of the same length. Furthermore, in many cases
BFS will find pathways involving genes with uncorrelated expres-
sion levels, while a slightly longer pathway exists, which involves
highly correlated genes. Using this idea, we can favor pathways
with highly correlated genes, by assigning a cost to each edge and
searching for the lowest cost path. Let corr(i, j) be the correlation
coefficient of the expression levels for genes i and j. For each edge
(i, j) in the interaction graph, we compute a cost C(i, j):

Cði; jÞ ¼ �logjcorrði; jÞj

The absolute value of the correlation coefficient is taken because
both positive and negative correlations are believable in biological
pathways, corresponding to activators and repressors. The nega-
tive log is taken because our graph search finds the lowest cost
paths, while we wish to favor the interactions between highly
correlated genes (see Note 3). Finding lowest cost paths can be
implemented very efficiently using a uniform cost search. While
BFS uses a first-in first-out queue to order the exploration of nodes
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in the graph, with a uniform cost search we explore nodes with the
shortest pathway. (This is done efficiently through use of the
priority queue data structure.)

Though this finds pathways with highly correlated genes, many
of the pathways are still not biologically plausible. In particular, as
these pathways are intended to explain gene expression level, we
expect the differentially expressed gene to be immediately con-
trolled by some transcription factor. We can make simple modifica-
tions to our graph searching methods to take advantage of the extra
biological information we have on each interaction. For example, it
is easy to modify a uniform cost search to ensure the first step is
always to a transcription factor. Furthermore, the interaction graph
could be extended to include other types of interaction data. For
example, if microRNA and their targets were included in the inter-
action graph, we might expect microRNA to be involved in regulat-
ing expression in a manner similar to transcription factors.

2.3.2. Random Walks

Across an Interaction Graph

One major shortcoming of all of the previous approaches has been
that they find only linear pathways. True biological pathways
involve many non-linear components, such as parallel pathways,
which give biological systems added robustness, or feedback loops,
which allow large responses to small stimuli. In a recent paper, Tu
et al. proposed using a random walk across an interaction graph to
find causative pathways (3). Their method involves finding path-
ways in the reverse direction, so it begins by reversing the direction
of all edges in the interaction graph. Then they perform the
following steps:

1. In the reversed interaction graph, start at the differentially
expressed gene.

2. Randomly choose a neighbor of the current node, and go to
that node.

3. If the new node is a gene in the locus, then stop the search and
record the end gene.

If not, return to step 2.

4. Repeat the random walk 10,000 times. Choose the causative
gene as the gene in the linked locus that was visited most
frequently.

When choosing a neighbor to visit, nodes with highly corre-
lated expression levels are favored. The probability of choosing a
neighbor for the next step is proportional to the correlation coeffi-
cient of the expression levels. Furthermore, to prevent arbitrarily
long paths, the walk is terminated after ten steps if it still has not
reached a gene in the linked locus.

The choice of a causative pathway is not as clear in this sce-
nario. Many of the nodes that were visited were along spurious
paths. However, we do not only want to find the most visited
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nodes along a linear path between the differentially expressed gene
and the causative gene; this approach was chosen for its ability to
find non-linear pathways. Thus, we count how many times all
nodes were visited during the random walks. If the causative
gene has been visited c times, we include all genes that have been
visited some fraction c/k times (for example, c/3 times), and which
are on a path from the differentially expressed gene to the causative
gene.

Here we explain one small optimization of this approach.
Instead of actually performing a random walk, we can replace it
with a closed form equivalent; we will compute the probability
the random walk will end at each gene in the linked locus. This
improves efficiency, and more importantly it is able to exactly
model the random walk without the need for many repeated
trials.

If we number the nodes from 1 to n, let us denote the
probability of being at node i after t steps as Pt[i]. Let us denote
the start node. We will denote the probability of transitioning to
node j from node i to be T [i, j]. Then we can precisely compute
Pt[i]:

P0½s � ¼ 1 and P0½i� ¼ 0 for i 6¼ s :

Pt ½ j� ¼ !n i ¼ 1Pt � 1½i�T ½i; j �:

To get to node j at time t, the random walk must be in some
neighbor node i at time t � 1, and then it must move from node i
to node j.

Using these equations, the probability distribution can be
efficiently calculated to any arbitrary time t by storing only two
arrays of size n, one for the probabilities at time t and one for time
t � 1.

While this approach is straightforward and has been used to
discover pathways from eQTL data, several variants of this method
still need to be explored. Several other distance metrics using
random walks across a graph have been proposed – further testing
is required to determine which method is optimal (see (12) for a
review of other distance metrics). Furthermore, the interaction
graphs in higher organisms are significantly larger; for large
enough graphs, these methods will be impractical due to memory
constraints.

2.4. Evaluation Using

Gene Knockouts

It is currently difficult to assess the accuracy of inferred pathways
from eQTL data because there is no good data set for validation. In
virtually all cases, the true pathway is unknown. Furthermore, we
cannot expect to find all previously known biological pathways –
the nature of the eQTL data relies on natural genetic variation, and
this variation may not perturb known pathways. Thus, there is no
good ‘‘gold standard’’ data set (see Note 4).
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Tu et al. proposed a solution to this problem by using gene
knockouts to create a fake ‘‘gold standard’’ eQTL data set (3). The
Rosetta compendium of gene knockouts in yeast (13) provides
expression levels in over 200 gene knockout experiments. This
gives the same information as in eQTL data: expression levels
combined with genetic variation. In the knockout experiments, we
know precisely which gene has been removed, while genetic markers
from eQTL studies narrow the region down to a locus with�5–50
genes. To simulate eQTL data, we create a locus of ten genes
around the true knockout. Each of the proposed methods can
then be tested with the expression data and these created loci. If
the causative gene in the inferred pathway is the gene knockout,
then we conclude the method was successful. We are assuming that
if the predicted pathway includes the correct causative gene, then
the entire pathway is correct; this assumption will not always be true.

It is very difficult to determine which genes are truly differen-
tially expressed due to the gene knockouts. Expression data is
extremely noisy; to decide which genes are differentially expressed,
we must set a threshold. Also, as proposed by Tu et al., we can
cluster genes by common transcription factors, and only take large
clusters. Both of these methods require subjective thresholds.

These methods greatly simplify our test cases. We have found
the accuracy of these methods is highly dependent on the subjec-
tive decisions for gene expression. Nonetheless, though these test
cases are far from perfect, this is a good first evaluation before
turning to much more expensive and time-consuming verification
with laboratory experiments.

3. Discussion

We have outlined several techniques for finding pathways from
eQTL data. In our experiments on gene knockouts, we have found
that all of the methods above perform significantly better than
random choice. For example, these methods suggested an inter-
esting feedback cycle in the MAPKKK pathway. The pathway starts
from the pheromone response element Ste2 and after many inter-
actions it regulates Dig1; we find that Dig1 in turn regulates the
transcription of Ste2 (see Fig. 10.2). This feedback cycle has been
reported before through direct experimentation; we simply high-
light this as one noteworthy pathway uncovered by these methods
(14–17).

We also consider one example from using true eQTL from
yeast (1). Consider the differentially expressed gene YJR123W and
the set of 16 genes that are in the linked locus, as in Fig. 10.1. All
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of the methods discussed above consistently highly rank a pathway
from YBR059C to YJR123W (see Fig. 10.3). We note that the roles
we predict are consistent with the annotations in CYGD (8) and
previous literature: YBR059C is a well-known kinase, and has been
implicated as an important protein in signaling pathways (18);
YKR092C is known to be phosphorylated, and it is believed that it
may bind DNA or act as a cofactor (19); YDR174W is known to
bind DNA or act as a cofactor for transcriptional regulation (20, 21).
As the true pathway is unknown in this case, we cannot be certain of
these results without direct experimental validation. However, the
agreement between this proposed pathway and the available litera-
ture data is very promising. In total, we predict 411 explanatory
pathways for eQTL in yeast, and expect many of these will be correct
given the accuracy in gene knockout experiments.

In general, we have found the accuracy of all the methods are
extremely similar (see Fig. 10.4). There is also a high degree of
overlap between the pathways found by each method (see
Fig. 10.5). However, these results are highly dependent on the
set of test conditions used (the p-value cutoffs for defining differ-
entially expressed genes from the knockout data, as well as the

Ste2

Fus3

Dig1 Ste12

Discovered 
Regulatory 

Loop

Multistep
MapKKK
Pathway

Mating

α-factor

Cell Cycle 
Arrest

Cell wall

Fig. 10.2. An example pathway found in gene knockout tests. The MAPKKK pathway
is known to start when the pheremone receptor Ste2 interacts with �-factor. After many
steps, the pathway regulates Dig1 and Ste12. From knockout experiments, we found that
Dig1 regulates Ste2, demonstrating a feedback cycle in the MapKKK pathway. This
feedback cycle was already known, but it serves to demonstrate the types of pathways
that can be uncovered through these methods.
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p-value cutoffs used in defining the interaction graph). We have
found that under some conditions simply taking the shortest
unweighted path outperforms other methods, while in other con-
ditions the random walk method is the best. We are still attempt-
ing to uncover patterns that explain the differences in each
method. However, we can clearly see that each method is capable
of producing explanatory pathways, as seen in the examples above.

+p+p

Fig. 10.3. A pathway explaining the differential expression of YJR123W in yeast eQTL
experiments (see Fig. 10.1). Here the dashed line represents the phosphorylation of
YKR092C by the kinase YBR059C, the grouped proteins are a physical complex forma-
tion, and the final solid line is a transcriptional regulation interaction by transcription
factor YPR104C to its target YJR123W.
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Fig. 10.4. A comparison of the accuracy of the three methods to map pathways
from eQTL. All the methods have nearly identical accuracy on the gene knockout tests.
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Our work highlights the strong dependence all of these
methods have on the interaction graph. If even one interaction
from the true pathway is missing from the interaction graph,
none of these methods will be able to deduce the correct path-
way. Furthermore, if the interaction graph contains many spur-
ious edges, then all of these methods can easily be misled to
deduce the wrong pathway, by finding a ‘‘short-circuited’’ path-
way. We hope that this work will motivate continuing work to
improve the accuracy and coverage of current molecular interac-
tion databases (see Note 2).

Though these approaches have been somewhat successful,
they are far from complete. They do not achieve perfect accuracy,
and they cannot find explanatory pathways in many cases. Indeed,
we have also eliminated a large portion of the data by considering
only highly differentially expressed genes and genes that are clus-
tered by transcription factor. Still, we are able to find a large
number of novel pathways with these methods.

The approach described here also serves as an extensible fra-
mework to try additional methodology. Each of the variants
described here requires only very small changes to the underlying
code. With minimal effort, additional approaches can be added
and compared to the existing methodology. For example, one
could easily test what effect changing the interaction graph has
on the predictions. This framework greatly facilitates the develop-
ment of techniques for generating new candidate pathways.

We wish to emphasize that these approaches only serve for
hypothesis generation. Verification of the proposed pathways
requires additional work in the laboratory. Though the accuracies
of these methods are not ideal, they do narrow a nearly infinite
space of possibilities down to a tractable number. We cannot and
do not expect these methods to be perfect, given the errors in our
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Fig. 10.5. Overlap of pathways found by each of the three methods evaluated on the
known gene knockout test cases. Aside from minor differences, the methods are
correct for the same test cases.
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interaction graph, the missing molecular interactions (e.g., meta-
bolites), the noise in the gene expression levels, and the numerous
other factors that are not modeled at all (e.g., chromatin
remodeling).

One major drawback of all these approaches is that they are
designed to find pathways when a gene shows strong linkage to
only a single locus. This accounts for a small fraction (less than
20%) of real eQTL data – as shown by the studies of Brem and
Kruglyak (1). Several studies have proposed methods for analyzing
eQTL data by simultaneously considering all genes and all loci
(22, 2). These approaches attempt to construct a complete net-
work of all genes and their relationships using machine-learning
techniques. However, these approaches only indicate the influence
of some genes on the expression level of other genes; they do not
deduce pathways of molecular interactions, which provide a
mechanistic basis for the wiring diagram for gene expression.

The techniques evaluated in this manuscript and the techni-
ques for network inference complement each other and should be
integrated together to provide the most coherent explanation
possible. As a first step, once the network reconstruction algo-
rithms have uncovered the most important relationships, the tech-
niques described here could be used to find the pathway of
molecular interactions that are responsible. For example, if the
network reconstruction algorithms suggest that gene A influences
gene B (through some potentially long and indirect method), we
could search for a pathway in the interaction graph connecting
gene A to gene B. Furthermore, we feel that the interaction graph
should be directly incorporated into the network reconstruction
algorithms, through the use of structure priors, i.e., the network
reconstruction algorithms should favor inferring relationships
along pathways with very good explanations. We are currently
exploring these approaches to enable the inference of a greater
number of more accurate pathways.

4. Notes

1. Importance of determining linkage. As noted previously, all
subsequent analysis is based on first using statistical tests to
determine to which loci each gene is linked. There are several
techniques that differ in their sophistication.

2. Importance of the interaction graph. All of the methods men-
tioned here are highly sensitive to the edges, which are in the
interaction graph. If even one edge in the true pathway is
missing from the graph of molecular interactions, then it will
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be impossible to discover the true pathway. If the graph
contains false edges, all of the graph searching methods can
very easily be misled. Many of the interactions in our network
come from high-throughput experiments, such as yeast two-
hybrid or ChIP-chip experiments. Converting this data to a
graph requires the use of subjective p-value cutoffs. This
means the interaction graph will always contain some spur-
ious interactions, and it will be missing many true interac-
tions. We are still exploring the robustness of these methods
to errors in the interaction graph.

3. Converting correlations to distances. When converting expres-
sion correlations to distances, large correlations must be con-
verted into small distances and small correlations into large
distances. We chose the distance to be 1�|corr(i, j)|; however,
this is simply a convenient heuristic. Several other transforma-
tions could be applied; we have experimented with
�log(|corr(i, j)|) and 1/(|corr(i, j)|), and found they all
obtain similar results.

4. No gold standard data set for testing. As there is no eQTL data
set for which all of the true pathways are known, it is very
difficult to determine if any new methods are successful or
not, without direct experimentation. The best test set that can
be used currently is the gene knockout data. However, we
must still decide to use some subjective criteria to decide
which genes are differentially expressed. Furthermore, we
do not know the true pathway between the knockout and
the differentially expressed genes.
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Chapter 11

Methods for the Inference of Biological Pathways
and Networks

Roger E. Bumgarner and Ka Yee Yeung

Abstract

In this chapter, we discuss a number of approaches to network inference from large-scale functional
genomics data. Our goal is to describe current methods that can be used to infer predictive networks.
At present, one of the most effective methods to produce networks with predictive value is the
Bayesian network approach. This approach was initially instantiated by Friedman et al. and further
refined by Eric Schadt and his research group. The Bayesian network approach has the virtue of
identifying predictive relationships between genes from a combination of expression and eQTL data.
However, the approach does not provide a mechanistic bases for predictive relationships and is
ultimately hampered by an inability to model feedback. A challenge for the future is to produce
networks that are both predictive and provide mechanistic understanding. To do so, the methods
described in several chapters of this book will need to be integrated. Other chapters of this book
describe a number of methods to identify or predict network components such as physical interac-
tions. At the end of this chapter, we speculate that some of the approaches from other chapters could
be integrated and used to ‘‘annotate’’ the edges of the Bayesian networks. This would take the
Bayesian networks one step closer to providing mechanistic ‘‘explanations’’ for the relationships
between the network nodes.

Key words: Networks, pathways, functional genomics, review, computational biology.

1. Definitions

Presently, the words ‘‘pathway’’ and ‘‘network’’ are used almost
interchangeably. However, in a given use, the constructs these
words represent can be vastly different (e.g., literature relation-
ships, physical interactions, or coupled chemical reactions). For
clarity in the subsequent discussions, it is helpful to use more
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specific and robust terms and define what is meant by each
term. Hence, for our purposes we will use the following
definitions:

l Molecular or biochemical pathway: A set of coupled chemical
reactions or signaling events. Nodes are molecules (often
substrates) and edges represent chemical reactions. We also
include conformational changes as the result in downstream
signaling via other chemical reactions in this definition.

l Physical interaction network: A graphical representation of
molecular binding interactions such as a protein–protein inter-
action network. Nodes are molecules; edges represent physical
interactions between molecules.

l Correlation or co-expression network: A graphical representa-
tion that averages over-observed expression data. Nodes are
molecules (typically mRNAs); edges represent correlations
between expression levels of connected nodes.

l Bayesian expression network (Bayes nets): A directed, graphical
representation of the probabilities of one observation given
another. In our use, nodes represent mRNA molecules, edges
represent the probability of a particular expression value, given
the expression values of the parent nodes.

l Knowledge-based network: A graphical representation of rela-
tionships between genes or molecules as inferred from external
knowledge. An example would be a literature-based network
in which the nodes represent genes and the edges represent the
presence of a co-citation in a Pubmed abstract.

2. The Current
State of Gene
Annotation

Prior to discussing methods for pathway inference, it is useful
to assess the current state of gene functional annotation. The
motivation for this discussion is that one can think of placement
in (a) biological pathway(s) as the ultimate form on annotation.
We will briefly explore the current state of understanding gene
function in the context of yeast and human genomes. The
question we wish to ask is ‘‘for what fraction of the genome do
we know the gene function?’’

This simple question is immediately complicated when one
attempts to assess the level of detail of the knowledge. For some
genes, we know a great deal; for example, for many metabolic
enzymes we know the details of the reaction the enzyme catalyzes,
the specific substrates on which it operates, the necessary co-factors,
and the surrounding context of other coupled reactions. For some
genes we know very little; for example, we may be very confident that
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an enzyme is a protease without knowing the substrate(s) for the
enzyme or the context in which it operates. At the extreme, there are
a number of genes that we can recognize as genes, but have no idea
about their function. In addition, gene function is complicated by
other factors such as alternative splicing, functional but non-coding
RNAs, and post-translational modifications, just to name a few.

To put this in perspective, consider the knowledge we have about
Saccharomyces cerevisiae or yeast. Yeast is one of the most highly
studied organisms on the planet. Much of the current, easily accessible
genome knowledge of the yeast Saccharomyces cerevisiae is represented
in the Saccharomyces cerevisiae Genome Database (SGD – http://
www.yeastgenome.org/). At present, there are 4,397 verified yeast
ORFS in SGD. In order to demonstrate the variability of annotation
available, we examine two extremes of annotation (e.g., very little
knowledge about the function and mapped to a biochemical path-
way). In SGD 267 (6.1%) verified ORFs are annotated with phrase
unknown function and another 250 are annotated with phrase con-
taining putative, hypothetical or proposed. Therefore, we have some
idea of what roughly 90% of all yeast genes do at least at the level of
being able to assign a crude function.

At the other extreme of functional annotation, only about
10% (460) of the verified yeast ORFs are mapped to a biochemical
pathway in SGD. In the KEGG2 database (1, 2), there are a total of
6,224 yeast ORFs of which 1,305 (21%) map to a pathway in
KEGG2. While these mappings are somewhat biased toward meta-
bolic pathways and cannot be claimed to represent the sum total of
pathway knowledge, they do represent what pathway mappings are
presently database accessible. Regardless, it is fair to say that we do
not have pathway information for the vast majority of yeast genes.

For the human genome, we used the EBI UniProt database
as our source to look at the status of functional annotation.
In UniProt, there are 35,715 unique proteins (includes some
splice variants). Of these, 21,087 (59%) have no gene ontology
annotation and 11,679 (32%) have no associated key words. For
pathway mappings we looked to the KEGG2 database. The total
number of human genes represented in the KEGG2 database
(www.genome.jp/kegg/kegg2.html) is 26,694. Of these, there
are a total of 4,373 unique genes, of just 16.3%, that have been
mapped to a KEGG2 pathway.

3. Value of Pathway
Information and
Current Knowledge
of Molecular
Pathways

Without doubt, some of the most significant advances in biochem-
istry and molecular biology in the past 100 years have been in the
development and integration of the understandings necessary to
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construct a number of detailed biochemical pathways. Such path-
ways are tremendously important, as they provide a mechanistic
basis (via the underlying chemistry of a system) for biological
phenomena and, therefore, provide predictive ability. For example,
the connection between a gene deletion and a given metabolic
disease can be inferred from the knowledge of metabolic pathways.
Over the past 40 years, a significant fraction of all Nobel Prizes in
Medicine and Chemistry have been awarded to researchers for
discoveries related to the understanding of specific biochemical
pathways.

Biochemical pathways in graphical form are a condensed and
abstract representation of knowledge that has been gained from a
great deal of genetics and/or detailed chemical experimentation.
Since the earliest creation of crude hand-drawn prototypes of
metabolic pathways by Donald Nicholson in 1955 (see http://
www.tcd.ie/Biochemistry/IUBMB-Nicholson/hist.html), there
has been high demand for this type of information [as represented
by a more than 40-year history of printed IUBMB-Sigma-Nichol-
son Metabolic Pathways wall charts from Sigma Aldrich, a similar
20+ year offering from Boehringer Mannheim GmbH and, more
recently, a proliferation of public (KEGG, BioCyc, GenMapp etc)
and commercial (Jubilant, Pathway Assist, etc.) databases of
similar and expanded information]. Much of the driving force
for the creation of public and commercial databases of pathways
has been the desire to interpret functional genomics data (in
particular, expression data) in the context of known biochemical
pathways. Hence, in addition to these databases, a variety of
software tools have been developed to display expression data on
biochemical pathways and other types of biological networks (see
for example, the cytoscape software tool at www.cytoscape.org).

As previously discussed, only a relatively small fraction of even
the yeast genome has been mapped to one or more biochemical
pathways. While the rate of accumulation of other types of genomic
information has been rapid, the ability to assign genes to pathways
has proceeded at a much slower pace. As we move forward with
functional genomics experimentation that wishes to make use of
pathway information, new tools and methods to more rapidly infer
pathways and networks from genome-scale data are needed.

4. Approaches
to Obtaining
Genome-Wide
Function, Network,
and Pathway
Information

In this section, we will discuss the experimental methods to gen-
erate genome-wide data that inform us about biological networks
and biochemical pathways, and the computational methods to
integrate such data types to better infer biological networks and
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pathways. We feel there are two fundamental goals in biological
network reconstruction: first, the network should provide, lead to,
or assist in the development of an underlying mechanistic basis
for any behaviors predicted from the network; and secondly, the
biological network must be predictive of some behavior(s) of
the system. Our interest in pathway inference is driven by the
goal to more rapidly infer the predictive networks that are con-
nected to underlying molecular interactions.

4.1. Methods to

Measure and Compute

Physical Interaction

Networks

At present, there are three primary types of physical interactions that are
measured at genome-wide scale. High-throughput protein–protein
interaction measurements have been accomplished by a variety of
techniques, including yeast two-hybrid, co-immunoprecipitation or
co-IP (often coupled to mass spec analysis), and protein arrays (for a
recent review see (3)). Protein–DNA interactions have been measured
at large scale using the ‘‘CHIP on chip’’ technique (4, 5). More
recently, techniques to measure protein–nucleic acid interactions have
been extended to protein–RNA interactions (6, 7). We also anticipate
that data from large-scale screens to characterize most RNA–protein
interactions within a given organism (yeast and human, in particular)
will become available in the near future. For any given organism, the
amount of effort and resources required to experimentally elucidate
physical interaction networks is quite large. To address this issue, a
number of investigators have been developing techniques to predict
physical interaction networks computationally using a variety of
methods (8–12). One of the most common methods makes use of
the similarity of pairs of proteins in a target organism to a database
of known protein interactions covering a diverse range of organisms
(13, 10, 11). For many organisms, the predicted physical interaction
networks are the only genome-scale source of such information.

There are a few issues with both the predicted and the
experimentally determined physical interaction networks. Many
experimentally determined physical interactions may be biologi-
cally irrelevant or only relevant under very specific conditions.
For example, the CHIP-on-chip data generated for NfKb shows
binding to regions just upstream of approximately 10% of all the
genes in the human genome (14), yet it is unlikely that NfKb is
actively regulating that large a fraction of the genome. Perhaps
equally troubling with regards to CHIP-on-chip data is a very
large false-negative rate. We have compared much of the publicly
available yeast CHIP-on-chip data to the databases of experimen-
tally verified transcription factor (TF) regulation; we have found
that current CHIP-on-chip techniques fail to find binding for
about 80% of the known TF regulatory interactions (15). Finally,
while the physical interaction networks (experimental and predicted)
provide valuable insight into relationships between genes, such
networks are generally not predictive of systems behavior. The effect
of a perturbation such as a change in expression level of a given
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protein or RNA is not predictable from the network; therefore, what
is needed are additional experimental and computational methods to
both improve the reliability of the physical interaction networks and
create biological networks that are predictive of systems behavior.

4.2. Methods to Infer

Regulation and/or

Create Predictive

Networks

4.2.1. Identification of

Co-regulated Genes by

Cluster Analysis

Some of the earliest work in this regard is the large-scale analysis of
gene expression as a function of cell cycle in yeast (16). This work
presented the results of a comprehensive series of experiments
designed to identify all protein-encoding transcripts in the gen-
ome of S. cerevisiae, which are regulated by the cell cycle. DNA
microarrays were used to analyze mRNA levels in cell cultures that
had been synchronized by three independent methods. The data
were analyzed by looking for genes whose expression varied in a
cyclic manner during the cell cycle and also by cluster analysis
(a method for discovering patterns in complex data sets). In this
case, cluster analysis was used to identify genes that shared com-
mon patterns of expression across the experiments. In particular,
the study focused on genes that behaved similarly to other genes
that are known to be cell-cycle-regulated. A total of 800 genes, or
approximately 13% of all protein-coding genes in the genome,
were found to be cell-cycle-regulated.

For each of the 800 genes identified as cell-cycle-regulated,
700 bp of genomic sequence immediately upstream of the start
codon was analyzed to identify the potential binding sites for
known or novel factors that might control expression during the
cell cycle. The majority of the genes were shown to have good
matches to known cell cycle transcription factor binding sites. In
addition, the distribution of these putative transcription factor
binding sites and their positions relative to the start codon contain
information that is predictive of the phase of the cell cycle during
which a given gene is expressed.

Cluster analysis has been shown to be a powerful tool to
identify genes whose expression levels are correlated across numer-
ous experiments, and often groups of such genes share common
promoters and/or functions. Hence, the use of the methods
pioneered by Spellman and colleagues, e.g., the meta-analysis of
massive amounts of gene expression data to identify genes that are
co-expressed followed by promoter analysis (Fig. 11.1), is now
fairly commonplace [e.g., (17–22)]. However, this approach of
‘‘guilt by association’’ (23) does have its limitations. In particular,
array data can be quite noisy and cluster analysis will find
patterns in noise as well as signal. Hence, genes that appear to be
co-expressed in a large number of experiments may be grouped on
the basis of noise. Additionally, the number of experiments that
must be analyzed to be reasonably certain that co-expression in
these experiments is indicative of co-regulation can be quite
high. In the work recently published from our group (24), we
re-analyzed large sets of gene expression data measurements
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in yeast to estimate how many experiments are necessary for co-ex-
pression to be a reliable indicator of co-regulation. Our estimates
are that roughly 50 distinct conditions (experiments) are necessary
in yeast. Given that gene regulation in mammals is far more com-
plex than it is in yeast, our work suggests that clustering across
even larger numbers of array experiments will be required for this
approach to reliably infer co-regulation in mammalian cells.

In addition to the fact that co-expression does not necessarily
imply co-regulation, the approach outlined in Fig. 11.1 is also
hampered at the level of sequence analysis. Sequence analysis to
identify transcription factor binding sites can be quite challenging,
as binding site motifs are generally quite small (6–15 nucleotides)
and are not 100% conserved in sequence across the motif.
Therefore, any moderately long stretch of DNA sequence
contains numerous potential motifs to which a known transcrip-
tion factor may bind (13, 8). At present, the net result is that all
putative transcription factor binding sites must be experimentally

Fig. 11.1. A common strategy to identify co-regulated genes. Cluster analysis is applied to multiple array experiments to
identify genes whose expression levels are correlated across all experiments (upper 2 and lower right panels). Analysis of
the upstream regions of DNA sequence is performed to identify common motifs that are putative binding sites for
transcription factors (lower left panel).
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confirmed by a method that demonstrates a direct physical
interaction between the site and the factor and/or a direct influ-
ence of the factor on the expression of that gene in the appropriate
physiological context.

4.2.2. Pathway Inference

and Modeling from Array

Data (Sometimes in

Combination with Other

Data Types)

Cluster analysis to identify co-regulated genes is not the only
approach in attempting to infer pathways from array data. In
2001, Ideker et.al. published a manuscript in Science in which a
systematic approach to systems biology was described (25). In
brief, this approach consists of the following strategy to gain
pathway information from array data:
(i) Define all of the genes in the genome and the subset of genes,

proteins, and other small molecules constituting the pathway
of interest. If possible, define an initial model of the molecular
interactions governing pathway function, drawing upon pre-
vious genetic and biochemical research.

(ii) Perturb each pathway component through a series of genetic
(e.g., gene deletions or over expression) or environmental
(e.g., changes in growth conditions or temperature) manipu-
lations. Detect and quantify the corresponding global cellular
response to each perturbation with technologies for large-
scale mRNA- and protein-expression measurement.

(iii) Integrate the observed mRNA and protein responses with the
current pathway-specific model and with the global network
of protein–protein, protein–DNA, and other known physical
interactions.

(iv) Formulate new hypotheses to explain observations not predicted
by the model. Design additional perturbation experiments to test
these, and iteratively repeat Steps (ii), (iii), and (iv).
This approach was applied to an analysis of the yeast galac-

tose-utilization pathway, one of the most studied pathways
in biological literature (9, 10). Arrays were used to identify
997 mRNAs responding to 20 systematic perturbations of the
yeast galactose-utilization pathway; these perturbations con-
sisted of wild-type yeast and nine gene deletion strains grown
under two different growth conditions (growth in the presence
or absence of 2% galactose with 2% raffinose provided in both
media). The observed responses of GAL genes were compared to
the predicted behavior modeled from current knowledge of the
galactose utilization pathway. In general, the observed mRNA
changes were in good agreement with the qualitative changes
in mRNA expression that were predicted based on the model.
For example, growth of wild-type cells in +gal versus –gal media
significantly induced GAL1, GAL2, GAL7, GAL10, and GAL80
as expected, while deleting the positive regulators GAL3 and
GAL4 led to a significant expression decrease in many of these
genes. In –gal media, deletion of the repressor GAL80 caused a
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dramatic increase in GAL-enzyme expression; in +gal media, this
deletion had little or no effect on these genes, presumably
because they were already highly expressed.

However, several observations were not predicted by the
model. In many cases, these suggested new regulatory phenomena
that may be tested by hypothesis-driven approaches. For example,
in the presence of galactose, gal7 and gal10 deletions unexpectedly
reduced the expression levels of other GAL enzymes. Because
the metabolite Gal-1-P is known to accumulate in cells lacking
functional Gal7 and is detrimental in large quantities (11), one
hypothesis is that the observed expression-level changes are
dependent on the build-up of Gal-1-P or one of its metabolic
derivatives. Utilizing this model, it is expected that the cell
would limit metabolite accumulation by first sensing toxic levels
through an unknown mechanism, then triggering a decrease in
GAL-enzyme expression. To test the hypothesis that the effects of
gal7D and gal10D are dependent on increased levels of Gal-1-P or
a derivative molecule, the expression profile of a gal1Dgal10D
double deletion growing in +gal conditions (relative to the wt
gal1 reference) was obtained. It was predicted that in this strain,
the absence of GAL1 activity would prevent the build-up of Gal-1-P
and the changes in GAL gene expression would not occur. Con-
versely, if the expression changes did not depend on Gal-1-P (e.g.,
are caused by chromosomal interactions at the GAL1-10-7 locus),
they would also be likely to occur in the gal1Dgal10D strain.
Consistent with the initial hypothesis, GAL-enzyme expression
was not significantly affected by this perturbation, and the expres-
sion profile of gal1Dgal10D-affected genes was more similar overall
to the profile of gal1D +gal than to that of gal10D+gal or any other
perturbation. In addition to the effects of gene deletions in the Gal
pathway on the expression level of other genes in the same pathway,
the array data showed the effects of these perturbations on all
transcripts in the genome. For each Gal gene deletion, numerous
perturbations of gene expression in apparently unrelated pathways
were observed.

An attempt was made to explain these more distant effects by
mapping the gene expression data onto an integrated physical
interaction network (Fig. 11.2) consisting of known transcription
factor interactions and protein–protein interactions from global yeast
two-hybrid data (12). This approach has been carried further through
the creation of Cytoscape (www.cytoscape.org), an open source
package of software that automates the visualization and mapping
of data onto physical interaction networks (26, 27). This approach
shows promise in that it provides a rapid way to develop hypotheses
to explain observed effects on gene expression. For the yeast galactose
data, some of the effects on gene expression in other, more distant
pathways could be explained through putative protein–protein or
protein–DNA interactions that were identified by this mapping.
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There are a few recent proposals that also map expression data
onto interaction networks. For example, Han et al. (28) proposed
to use expression data to characterize ‘‘hubs’’ on an interaction
network. They defined hubs as nodes (proteins) that are linked
to more than five other nodes (proteins) on the network, and
characterized two types of hubs: date hubs and party hubs. Party
hubs are highly correlated in expression with their partners and
presumably interact with them at similar times, while date hubs
exhibit limited co-expression and the corresponding physical
interactions usually occur at different times and/or locations.
The authors also observed that the removal of date or party hubs
from the network has different effects on network connectivity:

Fig. 11.2. Mapping of the yeast galactose expression data onto an integrated physical-
interaction network. Nodes represent genes, light arrows directed from one node to
another signifies that the protein encoded by the first gene can influence the transcrip-
tion of the second by DNA binding, and a dark line between two nodes signifies that the
corresponding proteins can physically interact. Effects of the gal4D +gal perturbation are
superimposed on the network. GAL 4 is the hub node in the cluster of genes labeled
‘‘galactose utilzation’’ (upper left). The gray scale intensity of other nodes represents the
magnitude of changes in mRNA levels – node diameter also scales with the magnitude of
change (from (25)).
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removing party hubs does not affect connectivity while removing
date hubs has similar effects as attacking all hubs. In another
example, Luscombe et al. (29) mapped expression data under
different conditions onto a regulatory interaction network and
analyzed the network dynamics exhibited by the expression data.
They divided the condition-specific sub-networks into two
different categories, identified network motifs (which are compact
patterns of interconnection between transcription factors and
targets), and regulatory hubs (which target large numbers of
genes). As more global protein–DNA and protein–protein inter-
action data become available, we anticipate that the approach of
mapping expression data to physical interaction networks will
become an invaluable tool for pathway inference.

Beyond the insights into galactose metabolism in yeast and the
overall approach, there is a key message that can be derived from
this data: apparently simple perturbations (such as a single gene
deletion) often produce complex changes in gene expression
on pathways that are both closely and distantly related to the
perturbation. The net result is that any single-array experiment
comparing two conditions typically produces a plethora of
observed changes, only a fraction of which are directly related to
the biology of interest. Hence, it is easily possible to over-interpret
one’s array data to infer relationships between the biology of
interest and the observed changes that are, in fact, only distantly
related to the biological phenomenon (30).

Yeang and Jaakkola (31) have recently developed a new
framework for inferring models of transcriptional regulation. The
models in this approach, referred to as ‘‘physical models,’’ are
constructed using verifiable molecular attributes of the underlying
biological system (Fig. 11.3). The attributes include, for example,
protein–protein and protein–DNA interactions, the directionality
of signal transduction in protein–protein interactions, as well as
the sign of the effects of these interactions (e.g., whether an

Fig. 11.3. A sample physical model (adapted from Yeang and Jaakkola (31)).
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upstream gene activates or represses the downstream gene). Each
attribute is defined as a variable in the model, and the variables
define a collection of annotated random graphs (possible path-
ways). The possible graphs (or likely biological pathways) are then
constrained by the available data. Protein–protein interaction
data (usually from yeast two-hybrid data) and transcription factor
binding data (from a variety of sources) provide constraints that
are directly tied to the variables in the model. Other sources of
data, such as transcriptional responses to gene deletions, provide
only indirect evidence about the (physical) variables.

In their model, each effect due to a gene deletion is associated
with a set of molecular cascades that could, in principle, explain the
effect. The net result is a set of aggregate constraints about the
physical variables in the model. The most probable model(s)
is(are) then found using an approximate inference method,
e.g., an iterative algorithm to efficiently sample the most likely
pathway(s). Tests of this approach on datasets related to the pher-
omone response pathway in S. cerevisiae show that the resulting
pathway models are consistent with previous studies. Yeang and
Jaakkola show that the approach is capable of predicting gene
deletion effects with a high degree of accuracy and that the method
also implicates likely molecular cascades which are responsible for
each observed gene deletion effect. The approaches taken in the
study of Ideker et al. leveraged a great deal of pre-existing knowl-
edge of that pathway. The approach of Yeang and Jaakkola is also
highly dependent on the availability of some data to use as starting
points for the construction of physical models. However, for many
organisms, there is very little available physical interaction data.
Hence, if we are to infer pathway information from expression
data, we also need approaches that do not require large amounts of
pre-existing physical interaction data.

A number of alternative approaches to pathway inference
that do not require extensive pre-existing knowledge of physical
interactions have been developed. For example, Soinov et al.
developed a supervised learning approach to the reconstruction
of gene networks from expression data and applied their method
to time-series data from yeast (32). Their method is based on
building decision-tree-related classifiers, which predict gene
expression from the expression data of other genes. Given a
gene-expression matrix Xij (where i! genes and j! experiments
in a time course), their method deduces
(i) the state of the gene i in sample j from the expression values of

other genes in the same sample;

(ii) the state of the gene i in sample j from the expression values of
genes from the previous sample/samples; and

(iii) the change in the state of the gene i from the changes in states
of other genes.
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The classifiers were represented as simple rules defining gene
interrelations. Rules among 20 genes involved in the yeast cell
cycle were considered. In most cases, the rules that were recovered
(without any a priori knowledge or input to the method) are
consistent with existing knowledge of cell cycle gene expression.
In addition, previously unknown relationships were discovered,
which can be treated as new hypotheses for subsequent experi-
mental confirmation.

We (24), along with Friedman et al. (33), have developed
techniques to perform context-specific clustering, which is a tech-
nique used to identify genes that are co-regulated in only a subset
of the available data. While our more recent method for context-
specific clustering has some advantages over that developed by
Friedman’s group, they took the results a step further to create
machine-learning techniques that fit a combined probability
model of expression patterns and TF binding sites to detect
which binding sites best characterize a co-expression cluster. In
addition, Friedman’s group was the first to fit Bayesian networks
to gene expression data (34, 35). In these network reconstruc-
tions, the nodes represent mRNA levels and the edges the
probability that a parent mRNA level influences a child’s mRNA
level. There are several attractive features to Bayesian network
approach. First, the networks provide predictive value – that is,
the effect of changing the expression level of one gene on other
genes is contained within the network. Second, the posterior
probabilities obtained from fitting the networks to experimental
data provide estimates of certainty in the predictions. Third and
perhaps most importantly, the structure of the networks obtained
correlates well with previous biological knowledge; that is, groups
of genes that participate in similar functions are usually found in
tightly connected ‘‘hubs.’’ Fourth, with appropriate data, it is
possible to infer and fit causal relationships within the network;
edges can be converted from non-directional correlations of gene
expression to directional, causal events. Eric Schadt’s group has
adopted the Bayesian network approach of Friedman et al. to
create causal network models that integrate both co-expression
and genetic data (36–39).

4.2.3. Gene Expression

and Genetics

Perhaps the most exciting area of research in which array data are
leading directly to pathway inference is that of expression quanti-
tative trait locus (eQTL) mapping (40–42). In this approach, the
expression level of each gene is treated as a quantitative trait and
genetic mapping is used to identify inherited loci that correlate
with the expression level of each gene. This approach takes advan-
tage of the fact that there are large numbers of differences in gene
expression between individuals that are due to DNA polymorph-
isms, and uses genetics to identify the causative loci for each
difference.
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For example, in the work of Schadt et al., two standard inbred
mouse strains, C57BL/6 J and DBA/2 J, were bred to produce
111 F2s (second-generation offspring). Genome-wide genetic
mapping was used to identify which alleles were inherited in each
individual and gene expression measurements were performed on
the liver tissue from each individual. In the parental strains, a
significant fraction of the genome (7861/23,574 genes or 33%)
is differentially expressed between the two strains. The F2s are
semi-random admixtures of the genomes of both strains. Through
this combination of genetic mapping and expression profiling, it is
possible to identify allelic variants of loci that correlate with
increased or decreased expression of a gene. This approach is
closely related to the perturbation approach outlined above in
4.2.2 (25), with the exception that the perturbations are accom-
plished through natural genetic mixing and the linear combination
of multiple perturbations is present in each individual in the study.
In effect, genetics is used to perturb the expression levels of many
genes simultaneously, and genetic mapping is then used to corre-
late these effects with causative regions of the genome.

When eQTL mapping was applied to the C57BL/6 J x DBA/2 J
cross, Schadt and colleagues found 4,339 eQTLs over 3,701 genes
with LOD scores greater than 4.3, and more than 11,000 genes with
at least one eQTL with an LOD score greater than 3.0 (LOD¼ log
of the odds ratio and represents the probability that the locus influ-
ences the gene expression level by more than random chance).
For many of these genes, the locus with the highest LOD score
contained the gene itself. This is neither surprising nor particularly
valuable, since one might expect that a polymorphism in the gene’s
promoter sequence would affect its expression level. In addition,
polymorphisms in splice site junctions can also appear as differential
expression depending on the region(s) of the gene that is interro-
gated on the array.

In similar work in yeast, Brem et al. crossed two strains [a lab
strain (BY) and a wild strain isolated from a California vineyard,
(RM)] to create 112 segregants. Each segregant was genotyped
using Affymmetrix arrays and, for each, expression analysis was
performed using two-color ORF arrays. Initial analysis of this data
set under a single locus model yielded eQTLs for 570 genes, each
of which was linked to one or more different loci, with most
expression levels showing complex inheritance patterns. Subse-
quent work by Brem et al. has re-analyzed this data under a more
complex model to identify a large number of genetic interactions
(43). At present, several research groups around the country are
beginning to generate eQTL data predominately for human and
mouse.

An interesting outcome of this work is that eQTL do not
appear to be significantly enriched for the transcription factors of
the linked genes; in retrospect, this is perhaps not too surprising.
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For example, consider the following hypothetical biochemical
pathway A ! B ! C ! D ! E ! F in which A.F. represent
substrates that are operated on by enzymes (AtoB-ase, BtoC-ase,
etc.) that convert each substrate to the next one down the line.
If all five enzymes that are implied in this pathway were regulated
by a single transcription factor, and if the activity of that transcrip-
tion factor was in turn regulated by the concentration of the
substrate F, then we would anticipate that mutations in any of
the five enzymes would be detected as an eQTL for the others. In
such a case, the mutation in the said enzyme would appear as
‘‘causal’’ for the altered expression level in the other enzymes in a
reconstructed Bayesian network. However, in the actual biological
pathway, the expression level or activity of the transcription factor
is actually causal for the expression level of the enzyme mRNAs in
the pathway.

5. Moving Forward

At present, Bayesian networks can be fit to expression data and, as
discussed above, a variety of other data types (e.g., eQTL data)
can be used to provide constraints that allow causal inferences to
be made. Unlike many other network reconstructions, Bayesian
expression networks have predictive value. That is, one can predict
the changes in the mRNA expression level of other genes in the
network, which will be caused by impacting the mRNA expression
level of a target gene. Hence, these networks have tremendous
practical value. For example, if one has a drug that reduces the
expression level of a given gene, one can infer the effect of the drug
on other genes from Bayesian network. However, while these
reconstructed Bayesian network may be very predictive, as dis-
cussed briefly above, they may not accurately represent the under-
lying biological pathway. In addition, whiles these networks are
strongly related to the underlying biochemical pathways, they
are not ‘‘annotated’’ with the relevant physical and chemical
interactions that are responsible for creating the data that were
used to infer the pathways. So how do we move forward?

5.1. Using TF – Gene

Interactions as

Constraints to

Bayesian Networks

As more and more data become available such that we can infer the
direct targets of transcription factors, we need to use TF–gene
regulation as constraints in the Bayesian networks. There are a
number of data sets under development that will aid in better
inference of TF–gene interactions. As discussed above, CHIP-
on-chip data is providing a wealth of information regarding the
binding of transcription factors to the given DNA targets. In
addition, techniques have been developed within Marth Bulyk’s
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lab to use dsDNA arrays to more carefully define the binding
motifs of DNA-binding proteins (44–46) and her lab is working
to characterize all the binding motifs of all known yeast transcrip-
tion factors. It is important to note that CHIP-on-chip and
DNA binding array data sets define the binding of TF factors to
DNA and that this is a necessary but not sufficient condition for
the regulation of nearby genes. Hence, these data sets need to be
combined with other information to more accurately infer regula-
tory TF–gene interactions.

Toward this end, we are currently developing a probabilistic
approach to predict direct gene targets for transcription factors
(TFs), and prospectively validating our predictions in the lab.
While there are a number of different data types that contain
information related to gene regulation (expression, sequence,
eQTL, CHIP-on-Chip, protein–protein interactions), each data
type has its own biases and sources of noise. Significant progress
toward the inference of gene regulation would require a sensible
plan for integrating these various data types. Our predictive model
incorporates information from multiple data types by systemati-
cally assigning weights to each data source such that relatively
noisy data sources are assigned relatively low weights. Due to the
availability of large expression, ChIP and eQTL datasets in yeast,
we are testing our method in yeast. Our preliminary results show
that leveraging multiple data types improves prediction accuracy in
our cross-validation study.

5.2. Integration of

Physical Interaction

Networks with

Bayesian Networks

As discussed in Chapter 10, we need to develop methods to search
through measured and predicted physical interaction networks
to identify possible ‘‘explanations’’ for given edges within the
Bayesian networks. A simple example of the kind of explanatory
physical interactions we might find is shown in Fig. 11.4. In this
example, we show a transcription factor that has a physical inter-
action with a protein coded by ‘‘gene1’’. If we imagine that the
protein1 <–> TF-1 interaction reduces the activity of TF-1, then
we would anticipate that other genes (say genes 2, 3, and 4), which
are also regulated by TF-1, would have mRNA levels that are
correlated with the mRNA level for gene 1. Hence in a Bayesian

Fig. 11.4. A simple regulatory loop. TF-1 represents a transcription factor for Gene1. In
this loop, the protein product of gene 1 binds to its own transcription factor.
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network reconstruction we would anticipate that genes 1, 2, 3, and
4 are connected and that this loop within the physical interaction
network could be used as annotation on the edges between gene1
and other genes.

5.3. Network

Reconstructions

Involving Feedback

Loops

While Bayesian network reconstruction is presently the most
informative method for producing predictive networks, it is
hampered by a fundamental flaw. By their very nature, Bayesian
networks are directed acyclic graphs. Hence, standard Bayesian
networks cannot represent the feedback loops that are so com-
mon in biology. In the long run, this important unsolved
problem must be tackled as we go forward. There are several
possible approaches to incorporating feedback into networks.
One approach is to model expression using Dynamic Bayesian
networks (DBNs). DBNs model the stochastic evolution of a
set of random variables over time. In comparison with BNs,
discrete time is introduced and conditional distributions for
each variable are related to the values of parent variables in
the previous time point. In this formalism, there is no need
for the graph to be acyclic and hence feedback loops can be
introduced. In the past 4 or so years, a number of groups (47–
66) have been developing DBN methods for network inference
from gene expression data and we anticipate that this metho-
dology will come into more frequent use as larger data sets
become available.

Two alternative approaches to modeling network dynamics
involve directly modeling the chemical reactions through either
solutions to differential equations (see Chapter 13) or stochastic
simulation methods (see Chapter 14). As these methods are dis-
cussed in detail in other chapters in this volume, they will not be
discussed in detail here. However, it is noted that both methods
require both extensive knowledge of the likely chemical reactions
present in the system of interest AND a fairly complete set of
measurements on the relative concentrations of the players (proteins,
substrates, etc.) in said reactions. In many cases, such extensive data
are not generally available.

6. Summary

In this chapter we briefly discussed a number of approaches to
network inference using large-scale functional genomics data. Our
goal was to describe methods that can currently be used to infer
networks that have predictive value. At present, one of the most
effective methods to produce networks with predictive value is the
Bayesian network approach as initially instantiated in this domain
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by Friedman et al. (67) and further refined by Eric Schadt and his
research group (36–39, 42, 68). This method has the virtue of
identifying predictive relationships between genes from a combi-
nation of expression and eQTL data. However, it is lacking in
providing a mechanistic bases for the predictive relationships and
is ultimately hampered by an inability to model feedback.

In Section 1, a number of methods were described to identify
or predict network components such as physical interactions.
Ultimately, some of these approaches to identify network compo-
nents could be integrated with and used as ‘‘annotation’’ for the
edges in Bayesian networks. This would take the Bayesian net-
works one step closer to providing mechanistic ‘‘explanations’’ for
the relationships between the nodes. In Section 3, methods to
model network dynamics are discussed in detail. These methods
typically have the benefit of an ability to model feedback loops. In
addition, these methods often use the actual chemical reactions
that produce the data as an underlying representation (and hence
provide a strong mechanistic basis for the model). A challenge for
the future is to produce networks that are both predictive and
provide mechanistic understanding. To do so, methods to move
more freely between and integrate the approaches described in
Sections 1, 2, and 3 will be required.
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Chapter 12

Exploring Pathways from Gene Co-expression
to Network Dynamics

Huai Li, Yu Sun, and Ming Zhan

Abstract

One of the major challenges in post-genomic research is to understand how physiological and pathological
phenotypes arise from the networks or connectivity of expressed genes. In addressing this issue, we have
developed two computational algorithms, CoExMiner and PathwayPro, to explore static features of gene
co-expression and dynamic behaviors of gene networks. CoExMiner is based on B-spline approximation
followed by the coefficient of determination (CoD) estimation for modeling gene co-expression patterns.
The algorithm allows the exploration of transcriptional responses that involve coordinated expression of
genes encoding proteins which work in concert in the cell. PathwayPro is based on a finite-state Markov
chain model for mimicking dynamic behaviors of a transcriptional network. The algorithm allows quanti-
tative assessment of a wide range of network responses, including susceptibility to disease, potential
usefulness of a given drug, and consequences of such external stimuli as pharmacological interventions
or caloric restriction. We demonstrated the applications of CoExMiner and PathwayPro by examining
gene expression profiles of ligands and receptors in cancerous and non-cancerous cells and network
dynamics of the leukemia-associated BCR–ABL pathway. The examinations disclosed both linear and
nonlinear relationships of ligand–receptor interactions associated with cancer development, identified
disease and drug targets of leukemia, and provided new insights into biology of the diseases. The analysis
using these newly developed algorithms show the great usefulness of computational systems biology
approaches for biological and medical research.

Key words: Systems biology, co-expression, pathway dynamics, network modeling, coefficient of
determination (CoD), Markov chain, transcriptional intervention.

1. Introduction

One of the major challenges in post-genomic research and com-
putational systems biology is to understand how physiological and
pathological phenotypes arise from the networks or connectivity of
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expressed genes (1, 2). The utilization of high-throughput data
generated by microarrays and other methodologies provides scien-
tists with a first step toward the goal of system-level analyses of
biological networks (3). Systems biology has shown promise in
many areas of biology, particularly for identifying diagnostic bio-
markers and drug-affected genes or drug targets (4, 5). In this
chapter, we identify two cruxes in the study of biological networks,
i.e., static features of gene co-expression and dynamic behaviors of
networks, and describe how to decipher network or pathway
information using computational systems biology approaches
based on gene expression data.

1.1. Gene

Co-expression

The study of gene co-expression allows the discovery of transcrip-
tional responses that involve coordinated expression of genes
which likely work in concert in the cell. With recent interest in
biological networks, the use of gene co-expression measured
across large number of experiments has emerged as a novel holistic
approach for microarray data analysis (6–9). Typically, the metric
of co-expression that has been used is Pearson’s correlation coeffi-
cient (6, 7, 10, 11). This linear-model-based correlation coefficient
provides a good first approximation of co-expression, but is also
associated with certain pitfalls. When the relationship between log-
expression levels of two genes is nonlinear, the degree of co-
expression is underestimated (12). Since the correlation coefficient
is a symmetrical measurement, it cannot provide evidence of a
directional relationship in which one gene is upstream of another
(13). Similarly, mutual information is also not suitable for model-
ing directional relationship, although it has been applied in various
co-expression studies (11, 14).

Recently, we proposed a new algorithm, CoExMiner, which
provides a more biologically meaningful and comprehensive model
for gene co-expression, functional relationships, and network struc-
ture (15). The new algorithm is based on B-spline approximation
followed by CoD estimation. The algorithm is capable of uncover-
ing both linear and nonlinear relationships of co-expression and
suggesting the directionality. It is thus particularly useful in the
prediction analysis of gene expression, the determination of con-
nectivity in a pathway, and network inference. The computation by
the new algorithm requires no quantization of microarray data, thus
avoiding significant loss or misrepresentation of biological informa-
tion, which would otherwise occur in the conventional application
of CoD (16, 17). In this chapter, we describe the basics of CoEx-
Miner algorithm. We also show the application of the algorithm in
modeling the co-expression patterns and exploring biological infor-
mation from the microarray data of different cancers. The algorithm
allowed the correct identification of co-expressed ligand–receptor
pairs specific to cancerous tissues and provided new insight into the
understanding of cancer development.
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1.2. Network Dynamics Biological networks or pathways behave only under controlled
manners in response to disease development, changing cellular
conditions, or external stimuli (18). By characterizing the dynamic
behavior of biological pathways, we aim to identify how disease or
cellular phenotypes arise from the connectivity or networks of
genes and their products. Various algorithms have been employed
in examining the dynamic behaviors of biological networks in
silico, including the Markov chain (19) and probabilistic Boolean
network (20). In silico simulation has been particularly important
in network analysis since network activity is constrained by various
complex forms of interactions (21, 22).

Recently, we developed a new algorithm, PathwayPro, to mimic
the complex behavior of a biological pathway through a series of
perturbations made in silico to each gene or gene combination (23).
The inputs to the algorithm are the topologies of pathways and gene
expression data. The outputs are the estimated probabilities of net-
work transition across different cellular conditions under each tran-
scriptional perturbation. The algorithm can provide answers to two
questions. First, whether or how much a gene or external perturba-
tion contributes to the dynamic behavior of a pathway in instances
such as disease development or recovery, aging processes, and cell
differentiation. Second, in what specific ways is this contribution
manifested. PathwayPro analysis is particularly valuable in its ability
to simulate in silico pathway behaviors that may not be easy to create
in vitro. The hypotheses subsequently derived can then be tested via
independent experiments. The analysis thus facilitates the develop-
ment of systematic approaches to effective preventive and therapeu-
tic intervention in disease. The potential clinical impact of such
analysis is tremendous as the type of intervention analysis not only
open up a window on the biological behavior of an organism and
the disease progression but also translate into accurate diagnosis,
target identification, drug development, and treatment. We demon-
strate the application of PathwayPro by analyzing the leukemia-
related BCR-ABL proteins and the pathway. The analysis correctly
identified drug targets for leukemia and shed light on the under-
standing of the disease.

2. Basics
of Algorithms

2.1. Computational

Model for Gene

Co-expression

of Mixed Patterns

The algorithm we present here is based on CoExMiner (15). The
algorithm uses a B-spline approximation to predict the expression
value of the target gene gy using the predictor gene gx , followed by
CoD estimation of co-expression of gx and gy . The algorithm
allows measurement of both linear and nonlinear patterns and
directionality of co-expression.
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2.1.1. B-Spline

Approximation

The B-spline is a set of piecewise polynomial functions (24). It can
be defined as follows:

P
*

ðtÞ ¼
Xnþ1

j¼1

Bj ;kðtÞP
*

j ; tmin � t5tmax ½1�

In Eq. [1], P
*

1;P
*

2; � � � ;P
*

nþ1 are n+1 control points. The Bj,k basis
function is of order k. k must be at least 2, and can be no more than
n+1. Equation [1] defines a piecewise continuous function. A
knot vector, t1; t2; � � � ; tkþðnþ1Þ, must be specified for a given
number of control points n+1 and B-spline order k. It is
necessary that tj � tjþ1; 8j . The basis function Bj,k depends
only on the value of k and the values in the knot vector. Bj,k

is defined recursively as

Bj ;1ðtÞ ¼
1; tj � t5tjþ1

0; otherwise

�

Bj ;kðtÞ ¼
t � tj

tjþk�1 � tj
Bj ;k�1ðtÞ þ

tjþk � t

tjþk � tjþ1
Bjþ1;k�1ðtÞ

½2�

By viewing the co-expression pattern as a two-dimensional scatter
plot for a given pair of genes gx and gy with expression values
ðxi; yiÞ; i ¼ 1; � � � ;Nf g, the plot pattern can be modeled by Eq.

[1]. To construct a 2D B-spline curve requires that P
*

ðtÞ and P
*

j in

Eq. [1] are written as P
*

ðtÞ ¼ x
y

� �
¼ f ðtÞ

gðtÞ

� �
and P

*

j ¼
~xj

~yj

� �
.

Here f(t) and g(t) are the x and y components of a point on the

curve. ð~xj ;~yj Þ; j ¼ 1; � � � ;n þ 1
� �

are the control points selected

from ðxi; yiÞ; i ¼ 1; � � � ;Nf g where n þ 1 � N .

2.1.2. CoD Estimation CoD is the ratio of the explained variation to the total variation and
denotes the strength of the association between predictor genes
and target gene. Specifically, for any feature set X, CoD relative to
the target variable Y is defined as CoDX!Y ¼ e0�eX

e0
, where e0 is

the prediction error in the absence of predictor and eX is the error
for the optimal predictors (16). For the purpose of exploring co-
expression patterns, we consider only a pair of genes gx and gy , where
gy is the target gene that is predicted by the predictor gene gx . The
errors are estimated based on the available samples for simplicity.

In specific, given a pair of genes gx and gy with expression
values xi and yi, i ¼ 1; � � � ;N , where N is the number of samples,
CoD can be computed according to the definition.

CoDgx!gy ¼
e0 � eX

e0
¼
PN

i¼1 ðyi � �yÞ2 �
PN

i¼1 ðyi � ŷiÞ2PN
i¼1 ðyi � �yÞ2

½3�
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The key point for computing CoD from Eq. [3] is to find the
optimal estimator ŷi from continuous values of data samples ðxi; yiÞ.
Motivated by the spirit of B-spline, an algorithm is formulated to
estimate the CoD from continuous data of gene expression. The
proposed algorithm is summarized as follows.

Input
l A pair of genes gx and gy with expression values xi and yi,

i ¼ 1; � � � ;N . N is the number of samples.

l M intervals of control points. By given N and M, the number
of control points (n+1) is determined as n ¼ N

M

� �
, where �b c is

the floor function.

l Spline order k.

Output
l CoD of gene gy predicted by gene gx .

Algorithm
l Fit B-spline curve P

*

ðtÞ ¼ x
y

� �
¼ f ðtÞ

gðtÞ

� �
based on control

points P
*

1;P
*

2; � � � ;P
*

nþ1, a knot vector, t1; t2; � � � ; tkþðnþ1Þ, and

the order of k.

� Find indices of x 0i
y 0i

� �
; i ¼ 1; � � � ;N

� 	
,where ðx 01 � x 02 � � � � � x 0N Þare

ordered as monotonic increasing based on ðx1; x2; � � � ; xN Þ,
y 0i is the value with the same index as x 0i.

� Assign (n+1) control points as:

P
*

j ¼
~xj

~yj

� �
¼

x 01þð j�1Þ�M

y 01þð j�1Þ�M

� �
; j ¼ 1; � � �;n

� 	
and

P
*

nþ1 ¼
~xnþ1

~ynþ1

� �
¼ x 0N

y 0N

� �� 	
.

� Compute the Bj,k(t) basis functions recursively from Eq. [2].

� Formulate P
*

ðtÞ ¼
Pnþ1

j¼1

Bj ;kðtÞ
~xj

~yj

� �
based on Eq. [1].

l Calculate CoD of gene gy predicted by gene gx

� Compute mean expression value of gy without predictors

according to �y ¼
PN

i¼1
yi

N .

� For i ¼ 1; � � � ;N , find ŷ 0i ¼ Fðx 0iÞ by eliminating t between

x ¼ f ðtÞ and y ¼ gðtÞ. First find ti ¼ arg min
t

f ðtÞ � x 0i


 



n o
.

Then compute ŷ 0i ¼ gðtiÞ.
� Calculate CoD from Eq. [3] based on the ordered

x 0i
y 0i

� �
; i ¼ 1; � � � ;N

� 	
. Refer to Eq. [3], CoD value is the

same as calculated based on
xi

yi

� �
; i ¼ 1; � � � ;N

� 	
.
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Including the special cases, we have (i) e040, if e0 � eX , com-
puteCoDfromEq.[3];elsesetCoDto0.(ii)e0 ¼ 0,ifeX ¼ 0,
set CoD to 1; else set CoD to 0.

2.1.3. Statistical

Significance

For a given CoD value estimated on the basis of B-spline approx-
imation (referred as CoD-B in the following), the probability of
obtaining a larger CoD-B by randomly shuffling one of the expres-
sion profiles (Pshuffle) is calculated by Monte Carlo simulation. In
the simulation, random datasets can be created by shuffling the
expression profiles of the predictor gene A and the target gene B,
and then CoD-B is determined based on the random dataset.
Pshuffle of CoD-B from the real data could be determined accord-
ing to the derived probability distribution of CoD-B from the
simulation.

2.2. Computational

Model for Pathway

Dynamics

The algorithm we present here is based on PathwayPro (23). In this
algorithm, a finite-state Markov chain model is constructed with the
gene expression profile and network topology. The probability of
network transition is determined based on state-dependent multi-
variate conditional probabilities between gene expression levels.

2.2.1. Model Construction The proposed computational model contains n selected genes.
Each gene has a ternary expression value, which is assigned as
either over-expressed (1), equivalently-expressed (0), or under-
expressed (–1), depending whether the expression level is signifi-
cantly lower than, similar to, or greater than the respective control
threshold. For capturing the dynamics of the network, we use the
state of predictor genes at step t and the corresponding conditional
probabilities, which are estimated from observed data, to derive
the state of the target gene at step t + 1. Equation [4] shows the
definition of transition between gene states at step t and the state at
step t + 1, which can be represented as a Markov chain (19).

SðtÞ ¼: g
ðtÞ
1 g

ðtÞ
2 . . . g ðtÞn

� �
�!Sðtþ1Þ ¼: g

ðtþ1Þ
1 g

ðtþ1Þ
2 . . . g ðtþ1Þ

n

� �
½4�

Here, we generalize the model which allows any number of pre-
dictor genes for each target gene based on the topology of the
network. If the network topology shows there are no predictors as
inputs to predict a gene in the next step, the current gene value is
kept. The transition rule for SðtÞ ! Sðtþ1Þ is depicted in Fig. 12.1
and characterized by Eq. [5].

g
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where i1; i2; � � � ; ik; l 2 f1;2; � � � ;ngand k is the number of predic-
tor genes. C�1

l , C0
l , and C1

l are conditional probabilities that
depend on the states of the predictor genes and satisfy
C�1

l þ C0
l þ C1

l ¼ 1 in Eq. [5]. For example, if there are three
predictor genes for a target gene with a ternary value, there are
33 ¼ 27 possible states observable. The conditional
probabilitiesC�1

l ,C0
l , and C1

l are estimated from the data. Since
the number of experiments (data) in microarray studies is often
limited, there may be some states not observed in the data. In such
case, we assign Prðgl ¼ �1Þ, Prðgl ¼ 0Þ, and Prðgl ¼ 1Þ for
C�1

l ;C0
l ; andC1

l , respectively. Based on the transition rule, we
can compute the transition probability between any two arbitrary
states of the Markov chain as follows:

PrfSðtÞ ! Sðtþ1Þg ¼
Yn

l¼1

C
g
ðtþ1Þ
l

l ½6�

In the simulation, a small but sufficient perturbation is added
to guarantee a steady-state distribution exists and the chain con-
verges to the steady-state distribution. With a perturbation, the
entire Markov chain is ergodic and every state will eventually be
visited. Considering gene perturbation, the transition probability
Eq. [6] can be generalized as (19) Eq. [7]:

PrfSðtÞ ! Sðtþ1Þg ¼
Yn

l¼1

C
g
ðtþ1Þ
l

l

 !
� 1� pð Þn

þ pn0 1� pð Þn�n0pn0

0 � 1 SðtÞ 6¼Sðtþ1Þ½ �

½7�

 up

downdown
no-change

Fig. 12.1. Illustration of transition rules for target genes in the Markov chain model. In
this example, target gene g6 has three predictor genes g3, g4, and g7. The value of g6 at
step (t+1) is determined by the conditional probabilities under the condition g3 ¼ 0,
g4 ¼ –1, and g7 ¼ –1 at step (t).
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where p is the perturbation probability for each gene,

n0 ¼
Pn

l¼1

1
g
ðtÞ
l
6¼g
ðtþ1Þ
l½ � is the number of genes to be perturbed, and

p0 ¼ 1/(q–1). In the ternary case, q ¼ 3, so p0 is equal to 0.5.
The simulation algorithm used in this study is summarized in
Fig. 12.2.

2.2.2. Intervention Analysis

by Markov Chain Model

The ability of the current model to enhance our understanding of
biological systems should be further investigated by exploring
another common biological system feature, the ability to readily
switch from one relatively stable state to another in response to a
simple stimulus. To a certain extent, this study can also verify how
well the model mimics biological systems. Basically, one question
may be interesting to ask: Given a desired target state and an initial
state, with which genes in network should we intervene by simul-
taneously flipping their status so that the probability that the net-
work will reach the desired target state is greatest? We could
address this question by finding the best candidate genes for
intervention based on first-passage time (20, 25). The first-passage
time provides a natural way to capture the goals of intervention in
the sense that we wish to transit to certain states (or avoid certain
states) as quickly as possible, or, alternatively, by maximizing the
probability of reaching such states before a certain time. So it can
be used as a tool for deciding which genes are the best candidates
for intervention. The first passage time from state x to state y can
be defined as follows: with the probability Fkðx; yÞ that, starting in
state x, the first time the network reach a given state y will be at step

Perturb?

Transition Rule
G(t)

 -> G(t+1)

Converge?

Collect N samples

Let t = t+1

Repeat R times

Analyze histograms

Yes No

No

Yes

Perturbation Rule
G(t) 

 -> G(t+1)

Randomly initialize G(0)

Fig. 12.2. Simulation algorithm for steady-state analysis. The algorithm starts from a
random initial state and repeats R times before collecting samples from steady-state
distribution. In the simulation, a small but measurable perturbation is added to guarantee a
steady-state distribution exists and the chain converges to the steady-state distribution.
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k. It is easy to see that for k ¼ 1,F1ðx; yÞ ¼ Aðx; yÞ, which is just the
transition probability from x to y. For k � 2, Fkðx; yÞ satisfies
(25)

Fkðx; yÞ ¼
X

z2½�1;0;1�n�fyg
Aðx; zÞFk�1ðz; yÞ ½8�

In Eq. [8], each element Aðx; yÞ of the transition matrix A can be
computed using Eq. [7]. For a fixed K , a 3n �K matrix F can be
created in which each column contains the probability Fkðx; yÞ
from all possible starting states x to a given target state y at k

steps. We can then use HK ðx; yÞ ¼
PK

k¼1

Fkðx; yÞ as a measurement

index. Because the events that the first passage time from x to y will
be at step k are disjoint for different k, the sum of their probabilities
for k ¼ 1; � � � ;K is equal to the probability that the network,
starting in statex, will visit state y before step K . Since the chain is
ergodic with perturbation probability p, when K ¼ 1, H1ðx; yÞ is
equal to the probability that the chain ever visits the statey, which is
equal to 1.

Using the above measurement tool, we construct the interven-
tion information matrix H at a fixed K ¼ 3. In this matrix, each
rowH3ðx; :Þ represents the probability that the network, from a
starting state x, will visit all desired ending states before step K ¼ 3.
Each column H3ð:; yÞ represents the probability that the network,
starting in all possible intervened states, will visit state y before step
K ¼ 3. For simulating simple stimuli, we mathematically change the
expression level of one gene, two genes, and three genes each time
and keep the rest of the genes unchanged for a starting statex. For a
ternary expression, that will generate C3

n � 33 intervened states for
changing one, two, and three genes which include the original state x.

3. Biological
Applications

We implemented both CoExMiner and PathwayPro algorithms in
Java-based interactive computational tools (15, 23). With the soft-
ware tools, we analyzed ligand and receptor expression profiles in
cancerous and normal tissues, and examined the leukemia-related
ABL-BCR pathway.

3.1. Co-expression

of Ligand–Receptor

Pairs

In this study, we used CoExMiner to analyze the co-expression of
ligands and their corresponding receptors in dissected tissues of
lung cancer, prostate cancer, acute myeloid leukemia (AML), and
their normal tissue counterparts. The ligand– receptor cognate
pair data were obtained from the Database of Ligand– Receptor
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Partners (DLRP) (10). The gene expression data are downloaded
from the GEO database (accession numbers GSE1987, GSE1431,
and GSE995, respectively). The array data, initially obtained using
Affymetrix microarrays, were normalized by the Robust Multi-
Array Analysis (RMA) method (26).

Significantly co-expressed ligand and receptor pairs were iden-
tified in the cancer and normal tissue groups at thresholds of R2

and CoD-B of 0.50 and Pshuffle of 0.05. From these, differentially
co-expressed pairs between cancerous and normal tissues were
selected. Table 12.1 lists the differentially co-expressed genes
between cancerous and normal tissues. About 12 ligand–receptor
pairs were differentially co-expressed between lung cancer and
normal tissues (CoD-B difference >0.40, Table 12.1A). The

Table 12.1
List of ligand–receptor pairs which showed differential
co-expression between cancers and normal tissue. (A) Lung
cancer; (B) Prostate cancer; (C) Acute myeloid leukemia
(AML)

CoD-B Pshuffle

Ligand Receptor Cancer Normal Cancer Normal

(A) Lung cancer

BMP7 ACVR2B 0.76 0.00 0.028 0.58

EFNA3 EPHA5 0.84 0.00 6.7E-06 0.69

FGF8 FGFR2 0.55 0.00 1.5E-07 0.66

IL16 CD4 0.62 0.031 2.7E-06 0.68

CCL23 CCR1 0.00 0.85 0.73 2.1E-09

IL1RN IL1R1 0.23 0.83 0.077 8.4E-07

IL18 IL18R1 0.18 0.71 0.097 4.5E-06

IL13 IL13RA2 0.00 0.69 0.62 1.5E-04

BMP5 BMPR2 0.00 0.61 0.69 1.7E-04

(B) Prostate cancer

BMP6 ACVR2B 0.63 0.081 0.0011 0.44

BTC EGFR 0.75 0.00 1.7E-11 0.28

TGFB2 TGFBR2 0.79 0.00 3.5E-04 0.49

INHA ACVR2A 0.59 0.019 1.1E-06 0.45

CCL23 CCR1 0.00 0.85 0.43 3.2E-09

(continued)
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Table 12.1 (continued)

CoD-B Pshuffle

Ligand Receptor Cancer Normal Cancer Normal

IL1RN IL1R1 0.00 0.82 0.32 3.1E-07

TNFSF8 TNFRSF8 0.00 0.76 0.36 1.5E-06

IL18 IL18R1 0.00 0.70 0.39 2.1E-07

FIGF KDR 0.00 0.57 0.26 0.0023

CXCL5 IL8RB 0.00 0.58 0.41 1.1E-04

(C) Acute myeloid leukemia

FASLG FAS 0.90 0.14 3.6E-05 0.34

BMP7 BMPR1B 0.82 0.00 7.7E-04 0.59

EFNA5 EPHA1 0.85 0.00 2.5E-04 0.71

FGF3 FGFR2 0.81 0.00 7.4E-06 0.66

FGF13 FGFR4 075 0.059 0.0097 0.47

NRG1 ERBB3 0.95 0.00 1.7E-05 0.28

CCL4 CCBP2 0.99 0.24 9.6E-06 0.062

CCL7 CCR5 0.97 0.29 0.00476 0.41

IFNA8 IFNAR2 0.88 0.00 2.9E-05 0.70

IFNG IFNGR1 0.87 0.00 3.4E-04 0.68

IL13 IL4R 0.82 0.00 0.0041 0.70

INHBB ACVR2B 0.82 0.23 1.5E-04 0.11

AMH AMHR2 0.00 0.78 0.63 4.7E-05

CD40LG CD40 0.00 0.97 0.33 8.6E-05

TNFSF7 TNFRSF7 0.39 0.97 0.043 8.2E-05

EFNA1 EPHA4 0.065 0.86 0.59 1.6E-06

FGF1 FGFR4 0.00 0.93 0.32 1.6E-06

CXCL2 IL8RB 0.25 0.84 0.33 3.3E-06

FGF17 FGFR3 0.17 0.70 0.17 3.0E-04

DLK1 NOTCH4 0.00 0.89 0.55 2.5E-07

TNFSF4 TNFRSF4 0.00 0.92 0.67 3.3E-04

CXCL9 CXCR3 0.30 0.98 0.054 1.5E-04

TGFB1 TGFBR1 0.00 0.71 0.62 6.8E-05
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ligand BMP7 (bone morphogenetic protein 7), related to cancer
development (27, 28), was one of the differentially co-expressed
genes. For BMP7 and its receptor ACVR2B (activin receptor IIB),
the CoD-B was 0.76 (Pshuffle< 0.028) in the lung cancer and 0.00
(Pshuffle < 0.58) in the normal tissue, and theR2 value was 0.042
(cancer) or 0.0012 (normal tissue) (Table 12.1A). Therefore,
BMP7 and ACVR2B show a nonlinear co-expression in the lung
cancer but no co-expression in the normal tissue. The co-expression
profile (Fig. 12.3A) further showed that the two genes displayed
approximately the nonlinear pattern (piecewise pattern) of co-
expression, and BMP7 was over-expressed in the lung cancer as
compared with the normal tissue. These results are suggestive of a
certain level of negative feedback involved in the interaction
between BMP7 and ACVR2B.

The ligand CCL23 (chemokine ligand 23) and its receptor
CCR1 (chemokine receptor 1), on the other hand, exhibited a
high linear co-expression in the normal lung tissue but no co-
expression in cancerous lung samples. As shown in Table 12.1A,
the CoD-B value of the gene pair was 0.85 in the normal tissue
while 0.00 in the lung cancer, and theR2 value was 0.91 in the
normal tissue and 0.054 in the lung cancer, suggesting a linear co-
expression between the genes. The linear co-expression pattern is
further profiled in Fig. 12.3B. Similarly, CCL23 and CCR1 were
also highly co-expressed in the normal prostate samples (CoD-B¼
0.85) but not co-expressed in the cancerous prostate samples
(CoD-B ¼ 0.0) (Table 12.1B). However, CCL23 and CCR1
were not co-expressed in either normal (CoD-B ¼ 0.0) or AML
samples (CoD-B ¼ 0.0). The results suggest that CCL23 and
CCR1 show differential co-expression not only between cancerous

20

40

60

80

100

120

140

160

BMP7

A
C

V
R

2B

0 200 400 600 800 1000

Lung Cancer
Normal

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

CCL23

C
C

R
1

Lung Cancer
Normal

Fig. 12.3. Co-expression profiles of two representative ligand–receptor pairs in lung cancer cells and normal cells. (A)
BMP7 and ACVR2B in lung cancer samples (Pshuffle< 0.028) and normal samples (Pshuffle< 0.58); (B) CCL23 and CCR1 in
lung cancer samples (Pshuffle < 0.73) and normal samples (Pshuffle < 2.1E-09).
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and normal tissues but also among different cancers. It has been
reported that chemokine members and their receptors contribute
to tumor proliferation, mobility, and invasiveness (29). Some
chemokines help to enhance immunity against tumor implanta-
tion, while others promote tumor proliferation (30). Our results
suggest that a tight interaction between CCL23 and CCR1 is
absent in lung and prostate cancer samples but present in AML
samples.

Many ligands and receptors showed different patterns of co-
expression in cancer and normal tissues. In the lung cancer, for
example, 11 ligand–receptor pairs showed a linear co-expression
pattern, which were significant in both CoD-B and R2, while 28
pairs showed a nonlinear pattern, which were significant only in
CoD-B. In the counterpart normal tissue, however, 35 ligand–
receptor pairs showed a linear co-expression pattern, while 6 pairs
showed a nonlinear pattern. Such differences in the co-expression
pattern were not identified in previous co-expression studies based
on the correlation coefficient (10). The findings of nonlinear co-
expressed pairs of ligand–receptor by CoExMiner provide novel
candidates for further study in cancer biology.

3.2. Identification

of Disease Genes

and Drug Targets

of Leukemia

We conducted an analysis of the leukemia-related BCR-ABL path-
way using PathwayPro. The analysis profiled the dynamic behavior
of the pathway in response to leukemia development and identified
possible disease genes and drug targets. Affymetrix array data from
chronic myeloid leukemia (CML) and normal white blood cells
(31, 32) were downloaded from the GEO database (accession
numbers GSE2535 and GSE995). We discretized gene expression
values into three categories: over-expressed (1), equivalently-
expressed (0), and under-expressed (–1), depending whether the
expression level is significantly lower than, similar to, or greater
than the respective control threshold. Since some genes have small
natural ranges of variation, we used z-transformation to normalize
the expression levels of genes across experiments, so that relative
expression levels of all genes have the same mean and standard
derivation. We then conducted data quantization with the control
threshold set to be one standard derivation.

Figure 12.4 shows the network topology of the ABL-BCR
pathway (33–35). BCR and ABL are linked to the cytoplasm as
part of a large signaling complex with a variety of cellular sub-
strates, related to the development of chronic myeloid leukemia
(CML) (33–35). In silico simulation was conducted by mathema-
tical perturbation on the expression value of each gene (referred to
as single-gene intervention), each combination of two genes (dou-
ble-gene intervention), and each combination of three genes
(triple-gene intervention). In each perturbation, the observed
expression of a gene was altered to the opposite direction or
remained unchanged. We measured the transition probability of
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the ABL-BCR pathway between the normal condition and the
leukemia state under a series of transcriptional interventions. The
probability of the network transitioning from normal to leukemia
states reveals disease susceptibility of genes involved. The higher
the probability is, the more likely a gene or gene combination
under a certain intervention is responsible for the development
of the disease. On the other hand, the probability of the transition
from leukemia to normal states is a measure of the potential
usefulness of a drug or therapeutic intervention.

Our analysis first showed that more genes and gene com-
binations had higher probabilities to contribute to network
transitions from normal to leukemia states than from leukemia
to normal states (Table 12.2). The result suggests that the
chance is higher for a human to develop leukemia than to
recover from the disease. As illustrated in Table 12.2, in the
double-gene intervention, changes directly involving the genes
BCR and ABL yielded the highest probability (0.01) for a
normal-to-leukemia transition. The interventions on ABL/
AKT1 and BCR/ABL led to the highest transition probabil-
ities (0.002 and 0.001, respectively) for a leukemia-to-normal
transition, although they remained nearly 100 times lower
than those for normal-to-leukemia transitions. In the triple-
gene intervention (Table 12.2), the triplets BCR/ABL/BAD
and BCR/ABL/MYC showed a highest probability (0.01)
for normal-to-leukemia transition, while the BCR/ABL/AKT
combination appeared to have the highest probability (0.007)
for leukemia-to-normal transitions. The importance of BCR
and ABL to the network transition was further illustrated by
the single-gene intervention, where both BCR and ABL were
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Fig. 12.4. The topology of leukemia-related BCR-ABL pathway. The arrows represent the
directions of the causal relationships among genes. BCR are ABL are linked to the
cytoplasm as a part of a large signaling complex with a variety of cellular substrates,
related to the development of leukemia. The drug Gleevec is a selective BCR-ABL
inhibitor in this pathway.
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Table 12.2
Probabilities of network transition by serial interventions on genes in the ABL-BCR
pathway of human

Gene Transcriptional iIntervention Transition pProbability

(A) Transition from normal to CML states by single-gene interventiona

BCR 0 ¼> –1 ¼> 1 0.00639

(B) Transition from CML to normal states by single-gene interventionb

ABL1 1 ¼> 0 ¼> –1 0.000299

(C) Transition from the normal to CML states by double-gene interventionc

BCR ABL1 0 –1 ¼> 1 1 => 1 1 0.0109

BCR BAD 0 1 ¼> –1 0 ¼> 1 0 0.00639

BCR MYC 0 –1 ¼> –1 0 ¼> 1 0 0.00639

BCR BAD 0 1 ¼> –1 –1 ¼> 1 0 0.00639

BCR MYC 0 –1 ¼> –1 1 ¼> 1 0 0.00639

BCR STAT5A 0 1 => –1 –1 => 1 1 0.00639

BCR STAT5A 0 1 ¼> –1 0 ¼> 1 1 0.00639

BCR STAT1 0 0 ¼> –1 1 ¼> 1 0 0.00639

BCR STAT1 0 0 ¼> –1 –1 ¼> 1 0 0.00639

BCR CRKL 0 –1 ¼> –1 1 ¼> 1 0 0.00539

BCR CRKL 0 –1 ¼> –1 0 ¼> 1 0 0.00399

BCR PIK3CG 0 –1 ¼> –1 0 ¼> 1 –1 0.00384

BCR JAK2 0 0 ¼> –1 1 ¼> 1 0 0.00224

BCR AKT1 0 0 ¼> –1 –1 ¼> 1 0 0.00107

(D) Transition from the CML to normal states by double–gene interventiond

ABL1 AKT1 1 0 ¼> 0 1 ¼> –1 0 0.00185

ABL1 AKT1 1 0 ¼> 0 –1 ¼> –1 0 0.00179

BCR ABL1 1 1 ¼> 0 –1 ¼> 0 –1 0.00111

(E) Transition from normal to CML states by triple-gene interventione

BCR ABL1 BAD 0 –1 1 ¼> 1 1 0 ¼> 1 1 0 0.010936

BCR ABL1 MYC 0 –1 –1 ¼> 1 1 0 ¼> 1 1 0 0.010936

BCR ABL1 BAD 0 –1 1 ¼> 1 1 –1 ¼> 1 1 0 0.010933

BCR ABL1 MYC 0 –1 –1 ¼> 1 1 1 ¼> 1 1 0 0.010933

(continued)
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associated with the highest transition probability (Table 12.2).
Moreover, BCR and ABL showed high frequencies in all of their
partnerships with other genes in the double or triple interven-
tions positive for network transition. As illustrated in Fig. 12.5,
BCR and ABL were on the top by the frequency of partnership
with other genes in the normal-to-leukemia transition, while
BCR and ABL, along with AKT and CRKL, were on the top
in the leukemia-to-normal transition in the triple-gene invention.
These results suggest that BCR and ABL are the most contribu-
tive to the network behavior transition between the normal
condition and the leukemia state, and therefore the most sus-
ceptible for the development of CML leukemia as well as the
recovery of the disease to a normal condition. The two genes
can thus serve as good drug targets for the treatment of CML

Table 12.2 (continued)

Gene Transcriptional iIntervention Transition pProbability

BCR ABL1 STAT5A 0 –1 1 ¼> 1 1 0 ¼> 1 1 1 0.010933

BCR ABL1 STAT5A 0 –1 1 ¼> 1 1 –1 ¼> 1 1 1 0.010933

BCR ABL1 STAT1 0 –1 0 => 1 1 –1 => 1 1 0 0.010933

BCR ABL1 STAT1 0 –1 0 ¼> 1 1 1 ¼> 1 1 0 0.010933

(F) Transition from CML to normal states by triple-gene interventionf

BCR ABL1 AKT1 1 1 0 ¼> 0 –1 1 ¼> 0 –1 0 0.00684

BCR ABL1 AKT1 1 1 0 ¼> 0 –1 –1 ¼> 0 –1 0 0.00662

ABL1 CRKL AKT1 1 0 0 ¼> 0 –1 1 ¼> –1 –1 0 0.00297

ABL1 CRKL AKT1 1 0 0 ¼> 0 –1 –1 ¼> –1 –1 0 0.00288

BCR ABL1 AKT1 1 1 0 ¼> –1 –1 1 ¼> 0 –1 0 0.00274

BCR ABL1 AKT1 1 1 0 ¼> –1 –1 –1 ¼> 0 –1 0 0.00265

ABL1 CRKL AKT1 1 0 0 ¼> 0 1 1 ¼> –1 –1 0 0.00250

ABL1 CRKL AKT1 1 0 0 ¼> 0 1 –1 ¼> –1 –1 0 0.00242

aProbability cutoff 1E-4.
bProbability cutoff 1E-4.
cProbability cutoff 1E-3.
dProbability cutoff 1E-3.
eProbability cutoff 1E-2.
fProbability cutoff 2E-3.
The gene expression profile of each state is presented as: initial state (e.g., normal state) ¼> state after
intervened¼> end state (e.g., disease state). Transcriptional intervention is presented as: initial state (e.g.,
normal state)¼> state after intervened¼> end state (e.g., disease state). In each state, expression levels of
each gene are presented by ternary values.
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leukemia. This result, reached independently by the computa-
tional analysis, is in agreement with the conclusion by previous
laboratory-based studies. It has been shown that CML is asso-
ciated in most cases with the fusion of the genes ABL and BCR,
and the activation of BCR-ABL represses apoptosis and allows
transformed cells to divide, resulting in the development of CML
(33–35). The drug Gleevec is a selective BCR-ABL inhibitor,
effective in the treatment of CML (36). The PathwayPro analysis
not only correctly identified the drug targets but further indi-
cated that BAD and MYC played critical roles in the leukemia
development while AKT appeared important in the leukemia
recovery to normal. The results provide new insights into our
understanding of the leukemia disease.

4. Conclusions

The two algorithms described in this chapter, CoExMiner and
PathwayPro, help to decipher biological information from static
features of gene co-expression and dynamic behaviors of gene
networks. The systems biology analyses allow one to determine
how genes interact with each other to perform specific biological
processes or functions, and how disease or cellular phenotypes
arise from the connectivity or network of genes and their products.
The algorithms and software developed for computational systems
biology greatly facilitate drug discovery, sensitive diagnostic bio-
marker identification, and basic investigations in many aspects of
biology.
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Fig. 12.5. Frequency of partnership of each gene with other genes in the triple-gene interventions on the ABL-BCR
associated pathway. The frequency is calculated as the number of occurrence of each gene above a certain transition
probability cutoff, after ranking the transition probabilities under the triple-gene interventions. (A) Transition from normal to
CML states (transition probability cutoff: 0.01); (B) Transition from CML to normal states (transition probability cutoff: 0.001).
BCR and ABL are the most contributive to the network behavior transition from the normal condition to the leukemia state.
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5. Notes

1. We have implemented Java-based interactive computational
tools for the CoExMiner and PathwayPro algorithms that we
have developed. The software tools are available upon request
to the authors.

2. The current version of CoExMiner deals with a pair of genes
gx and gy , where gy is the target gene that is predicted by the
predictor gene gx . In the future, we would extend our algo-
rithm to explore multivariate gene relations as well.

3. The current version of PathwayPro allows self-regulation and
feedback loops exist in the topologies of pathways. Due to the
limitation of computational power, it is feasible for Pathway-
Pro to tackle with the network with 10–20 nodes.
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and B-spline techniques. Berlin, New York:
Springer, 2002.

25. Cinlar E. Introduction to Stochastic Pro-
cesses. New Jersey: Prentice Hall, 1975.

26. Irizarry RA, Bolstad BM, Collin F, Cope
LM, Hobbs B, Speed TP. Summaries of
Affymetrix GeneChip probe level data.
Nucl Acids Res 2003, 31(4):e15.

27. Brubaker KD, Corey E, Brown LG, Vessella
RL. Bone morphogenetic protein signaling
in prostate cancer cell lines. J Cell Biochem
2004, 91(1):151–60.

28. Yang S, Zhong C, Frenkel B, Reddi AH,
Roy-Burman P. Diverse biological effect
and Smad signaling of bone morphogenetic
protein 7 in prostate tumor cells. Cancer Res
2005, 65(13):5769–77.

29. Muller A, Homey B, Soto H, et al. Involve-
ment of chemokine receptors in breast cancer
metastasis. Nature 2001, 410(6824):50–56.

30. Wang JM, Deng X, Gong W, Su S. Chemo-
kines and their role in tumor growth and
metastasis. J Immunol Methods 1998,
220(1–2):1–17.

31. Crossman LC, Mori M, Hsieh YC, et al. In
chronic myeloid leukemia white cells from
cytogenetic responders and non-responders to
imatinib have very similar gene expression sig-
natures. Haematologica 2005, 90(4):459–64.

32. Stegmaier K, Ross KN, Colavito SA, O’Mal-
ley S, Stockwell BR, Golub TR. Gene
expression-based high-throughput screen-
ing(GE-HTS) and application to leukemia
differentiation. Nat Genet 2004,
36(3):257–63.

33. Zou X, Calame K. Signaling pathways activated
by oncogenic forms of Abl tyrosine kinase.
J Biol Chem 1999, 274(26):18141–44.

34. Raitano AB, Whang YE, Sawyers CL. Signal
transduction by wild-type and leukemo-
genic Abl proteins. Biochim Biophys Acta
1997, 1333:201–16.

35. Lugo TG, Pendergast AM, Muller AJ, Witte
ON. Tyrosine kinase activity and transfor-
mation potency of bcr-abl oncogene pro-
ducts. Science 1990, 247:1079–82.

36. Druker BJ, Sawyers CL, Kantarjian H.
Activity of a specific inhibitor of the BCR-
ABL tyrosine kinase in the blast crisis of
chronic myeloid leukemia and acute lym-
phoblastic leukemia with the Philadelphia
chromosome. N Engl J Med 2001, 344:
1038–42.

Exploring Pathway Information 267



Chapter 13

Network Dynamics

Herbert M. Sauro

Abstract

Probably one of the most characteristic features of a living system is its continual propensity to change as it
juggles the demands of survival with the need to replicate. Internally these adjustments are manifest as
changes in metabolite, protein, and gene activities. Such changes have become increasingly obvious to
experimentalists, with the advent of high-throughput technologies. In this chapter we highlight some of
the quantitative approaches used to rationalize the study of cellular dynamics. The chapter focuses
attention on the analysis of quantitative models based on differential equations using biochemical control
theory. Basic pathway motifs are discussed, including straight chain, branched, and cyclic systems. In
addition, some of the properties conferred by positive and negative feedback loops are discussed, particu-
larly in relation to bistability and oscillatory dynamics.

Key words: Motifs, control analysis, stability, dynamic models.

1. Introduction

Probably, one of the most characteristic features of a living system
is its continual propensity to change even though it is also arguably
the one characteristic that, as molecular biologists, we often
ignore. Part of the reason for this neglect is the difficulty in making
time-dependent quantitative measurements of proteins and other
molecules although that is rapidly changing with advances in
technology. The dynamics of cellular processes, and in particular
cellular networks, is one of the defining attributes of the living
state and deserves special attention.

Before proceeding to the main discussion, it is worth briefly
listing the kinds of questions that can and have been answered by a
quantitative approach (See Table 13.1). For example, the notion
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of the rate-limiting step was originally a purely intuitive invention;
once analyzed quantitatively, however, it was shown to be incon-
sistent with both logic and experimental evidence. There are many
examples such as this where a quantitative analysis has overturned a
long-held view of how cellular networks operate. In the long term,
one of the aims of a quantitative approach is to uncover the general
principles of cellular control and organization. In turn this will lead
to new approaches to engineering organisms and the development
of new therapeutics.

Although traditionally the discipline of molecular biology has
had little need for the machinery of mathematics, the non-trivial
nature of cellular networks and the need to quantify their dynamics
have made mathematics a necessary addition to our arsenal. In this
chapter we can sketch only some of the quantitative results and
approaches that can be used to describe network dynamics. We will
not cover topics such as flux balance, bifurcation analysis, or
stochastic models, all important areas of study for systems biology.
For the interested reader, much more detail can be had by con-
sulting the reading list at the end of the chapter. Moreover, in this
chapter we will not deal with the details of modeling specific
systems because this topic is covered in other chapters.

1.1. Quantitative

Approaches

The most common formal approach to representing cellular net-
works has been to use a deterministic and continuous formalism,
based invariably on ordinary differential equations (ODE). The
reason for this is twofold, firstly ODEs have been shown in many
cases to represent adequately the dynamics of real networks, and

Table 13.1
Some problems amenable to a quantitative approach

Problem Representative solution

Rate-limiting steps Kacser and Burns (49)

Role of feedback and robustness Savageau (77)

Analysis of cell-to-cell variation Mettetal et al. (61)

Rationalization of network structure Voit et al. (87)

Design of synthetic networks Kaern and Weiss (51)

New principles of regulation Altan-Bonnet and Germain (1)

New therapeutic approaches Bakker et al. (5)

Origin of dominance and recessivity Kacser and Burns (50)

Missing interactions Ingolia (46)

Multistationary systems Many Examples Exist (52)
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secondly, there is a huge range of analytical results on the ODE-
based models one can draw upon. Such analytical results are
crucial to enabling a deeper understanding of the network
under study.

An alternative approach to describing cellular networks is to
use a discrete, stochastic approach, based usually on the solution of
the master equation via the Gillespie method (27,28). This
approach takes into account the fact that at the molecular level,
species concentrations are whole numbers and change in discrete,
integer amounts. In addition, changes in molecular amounts are
assumed to be brought about by the inherent random nature of
microscopic molecular collisions. In principle, many researchers
view the stochastic approach to be a superior representation
because it directly attempts to describe the molecular milieu of
the cellular space. However, the approach has two severe limita-
tions, the first is that the method does not scale, that is, when
simulating large systems, particularly where the number of mole-
cules is large (>200), it is computationally very expensive. Sec-
ondly, there are few analytical results available to analyze stochastic
models, which means that analysis is largely confined to numerical
studies from which it is difficult to generalize. One of the great and
exciting challenges for the future is to develop the stochastic
approach to a point where it is as powerful a description as the
continuous, deterministic approach. Without doubt, there is a
growing body of work, such as studies on measuring gene expres-
sion in single cells, which depends very much on a stochastic
representation. Unfortunately, the theory required to interpret
and analyze stochastic models is still immature though rapidly
changing (66, 78). The reader may consider the companion chap-
ter by Resat et al. for the latest developments in stochastic
dynamics.

In this chapter we will concentrate on some properties of
network structures using a deterministic, continuous approach.

2. Stoichiometric
Networks

The analysis of any biochemical network starts by considering the
network’s topology. This information is embodied in the stoichio-
metry matrix, N (Note 1). In the following description we will
follow the standard formalism introduced by Reder (70). The
columns of the stoichiometry matrix correspond to the distinct
chemical reactions in the network, the rows to the molecular
species, one row per species. Thus the intersection of a row and
column in the matrix indicates whether a certain species takes part
in a particular reaction or not, and, according to the sign of the
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element, whether it is a reactant or product, and by the magnitude,
the relative quantity of substance that takes part in that reaction.
Stoichiometry thus concerns the relative mole amounts of chemi-
cal species that react in a particular reaction; it does not concern
itself with the rate of reaction.

If a given network is composed of m molecular species
involved in n reactions, then the stoichiometry matrix is an m �
n matrix. Only those molecular species that evolve through the
dynamics of the system are included in this count. Any source and
sink species needed to sustain a steady state (non-equilibrium in
the thermodynamic sense) are set at a constant level and therefore
do not have corresponding entries in the stoichiometry matrix
(Fig. 13.1).

2.1. The System

Equation

To fully characterize a system one also needs to consider the
kinetics of the individual reactions as well as the network’s topol-
ogy. Modeling the reactions by differential equations, we arrive at
a system equation that involves both the stoichiometry matrix and
the rate vector, thus:

dS

dt
¼ Nv; ½1�

where N is the m � n stoichiometry matrix and v is the n dimen-
sional rate vector, whose ith component gives the rate of reaction i
as a function of the species concentrations.

2.2. Conservation Laws In many models of real systems, there will be mass constraints on
one or more sets of species. Such species are termed conserved
moieties (71). A recent review of conservation analysis, which also
highlights the history of stoichiometric analysis, can be found in
(73). In this section only the main results will be given.

A typical example of a conserved moiety in a computa-
tional model is the conservation of adenine nucleotide, i.e.,
when the total amount of ATP, ADP, and AMP is constant
during the evolution of the model. Other examples include
NAD/NADH, phosphate, phosphorylated proteins forms, and
so on. Figure 13.2 illustrates the simplest possible network
that displays a conserved moiety; in this case the total mass,
S1 + S2, is constant during the entire evolution of the network.

Si

vj⎡
⎢⎣

αij ...    ...
...
...

⎤
⎥⎦

Fig. 13.1. Stoichiometry matrix: N: m � n, where �ij is the stoichiometric coefficient. Si

denotes the ith species, and vj the jth reaction.
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The total amount of a particular moiety in a network is time-
invariant and is determined solely by the initial conditions imposed
on the system (Note 2).

Conserved moieties in the network reveal themselves as linear
dependencies in the rows of the stoichiometry matrix (42, 14).

If we examine the system equations for the model depicted in
Fig. 13.2, it is easy to see that the rate of appearance of S1 must
equal the rate of disappearance of S2, in other words dS1/dt =
�dS2/dt. This identity is a direct result of the conservation of
mass, namely that the sum S1 + S2 is constant throughout the
evolution of the system.

The stoichiometry matrix for the network depicted in Fig. 13.2
has two rows [1,�1] and [�1, 1]. Since either row can be derived
from the other by multiplication by�1, they are linearly dependent,
and the rank of the matrix is 1. Whenever the network exhibits
conserved moieties, there will be dependencies among the rows of
N, and so the rank of N (rank(N)) will be less than m, the number of
rows of N. The rows of N can be rearranged so that the first rank(N)
rows are linearly independent. The species which correspond to
these rows can then be defined as the independent species (Si).
The remaining m � rank(N) are called the dependent species (Sd).

In the simple example shown in Fig. 13.2, there is one inde-
pendent species, S1, and one dependent species, S2 (or, alterna-
tively, S2 is independent and S1 dependent).

Once the matrix N has been rearranged as described, we can
partition it as

N ¼
N R

N 0

� �
;

where the submatrix NR is full rank, and each row of the submatrix
N0 is a linear combination of the rows of NR. Following Reder
(69), we make the following construction. Since the rows of N0 are
linear combinations of the rows of NR, we can define a link-zero
matrix L0 which satisfies N0 = L0NR. We can combine L0 with the
identity matrix (of dimension rank(N)) to form the link matrix L
and hence we can write:

N ¼
N R

N 0

� �
¼

I

L0

� �
N R ¼ LN R:

S1 S2

A B

D C

Fig. 13.2. Simple conserved cycle with the constraint, S1 + S2 = T.
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By partitioning the stoichiometry matrix into dependent and
independent sets, we also partition the system equation. The full
system equation, which describes the dynamics of the network, is
thus:

I

L0

� �
N Rv ¼ dS

dt
¼

dSi=dt

dSd=dt

� �
;

where the terms dSi/dt and dSd/dt refer to the independent and
dependent rates of change, respectively. From the above equation,
it can be shown that the relationship between the dependent and
the independent species is given by: Sd(t) � Sd(0) ¼ L0 [Si(t) �
Si(0)] for all time t. Introducing the constant vector T ¼ Sd(0) �
L0Si(0), and recalling that S ¼ (Si, Sd), we can introduce G ¼
[�L0, I], and write the vector T concisely as

GS ¼ T :

G is called the conservation matrix.
In the example shown in Fig. 13.2, the conservation matrix G

can be shown to be

G ¼ 1 1½ �:
A more complex example is illustrated in Box 1. Algorithms

for evaluating the conservation constraints and the Link matrix can
be found in (42, 14, 73, 85).

Box 1. Conservation Analysis.

Consider the simple reaction network shown on the left below:

v2

v3

ES E

S1

S2

v1

ES

S1

S2

E

v1 v2 v3⎡
⎢⎢⎣

0 −1 1
−1 1 0

1 0 −1
0 1 −1

⎤
⎥⎥⎦

The stoichiometry matrix for this network is shown on the
right. This network possesses two conserved cycles given by the
constraints: S1 + S2 + ES = T1 and E + ES = T2. The set of
independent species includes {ES, S1}, and the set of dependent
species {E, S2}.
The L0 matrix can be shown to be:

L0 ¼
�1 �1

�1 0

� �
:
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The complete set of equations for this model is therefore:

S2

E

� �
¼
�1 �1

�1 0

� �
ES

S1

� �
þ

T1

T2

� �

dES=dt

dS1=dt

� �
¼

0 �1 1

�1 1 0

� � v1

v2

v3

2

64

3

75:

Note that even though there appears to be four variables in this
system, there are in fact only two independent variables, {ES,
S1}, and hence only two differential equations and two linear
constraints.

An excellent source of material related to the analysis of the
stoichiometry matrix can be found in the text book by Heinrich
and Schuster (37) and more recently (53).

3. Biochemical
Control Theory

The system Eq. [1] describes the time evolution of the network.
This evolution can be characterized in three ways: thermodynamic
equilibrium where all net flows are zero and no concentrations
change in time; steady state where net flows of mass traverse the
boundaries of the network and no concentrations change in time;
and finally the transient state where flows and concentrations are
both changing in time. Only the steady state and transients states are
of real interest in biology. Steady states can be further characterized
as stable or unstable, which will be discussed in a later section.

The steady-state solution for a network is obtained by setting
the left-hand side of the system Eq. [1] to zero, Nv = 0, and solving
for the concentrations. Consider the simplest possible model:

Xo ! S1 ! X1; ½2�

where we will assume that Xo and X1 are boundary species that do
not change in time and that each reaction is governed by simple
mass-action kinetics. With these assumptions we can write down
the system equation for the rate of change of S1 as:

dS1=dt ¼ k1Xo � k2S1:

We can solve for the transient behavior of this system by integrating
the system equation and setting an initial condition, S1(0) = Ao, to yield:

S1ðtÞ ¼ Aoe
�k2t þ k1X0

k2
1� e�k2t
� �

:
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This equation describes how the concentration of S1 changes in
time. The steady state can be determined either by letting t go to
infinity or by setting the system equation to zero and solving for S1;
either way, the steady-state concentration of S1 can be shown to be:

S1 ¼
k1X0

k2
:

Although simple systems such as this can be solved analytically
for both the time course evolution and the steady state, the method
rapidly becomes unworkable for larger systems. The problem
becomes particulary acute when, instead of simple mass-action
kinetics, we begin to use enzyme kinetic rate laws that introduce
nonlinearities into the equations. For all intent and purposes, ana-
lytical solutions for biologically interesting systems are unattainable.
Instead one must turn to numerical solutions; however, numerical
solutions are particular solutions, not general, which an analytical
approach would yield. As a result, to obtain a thorough under-
standing of a model, many numerical simulations may need to be
carried out. In view of these limitations many researchers apply small
perturbation theory (linearization) around some operating point,
usually the steady state. By analyzing the behavior of the system
using small perturbations, only the linear modes of the model are
stimulated and therefore the mathematics becomes tractable. This is
a tried and tested approach that has been used extensively in many
fields, particularly engineering, to deal with systems where the
mathematics makes analysis difficult.

Probably, the first person to consider the linearization of bio-
chemical models was Joseph Higgins at the University of Pennsylvania
in the 1950s. Higgins introduced the idea of a ‘‘reflection coefficient’’
(40, 38), which described the relative change of one variable to
another for small perturbations. In his Ph.D. thesis, Higgins describes
many properties of the reflection coefficients and in later work, three
groups, Savageau (75, 77), Heinrich and Rapoport (36, 35), and
Kacser and Burns (9, 49) independently and simultaneously devel-
oped this work into what is now called Metabolic Control Analysis or
Biochemical Systems Theory. These developments extended Higgins’
original ideas significantly and the formalism is now the theoretical
foundation for describing deterministic, continuous models of bio-
chemical networks. The theory has, in the past 20 years or so, been
further developed with the most recent important advances by Ingalls
(45) and Rao (68). In this chapter we will call this approach Biochem-
ical Control Theory, or BCT.

3.1. Linear Perturbation

Analysis

3.1.1. Elementary

Processes

The fundamental unit in biological networks is the chemical trans-
formation. Such transformations vary, ranging from simple bind-
ing processes, transport processes, to more elaborate aggregated
kinetics such as Michaelis-Menten and complex cooperative
kinetics.
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Traditionally, chemical transformations are described using a
rate law. For example, the rate law for a simple irreversible Michae-
lis-Menten reaction is often given as

v ¼ V max S

Kmþ S
; ½3�

where S is the substrate and the Vmax and Km kinetic constants.
Such rate laws form the basis of larger pathway models.

A fundamental property of any rate law is the so-called kinetic
order, sometimes also called the reaction order. In simple mass-
action chemical kinetics, the kinetic order is the power to which a
species is raised in the kinetic rate law. Reactions with zero-order,
first-order, and second-order are the common types of reactions
found in chemistry, and in each case the kinetic order is zero, one,
and two, respectively. It is possible to generalize the kinetic order
as the scaled derivative of the reaction rate with respect to the
species concentration, thus

Elasticity Coefficient: ev
S ¼

@v

@S

S

v
¼ @ ln v

@ ln S
� v%=S%:

When expressed this way, the kinetic order in biochemistry is
called the elasticity coefficient. Applied to a simple mass-action rate
law such as v = kS, we can see that ev

S ¼ 1. For a generalized mass-
action law such as

v ¼ k
Y

Sni

i ;

the elasticity for the ith species is simply ni, that is, it equals the
kinetic order. For aggregate rate laws such as the Michaelis-Men-
ten rate law, the elasticity is more complex, for example, the
elasticity for the rate law Eq. [3] is:

ev
S ¼

Km

S þKm
:

This equation illustrates that the kinetic order, though a con-
stant for simple rate laws, is a variable for complex rate laws. In this
particular case, the elasticity approaches unity at low substrate
concentrations (first-order) and zero at high substrate concentra-
tions (zero-order).

Elasticity coefficients can be defined for any effector molecule
that might influence the rate of reaction, this includes substrates,
products, inhibitors, activators, and so on. Elasticities are positive for
substrates and activators, but negative for products and inhibitors.

At this point, elasticities might seem like curiosities and of no
great value; left on their own, this might well be true. The real
value of elasticities is that they can be combined into expressions
that describe how the whole pathway responds collectively to
pertubations. To explain this statement one must consider an
additional measure, the control coefficient.
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3.1.2. Control Coefficients Unlike an elasticity coefficient, which describes the response of a
single reaction to perturbations in its immediate environment, a
control coefficient describes the response of a whole pathway to
perturbations in the pathway’s environment.

At steady state, a reaction network will sustain a steady rate
called the flux, often denoted by the symbol, J. The flux describes
the rate of mass transfer through the pathway. In a linear chain of
reactions, the steady-state flux has the same value at every reaction.
In a branched pathway, the flux divides at the branch points. The
flux through a pathway can be influenced by a number of external
factors, such as enzyme activities, rate constants, and boundary
species. Thus, changing the gene expression that codes for an
enzyme in a metabolic pathway will have some influence on the
steady-state flux through the pathway. The amount by which the
flux changes is expressed by the flux control coefficient.

CJ
Ei
¼ dJ

dEi

Ei

J
¼ d ln J

d ln Ei
� J %=Ei%: ½4�

In the expression above, J is the flux through the pathway and
Ei the enzyme activity of the ith step. The flux control coefficient
measures the fractional change in flux brought about by a given
fractional change in enzyme activity. Note that the coefficient as
well as the elasticity coefficients are defined for small changes.

For a reaction pathway one can plot (Fig. 13.3) the steady-
state flux, J, as a function of the activity of one of the enzymes. The
flux control coefficient can be interpreted on this graph as the
scaled slope of the response at a given steady state. Given that
the curve is a function of the enzyme activity, it should be clear that
the value of the control coefficient is also a function of enzyme
activity and consequently the steady state. Control coefficients are
not constants but vary according to the current steady state.

Fig. 13.3. Typical response of the pathway steady-state flux as a function of enzyme
activity. The flux control coefficient is defined at a particular operating point, marked
(a) on the graph. The value of the coefficient is measured by the scaled slope of the
curve at (a).
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One can also define a similar coefficient, the concentration
control coefficient, with respect to species concentrations, thus:

CS
Ei
¼ dS

dEi

Ei

S
¼ d ln S

d ln Ei
� S%=Ei%: ½5�

3.1.3. Relationship

Between Elasticities and

Control Coefficients

One of the most significant discoveries made early on in the devel-
opment of BCT (Biochemical Control Theory) was the existence of a
relationship between the elasticities and the control coefficients. This
enabled one, for the first time, to describe in a general way, how
properties of individual enzymes could contribute to pathway beha-
vior. More importantly, this relationship could be studied without
the need to solve, analytically, the system Eq. [1]. Particular exam-
ples of these relationships will be given in the subsequent sections;
here we will concentrate on the general relationship.

There are two related ways to derive the relationship between
elasticities and control coefficients, the first is via the differentia-
tion of the system Eq. [1] at steady state and the second by the
connectivity theorem.

System Equation Derivation. The system equation can be
written more explicitly to show its dependence on the enzyme
activities (or any parameter set) of the system: Nv(s(E),E) = 0.
By differentiating this expression with respect to E, we obtain

ds

dE
¼ � N R

@v

@s
L

� ��1

N R
@v

@E
: ½6�

The terms @v/@s and @v/@E are unscaled elasticities [See (69,
37, 43, 53) for details of the derivation]. By scaling the equation
with the species concentration and enzyme activity, the left-hand
side becomes the concentration control coefficient expressed in
terms of scaled elasticities. The flux control coefficients can also be
derived by differentiating the expression: J = v [s(p), p] to yield:

dJ

dE
¼ I � @v

@s
N R

@v

@s
L

� ��1

N R

" #
@v

@E
: ½7�

Again, the flux expression can be scaled by E and J to yield the
scaled flux control coefficients. These expressions, though
unwieldy to some degree, are very useful for deriving symbolic
expressions relating the control coefficients to the elasticities. A
very thorough treatment together with the derivations of these
equations and much more can be found in Hofmeyr 2001.

Theorems. Examination of expressions [6] and [7] yields some
additional and unexpected relationships between the control coeffi-
cients and the elasticities, called the summation and connectivity
theorems. These theorems were originally discovered by modeling
small networks using an analog computer (Jim Burns, personal
communication), but have since been derived by other means.
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The flux summation theorem states that the sum of all the flux
control coefficients in any pathway is equal to unity.

Xn

i¼1

CJ
i ¼ 1

It is also possible to derive a similar relationship with respect to
species concentrations, namely

Xn

i¼1

CSk

i ¼ 0

In both relationships, n, is the number of reaction steps in the
pathway. The flux summation theorem indicates that there is a
finite amount of ‘‘control’’(or sensitivity) in a pathway and implies
that control is shared between all steps. In addition, it states that if
one step were to gain control, then one or more other steps must
lose control.

Arguably, the most important relationship is between the
control coefficients and the elasticities.

X
CJ

i e
i
S ¼ 0

This theorem, and its relatives (88, 19, 20), is called the con-
nectivity theorem and is probably the most significant relation-
ship in computational systems biology because it relates two
different levels of description, the local level, in the form of elasti-
cities, and the system level, in the form of control coefficients.
Given the summation and connectivity theorems, it is possible to
combine them and solve for the control coefficients in terms of the
elasticities. For small networks this approach is a viable way to
derive the relationships (19), especially when combined with soft-
ware such as MetaCon (81), which can compute the relationships
algebraically. Box 2 illustrates a simple example of this method.

Box 2. Using Theorems to Derive Control Equations

Consider the simple reaction network, comprising three
enzyme-catalyzed reactions, shown below:

X
E1

o! S
E2

1! S
E3

2!X1;

where, Xo and X1 are fixed boundary species. The flux summa-
tion theorem can be written down as:

CJ
E1
þ CJ

E2
þ CJ

E3
¼ 1;
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while the two connectivity theorems, one centered around each
species, are given by:

CJ
E1
e1
1 þ CJ

E2
e2
1 ¼ 0

CJ
E2
e2
2 þ CJ

E3
e3
2 ¼ 0:

These three equations can be recast in matrix form as:

1 1 1

e1
1 e2

1 0

0 e2
2 e3

2

2
64

3
75

CJ
E1

CJ
E2

CJ
E3

2
664

3
775 ¼

1

0

0

2
64

3
75

The matrix equation can be rearranged to solve for the vector,
½CJ

E1
CJ

E2
CJ

E3
�T , by inverting the elasticity matrix, to yield:

CJ
E1
¼ e2

1e
3
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

CJ
E2
¼ �e1

1e
3
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

CJ
E3
¼ �e1

1e
2
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

Further details of the procedure can be found in (19, 20). For
larger systems Eq. [7] can be used in conjunction with software
tools such as Maple, bearing in mind that Eq. [7] yields
unscaled coefficients.

3.2. Linear Analysis of

Pathway Motifs
In the following sections we will describe the application of BCT
to some basic and common motifs found in cellular networks.
These include, straight chains, branches, cycles, and feedback
loops.

3.2.1. Straight Chains Although linear sequences of reaction steps are actually quite rare
in cellular networks (most networks are so heavily branched that
uninterrupted sequences are quite uncommon), their study can
reveal some basic properties that are instructive to know.

One of the oldest concepts in cellular regulation is the notion
of the rate-limiting step. It was Blackman in 1905 (6) who wrote
the famous phrase: ‘when a process is conditioned as to its rapidity
by a number of separate factors, the rate of the process is limited by
the pace of the slowest factor’. It was this statement that started a
century long love-affair with the idea of the rate-limiting step in
biochemistry, a concept that has lasted to this very day. From the
1930s to the 1950s, there were, however, a number of published
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papers which were highly critical of the concept, most notably
Burton (11), Morales (62) and Hearon (33) in particular. Unfor-
tunately, much of this work did not find its way into the rapidly
expanding fields of biochemistry and molecular biology after the
second world war, and instead the intuitive idea first pronounced
by Blackman still remains today one of the basic but erroneous
concepts in cellular regulation. This is more surprising because a
simple quantitative analysis shows that it cannot be true, and there
is ample experimental evidence (34, 10) to support the alternative
notion, that of shared control.

The confusion over the existence of rate-limiting steps stems
from a failure to realize that rates in cellular networks are governed
by the law of mass-action, that is, if a concentration changes, then
so does its rate of reaction. Many researchers try to draw analogies
between cellular pathways and human experiences such as traffic
congestion on freeways or customer lines at shopping store check-
outs. In each of these analogies, the rate of traffic and the rate of
customer checkouts does not depend on how many cars are in the
traffic line or how many customers are waiting. Such situations
warrant the correct use of the phrase rate-limiting step. Traffic
congestion and the customer line are rate-limiting because the
only way to increase the flow is to either widen the road or increase
the number of cash tills, that is, there is a single factor which
determines the rate of flow. In reaction networks, flow is governed
by many factors, including the capacity of the reaction (Vmax) and
substrate/ product/effector concentrations. In biological path-
ways, rate-limiting steps are therefore the exception rather than
the rule. Many hundreds of measurements of control coefficients
have born out this prediction. A simple quantitative study will also
make this clear.

Consider a simple linear sequence of reactions governed by
reversible mass-action rate laws:

Xo Ð S1 Ð S2 . . . Sn Ð Sn�1 ! Xn;

where Xo and Xn are fixed boundary species so that the pathway
can sustain a steady state. If we assume the reaction rates to have
the simple form:

vj ¼ kj Sj �
Sjþ1

qj

� �
;

where qj is the thermodynamic equilibrium constant and kj the
forward rate constant, we can compute the steady state flux, J, to
be (37):

J ¼
Xo

Qn
j¼1 qj �X1

Sn
l¼11=kl

Qn
j¼l qj

:
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By modifying the rate laws to include an enzyme factor, such as:
vj ¼ Ej kj Sj � Sjþ1

qj

� 	
, we can also compute the flux control coeffi-

cients as (37):

CJ
i ¼

1=ki

Qn
j¼i qj

Sn
l¼11=kl

Qn
j¼l qj

:

Both equations show that the ability of a particular step
to limit the flux is governed not only by the particular step
itself but also by all other steps. Prior to the 1960s, this was a
well-known result (62, 33), but was subsequently forgotten
with the rapid expansion of biochemistry and molecular biol-
ogy. The control coefficient equation also puts limits on the
values for the control coefficients in a linear chain, namely
0 � CJ

i � 1 and

Xn

i¼1

CJ
i ¼ 1;

which is the flux control coefficient summation theorem. In a
linear pathway the control of flux is therefore most likely to be
distributed among all steps in the pathway. This simple study
shows that the notion of the rate-limiting step is too simplistic
and a better way to describe a reaction’s ability to limit flux is to
state its flux control coefficient.

Although a linear chain puts bounds on the values of the flux
control coefficients, branched systems offer no such limits. It is
possible that increases in enzyme activity in one limb can decrease
the flux through another, hence the flux control coefficient can be
negative. In addition, it is possible for the flux control coefficient
to be greater than unity (Note 3).

3.2.2. Branched Systems Branching structures in metabolism are probably one of the most
common metabolic patterns. Even a pathway such as glycolysis,
often depicted as a straight chain in textbooks, is in fact a highly
branched pathway.

A linear perturbation analysis of a branched pathway can reveal
some interesting potential behavior. Consider the following sim-
ple branched pathway (Fig. 13.4):

Fig. 13.4. A simple branched pathway. This pathway has three different fluxes, J1, J2,
and J3, which at steady state are constrained by J1 = J2 + J3.
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where Ji are the steady state fluxes. By the law of conservation of
mass, at steady state, the fluxes in each limb are governed by the
relationship:

J1 � ðJ2 þ J3Þ ¼ 0:

In terms of control theory, there will be four sets of control
coefficients, one concerned with changes in the intermediate, S,
and three sets corresponding to each of the individual fluxes.

Let the fraction of flux through J2 be given by a = J2/J1 and the
fraction of flux through J3 be 1 � a = J3/J1. The flux control
coefficients for step two and three can be derived and shown to
be equal to (19):

CJ2

E2
¼ e1 � e3ð1� aÞ

e1 � e2a� e3ð1� aÞ
40 CJ2

E3
¼ e2ð1� aÞ

e1 � e2a� e3ð1� aÞ
50:

Note that the flux control coefficient CJ2

E3
is negative, indicating

that changes in the activity of E3 decrease the flux in the other limb.
To understand the properties of a branched system, it is instructive
to look at different flux distributions. For example, consider the case
when the bulk of flux moves down J3 and only a small amount goes
through the upper limb J2, that is, a! 0 and 1� a! 1 (See
Fig. 13.5b). Let us examine how the small amount of flux through
J2 is influenced by the two branch limbs, E2 and E3.

CJ2

E2
! e1 � e3

e1 � e3
¼ 1:

CJ2

E3
! e2

e1 � e3
:

Branch Point Properties System Output: 

S
~ 0< 1

< 1

(a) Most flux goes through 

Pathway behaves as a linear chain 
of reactions with respect to       

J2

J2

S

J2

>> 0 << 0

~ 1

(b) Most flux goes through 

Flux through        exhibts pathway
amplifcation.

J3

J3

J2

J2

J2

J1 J1

J3

Fig. 13.5. The figure shows two flux extremes relative to the flux through branch J2. In
case (a) where most of the flux goes through J2, the branch reverts functionally to a
simple linear sequence of reactions comprising J1 and J2. In case (b), where most of the
flux goes through J3, the flux through J2 now becomes very sensitive to changes in
activity at J1 and J3. Given the right kinetic settings, the flux control coefficients can
become ‘‘ultrasensitive’’ with values greater than one (less than minus one for activity
changes at J3). The values next to each reaction indicates the flux control coefficient for
the flux through J2 with respect to activity at the reaction.
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The first thing to note is that E2 tends to have proportional
influence over its own flux. Since J2 carries only a very small
amount of flux, any changes in E2 will have little effect on S,
hence the flux through E2 is almost entirely governed by the
activity of E2. Because of the flux summation theorem and the
fact that CJ2

E2
¼ 1, the remaining two coefficients must be equal

and opposite in value. Since CJ2

E3
is negative, CJ2

E1
must be positive.

Unlike a linear chain, the values for CJ2

E2
and CJ2

E1
are not bounded

between zero and one and depending on the values of the elasti-
cities it is possible for the control coefficients to greatly exceed one
(48, 55). It is conceivable to arrange the kinetic constants so that
every step in the branch has a control coefficient of unity (one of
which must be–1). Using the old terminology, we would conclude
from this that every step in the pathway is the rate-limiting step.

Let us now consider the other extreme, when most of the flux
is through J2, that is a! 0 and 1� a! 0 (See Fig. 13.5a). Under
these conditions the control coefficients yield:

CJ2

E2
! e1

e1 � e2

CJ2

E3
! 0

In this situation the pathway has effectively become a simple
linear chain. The influence of E3 on J2 is negligible. Figure 13.5
summarizes the changes in sensitivities at a branch point.

3.2.3. Cyclic Systems Cyclic systems are extremely common in biochemical networks;
they can be found in metabolic, genetic, and particularly signaling
pathways. The functional role of cycles is not however fully under-
stood, although in some cases their operational function is begin-
ning to become clear. We can use linear perturbation analysis to
uncover some of the main properties of cycles.

Figure 13.6 illustrates two common cyclic structures found in
signaling pathways. Such cycles are often formed by a combination
of a kinase and a phosphatase. In many cases only one of the
molecular species is active. For example, in Fig. 13.6a, let us assume
that S2 is the active (output) species, while in Fig. 13.6b, S3 is the
active (output) species. In a number of cases one observes multiple
cycles formed by multi-site phosphorylation. Figure 13.6b shows a
common two-stage multi-site cycle. Note that in each case, the cycle
steady-state is maintained by the turnover of ATP. One question
that can be addressed is how the steady-state output of each cycle, S2

and S3, depends on the input stimulus, S. This stimulus is assumed
to be a stimulus of the kinase activity.

One approach to this is to build a detailed kinetic model and
solve for the steady-state concentration of S2 and S3 as a function of
S. This has been done analytically in a few cases (30, 31), but
requires the modeler to choose a particular kinetic model for the
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kinase and phosphatase steps. A perturbation analysis based on
BCT need only be concerned with the response characteristics of
the kinase and phosphatase steps, not the details of the kinetic
mechanism. The response of S2 to changes in the stimulus S can be
shown to be given by the expression (79, 74):

CS2

S ¼
M1

e1
1M2 þ e2

2M1
;

where CS2

S is the control coefficient of S2 with respect to S. M1 and
M2 are the mole fractions of S1 and S2, respectively, and e1

1 the
elasticity of v1 with respect to S1 and e2

2 the elasticity of v2 with
respect to S2. If kinase and phosphatase are operating below
saturation, then the elasticities will equal one, e1

1 ¼ 1 and e2
2 ¼ 1;

therefore, the response of S2 to S is simply given by the mole
fraction M1, which means that the response is bounded between
zero and one. This situation is equivalent to the non-ultrasensitive
response, sometimes termed the hyperbolic response (31).

In contrast, if the kinase and phosphatase operate closer to satura-
tion, such that the elasticities are much smaller than one, then the
denominator in the response equation can be less than the numerator
and the control coefficient can exceed one. This situation is represen-
tative of zero-order ultrasensitivity and corresponds to the well-
known sigmoid response (31). Thus without any reference to detailed
kinetic mechanisms, it is possible to uncover the ultrasensitive beha-
vior of the network. We can carry out the same kind of analysis on the
dual cycle, Fig. 13.6b, to derive the following expression for CS3

S :

CS3

S ¼
S1ðe3

2 þ e2
2Þ þ S2e1

1

e3
2e

4
3S1 þ e1

1e
4
3S2 þ e1

1e
3
3S3

:

Fig. 13.6. Two common cyclic motifs found in signaling pathways. (a) Single covalent
modification cycle, S2 is the active species, S is the stimulus; (b) Double cycle with S3 the
active species, S is the stimulus.
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If we assume linear kinetics on each reaction such that all the
elasticities equal one, the equation simplifies to

CS3

S ¼
2S1 þ S2

S1 þ S2 þ S3
:

This shows that given the right ratios for S1, S2, and S3, it is
possible for CS3

S
4 1. Therefore, unlike the case of a single cycle

where near saturation is required to achieve ultrasensitivity, multi-
ple cycles can achieve ultrasensitivity with simple linear kinetics (See
Fig. 13.7).

The cyclic models considered here assume negligible seques-
tration of the cycle species by the catalyzing kinase and phospha-
tase. In reality, this is not likely to be the case because experimental
evidence indicates that the concentrations of the catalyzing
enzymes and cycle species are comparable [See (8) for a range of
illustrative data]. In such situations additional effects are manifest
(21, 72), of particular interest is the emergence of new regulatory
feedback loops, which can alter the behavior quite markedly
(See 60, 64).

3.2.4. Negative Feedback A common regulatory motif found in cellular networks is the
negative feedback loop (Fig. 13.8). Feedback has the potential
to confer many interesting properties on a pathway, with home-
ostasis probably being the most well known. In this chapter we do
not have space to cover all the effects of negative feedback and will
focus instead on two properties, homeostasis and instability; how-
ever, more details can be found in (74). Using BCT it is easy to
show the effect of negative feedback on a pathway.

Fig. 13.7. Steady-state responses for the cycles shown in Fig. 13.6. The simplest cycle
6(a) shows a hyperbolic response when the kinase and phosphatase operate below
saturation (dotted line). The double cycle 6(b) shows more complex behavior in the form
of a sigmoid response, the kinetics again operating below saturation (solid line). This
shows that zero-order kinetics is not a necessary condition of ultrasensitivity.
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The flux control coefficients for the three steps in Fig. 13.8
are shown below (77, 48). To aid comparison, the left-hand equa-
tions show the equations with feedback while the right-hand
equations have been derived assuming no feedback. The feedback
term is represented by a single elasticity term, e1

2. This elasticity
measures the strength of the feedback and has a negative value,
indicating that changes in S2 result in decreases in the reaction rate
of v1. For cooperative enzymes, the elasticity may also have values
less than–1.

With Feedback Without Feedback

CJ
E1
¼ e2

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E1
¼ e2

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

CJ
E2
¼ �e1

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E2
¼ �e1

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

CJ
E3
¼ e1

1e
2
2�e2

1e
1
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E3
¼ e1

1e
2
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

The first difference to notice in the equations is that the
denominator, though remaining positive in value, has an addi-
tional term compared to the system without feedback, e2

1e
1
2. This

additional term includes the elasticity of the feedback mechanism.
The numerators for E1 and E2 are both unaffected by the

feedback. However, because the denominator has an additional
positive term, the ratio of numerator to denominator in both cases
must be smaller. The flux control coefficients for E1 and E2 are
therefore reduced in the presence of feedback.

This result might appear at first glance counter-intuitive,
surely the ‘‘controlled’’ step must have more ‘‘control’’ (as
many undergraduate textbooks will assert)? Closer inspection,
however, will reveal a simple explanation. Suppose the concen-
trations of either E1 or E2 are increased. This will cause the
concentration of the signal metabolite S2 to increase. An increase
in S2 will have two effects: the first is to increase the rate of the last
reaction step, the second will inhibit the rate through E1. The
result of this is that the rate increase originally achieved by the
increase in E1 or E2 will be reduced by the feedback. Therefore,
compared to the non-feedback pathway, both enzymes E1 and E2

will have less control over the pathway flux. In addition, the
greater the feedback elasticity, e1

2 the smaller the control coeffi-
cients, CJ

E1
; CJ

E2
. Thus the stronger the feedback, the less ‘‘con-

trol’’ the E1 and E2 have over the flux.

Fig. 13.8. Simple negative feedback loop. v1, v2, and v3 are the reaction rates. S2 acts to
inhibit its own production by inhibition of v1.
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What about the flux control coefficient distal to the feedback
signal, CJ

E3
? According to the summation theorem, which states

that the sum of the flux control coefficients of a pathway must sum
to unity, if some steps experience a reduction in control, then
other steps must acquire control. If the flux control of the first
two steps decline, then it must be the case that control at the third
step must increase. Examination of the third control coefficient
equation reveals that as the feedback elasticity ðe1

2Þ strengthens,
then CJ

E3
approaches unity, that is, the last step of the feedback

system acquires most of the control.
For drug companies wishing to target pathways, this simple

analysis would suggest that the best place to target a drug would be
the steps distal to a controlling signal. Traditionally, many have
believed it to be the controlled step that should be targeted;
however, this analysis indicates that the controlled step is the
worst step to target, since it has the least effect on the system.
This argument assumes that the targeting does not affect the
strength of the feedback itself.

As mentioned previously, one of the most well-known effects
of negative feedback is to enhance homeostasis. In this case
homeostasis refers to the stabilization of the end product S2.
We can examine the effect of negative feedback on the home-
ostasis of S2 by writing down the concentration control coeffi-
cient for CS2

E3

CS2

E3
¼ e1

1 � e2
1

e2
1e

3
2 � e1

1e
3
2 þ e1

1e
2
2 � e2

1e
1
2

:

Note that the numerator is unaffected by the presence of the
feedback, whereas the denominator has an additional positive term
originating from the feedback mechanism. This means that the
feedback decreases the sensitivity of end product, S2, with respect
to the distal step, E3. The effect of the feedback is to stabilize the
end product concentration in the face of changing demand from
distal steps. This allows a pathway to satisfy the changing demand
characteristics of a subsystem distal to the negative feedback loop.
We see such an arrangement in many metabolic pathways, clear
examples include glycolysis, where demand is measured by ATP
consumption, or amino biosynthesis, where demand is protein
synthesis. In both cases one could imagine that it is important
for the demand system, energy consumption and protein produc-
tion, to be unimpeded by supply restraints.

Negative feedback therefore has the important task of match-
ing different cellular systems. Hofmeyr and Cornish-Bowden (44)
have written extensively on this topic, which they call supply-
demand analysis. Interfacing different cellular modules using
negative feedback, particularly in signalling pathways, is also dis-
cussed in (74).
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Only a simple feedback loop has been considered here; for
readers who are interested in a more exhaustive analysis, the
work by Savageau and co-workers (76, 77, 2) is highly recom-
mended. Moreover, feed-forward negative loops have recently
been found to be a common motif and further details can be
found in (59).

3.3. Relationship to

Engineering Control

Theory

In engineering there is much emphasis on questions concerning the
stability and performance of technological systems. Over the years,
engineers have developed an elaborate and general theory of con-
trol, which is applicable to many different technological systems. It
is therefore the more surprising that engineering control theory has
had little impact on understanding control systems found in biolo-
gical networks. Part of the problem is related to the rich terminol-
ogy and abstract nature of some of the mathematics that engineers
use, this in turn makes the connection to biological systems difficult
to see. This also partly explains why the biological community
developed its own theory of control in the form of BCT. Until
recently, there was little appreciation of what, if any connection,
existed between these two approaches. It turns out the connection is
rather more direct any anyone expected. The work by Ingalls (45) in
particular [but also (68)], showed that the control coefficients in
BCT and the transfer functions used so often in engineering are one
and the same thing. This means that much of the machinery of
engineering control theory, rather than being perhaps unrelated to
biology, can in fact be transferred directly to biological problems.

Following Ingalls (45), let us write down the system equation
in the following form:

ds

dt
¼ Nvðs; pÞ:

This equation can be linearized around a suitable operating
point such as a steady state to obtain the linearized equation:

dx

dt
¼ N R

@v

@s
L

� �
xðtÞ þ N R

@v

@p

� �
uðtÞ: ½8�

This equation describes the rate of change of a perturbation x
around the steady state. For a stable system, the perturbation x will
decay toward the steady state and xðtÞ will thus tend to zero. The
linearized equation has the standard state space form commonly
used in engineering control theory, that is

dx

dt
¼ AxðtÞ þ BuðtÞ;

with

A ¼ N R
@v

@s
L and B ¼ N R

@v

@p
; ½9�
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u(t) is the input vector to the system, and may represent a set of
perturbations in boundary conditions, kinetic constants, or
depending on the particular model, gene expression changes.

Because of its equivalence to the state space form, Eq. [8]
marks the entry point for describing biological control systems
using the machinery of engineering control theory. In the follow-
ing sections two applications, frequency analysis and stability ana-
lysis, will be presented, which apply engineering control theory,
rephrased using BCT, to biological problems.

3.3.1. Frequency Response It has been noted previously (3) that chemical networks can act as
signal filters, that is, amplify or attenuate specific varying inputs. It
may be the case that the ability to filter out specific frequencies has
biological significance; for example, a cell may receive many dif-
ferent varying inputs that enter a common signaling pathway;
signals that have different frequencies could be identified. In addi-
tion, multiple signals could be embedded in a single chemical
species (such as Ca2+) and demultiplexed by different target sys-
tems. Finally, gene networks tend to be sources of noisy signals
that may interfere with normal functioning; one could imagine
specific control systems that reduce the noise using high frequency
filtering (15).

In steady state, sinusoidal inputs to a linear or linearized
system generate sinusoidal responses of the same frequency but
of differing amplitude and phase. These differences are a functions
of frequency. For a more detailed explanation, Ingalls (45) pro-
vides a readable introduction to concept of the frequency response
of a system in a biological context.

Whereas the linearized Eq. [8] describes the evolution of the
system in the time domain, the frequency response must be
determined in the frequency domain. Mathematically there is a
standard approach, called the Laplace transform, to moving a
time domain representation into the frequency representation.
By taking the ratio of the Laplace transform of the output to the
transform of the input, one can derive the transfer function,
which is a complex expression describing the relationship
between the input and the output in the frequency domain.
The change in the amplitude between the input and output is
calculated by taking the absolute magnitude of the transfer func-
tion. The phase shift that indicates how much the output signal
has been delayed can be computed by computing the phase angle.
Note that under a linear treatment, the frequency does not
change.

In biological systems the outputs are often the species con-
centrations or fluxes while the inputs are parameters such as kinetic
constants, boundary conditions, or gene expression levels. By
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taking the Laplace transform of Eq. [8] one can generate its
transfer function (45, 68) The transfer function for the species
vector s with respect to a set of parameters p is given by:

Rs
pðwÞ ¼ iwI �N R

@v

@s
L

� ��1

N R
@v

@p
: ½10�

The response at zero frequency is given by

Rs
pð0Þ ¼ � N R

@v

@s
L

� ��1

N R
@v

@p
:

Comparison of the above equation with the concentration
control coefficient Equation [6] shows they are equivalent. This
is the most important result because it links classical control theory
directly with BCT. Moreover, it gives a biological interpretation to
the transfer functions so familiar to engineers. The transfer func-
tions can be interpreted as a sensitivity of the amplitude and phase
of a signal to perturbations in the input signal. The control coeffi-
cients of BCT are the transfer functions computed at zero fre-
quency. Moreover, the denominator term in the transfer functions
can be used to ascertain the stability of the system, a topic that will
be covered in a later section.

Frequency Analysis of Simple Linear Reaction Chains. The
simplest example to consider for a frequency analysis is a two-step
pathway, that can be represented as a single gene expressing a
protein that undergoes degradation (Fig. 13.9). This simple sys-
tem has been considered previously by Arkin (3) who used a con-
ventional approach to compute the response. Here we will use the
BCT approach, which allows us to express the frequency response in
terms of elasticities. Using Eq. [10] and assuming that the protein
concentration has no effect on its synthesis, we can derive the
following expression:

CP
G ¼

1

eD
p þ iw

;

where eD
P is the elasticity for protein degradation with respect to

the protein concentration. i is the complex number and w, the
frequency input. At zero frequency ðw ¼ 0Þ the equation reduces
to the traditional control coefficient.

The frequency response of the simple network shown in
Fig. 13.9 is given in Fig. 13.10. This response shows a classic
low-pass filter response, where at low frequencies the response is
high and as the frequency increases the response of the system falls
off. The explanation for this is straight forward; at high frequen-
cies, kinetic mechanisms are simply too sluggish to respond fast
enough to a rapidly changing signal and the system is unable to
pass the input to the output (Fig. 13.10).
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If we cascade a series of genes one after the other (Fig. 13.11),
the effect is simply to increase the attenuation so that even mod-
erate frequencies are filtered out.

The unscaled response equation for the model shown in
Fig. 13.11 is given by

CS3
v1
¼ ð~eÞn~ep

ðiw þ ~eÞn ;

where the tilde, �, indicates an unscaled elasticity. n equals the
number of genetic stages. We assume that all the elasticities are
equal in value.

Many simple systems behave as low-pass filters because physically
they are unable to respond fast enough at higher frequencies. Che-
mical systems are not unusual in this respect. It is possible however
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Fig. 13.10. Low-pass frequency response of the simple genetic circuit, Fig. 13.9. The two plots on the left indicate the
amplitude and phase response, respectively. The three plots on the right show in each case the input signal and
corresponding output signal. Each plot on the right was computed at a different frequency; these frequencies are indicated
by the marked circles on the plots on the left.

Fig. 13.9. Simple genetic circuit that can act as a low-pass filter.
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through added regulation to change the frequency response. In the
paper by Paladugu (65) examples of networks exhibiting a variety of
frequency responses are given, including high-pass and band-pass
filters. In the next section we will consider how negative feedback
can significantly change the frequency response.

Frequency Analysis of a Simple Negative Feedback. In earlier
discussions on the effect of negative feedback, the analysis focused
on the response to step perturbations on the steady state, effec-
tively the response at zero frequency in the frequency response
curve. Here we wish to investigate the frequency response across
the entire frequency range.

Figure 13.12 shows the frequency response for the simple
network shown in Fig. 13.8. The figure includes two graphs,
one computed with negative feedback and another without
feedback. Without feedback the pathway operates as a simple
low-pass filter (Solid line). With feedback (Dotted line), the
frequency response is different. As expected, the response at
low frequencies is attenuated, which reflects the homoeostatic
properties of the pathway. What is more interesting is the
increase in responsiveness at higher frequencies, that is, the
system becomes more sensitive to disturbances over a certain
frequency range. This suggests that negative feedback adds a
degree of resonance to the system and, given the right condi-
tions, can cause the system to become unstable and

Fig. 13.11. Cascade of simple genetic circuits. See Fig. 13.9 for symbolism. The graph
shows the frequency response as the cascade grows in stages. The more stages the
greater the attenuation.
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spontaneously oscillate. The shift in sensitivity to higher fre-
quencies as a result of negative feedback has been observed
experimentally in synthetic networks (4).

3.3.2. Stability Analysis The stability of a system is the response it has to a disturbance
to its internal state. Such disturbances can arise as a result of
stochastic fluctuations in the concentrations of species or as
external disturbances that impose changes on the internal
species. If the system recovers to the original state after a
disturbance, then it is classed as stable; if the system diverges,
then it is classed as unstable. An excellent review by Jorg
Stucki that focuses on stability in biochemical systems can be
found in (80).

Consider the simple pathway shown in Eq. [2]. The differen-
tial equation for this simple pathway is given by

dS1=dt ¼ k1Xo � k2S1: ½11�

It can easily be shown that disturbances to S1 are stable. At
steady state, dS1/dt = 0; thus by making a small disturbance, dS1 in
S1 we can compute the effect this has on the rate of change of dS1 to
be:

dðdS1Þ=dt ¼ � k2dS1: ½12�

This shows that after the initial disturbance, the disturbance
itself declines exponentially to zero; in other words, the system
returns to the original steady state and the system is therefore
stable. By dividing both sides by dS1 and taking the limit to
infinitesimal changes, one can show (53) that the term, �k2, is
equal to, @d(S1/dt)/@S1. The stability of this simple system can
therefore be determined by inspecting the sign of @d(S1/dt)/
@S1.
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Fig. 13.12. Frequency response of end product S2 with respect to the input species Xo for
a model of the kind shown in Fig. 13.8.
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Now consider a change to the kinetic law, k1Xo, governing the
first reaction. Instead of simple linear kinetics let us use a coopera-
tive enzyme which is activated by the product S1. The rate law for
the first reaction is now given by:

v1 ¼
k1XoðXo þ 1ÞðS1 þ 1Þ2

ðS1 þ 1Þ2ðXo þ 1Þ2 þ 80000
:

Setting Xo = 1, k1 = 100, k2 = 0.14, a steady-state concentra-
tion of S1 can be determined to be 66.9. Evaluating the derivative
@d(S1/dt)/@S1 at this steady state yields a value of 0.084, which is
clearly a positive value. This means that any disturbance to S1 at this
particular steady state will cause S1 to increase; in other words, this
steady state is unstable.

For single variable systems the question of stability reduces to
determining the sign of the @d(S1/dt)/@S1 derivative. For larger
systems the stability of a system can be determined by looking at all
the terms @d(Si/dt)/@Si which are given collectively by the
expression:

dðds=dtÞ
ds

¼ J ; ½13�

where J is called the Jacobian matrix containing elements of the
form @d(Si/dt)/@Si. Equation [12] can be generalized to:

dðdsÞ
dt
¼ J ds:

Analysis shows that solutions to the disturbance equations
[12] and [13] are sums of exponentials where the exponents of
the exponentials are given by the eigenvalues of the Jacobian
matrix, J (53). If the eigenvalues are negative then the exponents
decay (stable), whereas if they are positive then the exponents
grow (unstable).

Another way to obtain the eigenvalues is to look at the roots
(often called the poles in engineering) of the characteristic equa-
tion, which can be found in the denominator of the transfer
function, Eq. [10]. For stability, the real parts of all the poles
of the transfer function should be negative. If any pole is positive,
then the system is unstable. The characteristic equation can be
written as a polynomial, where the order of the polynomial
reflects the size of the model.

ansn þ an�1sn�1 þ . . .þ a1s þ ao ¼ 0

A test for stability is that all the coefficients of the poly-
nomial must have the same sign if all the poles are to have
negative real parts. Also it is necessary for all the coefficients
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to be nonzero for stability. A technique called the Routh-Hurwitz
criterion can be used to determine the stability. This proce-
dure involves the construction of a ‘‘Routh Array’’ shown in
Table 13.2. The third and fourth rows of the table are computed
using the relations:

b1 ¼
an�1an�2 � anan�3

an�1
b2 ¼

an�1an�4 � anan�5

an�1
etc:

c1 ¼
b1an�3 � b2an�1

b1
c2 ¼

b1an�5 � b3an�1

b1
etc:

Rows to the table are added until a row of zeros is
reached. Stability is then determined by the number of sign
changes in the 1st column, which is equal to the number of
poles with real parts greater than zero. Table 13.3 shows the
Routh table for the characteristic equation s3 + s2 � 3s � 1 = 0
where s = iw. From the Table 13.3 we see one sign change
between the second and the third rows. This tells us that there
must be one positive root. Since there is one positive root, the
system from which this characteristic equation was derived is
unstable.

The advantage of using the Routh-Hurwitz table is that
entries in the table will be composed from elasticity coefficients.
Thus sign changes (and hence stability) can be traced to particular
constraints on the elasticity coefficients. Examples of this will be
given in the next section.

Table 13.2
Routh-Hurwitz table

an an−2 an−4 · · ·
an−1 an−3 an−5 · · ·
b1 b2 b3 · · ·
c1 c2 c3 · · ·
etc.

1 –3
1 –1
–2
–1

Table 13.3
Routh-Hurwitz table
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3.4. Dynamic Motifs

3.4.1. Bistable Systems

The question of stability leads on to the study of systems with non-
trivial behaviors. In the previous section a model was considered,
which was shown to be unstable. This model was described by the
following set of rate equations:

v1 ¼
k1XoðXo þ 1ÞðS1 þ 1Þ2

ðS1 þ 1Þ2ðXo þ 1Þ2 þ 80000
;

v2 ¼ k2S1:

The network is depicted in Fig. 13.13 and illustrates a positive
feedback loop, that is, S1 stimulates its own production.

The steady state of this simple model is computed at dS1/dt =
v1�v2 = 0 or v1 = v2. If v1 and v2 are plotted against S1 (Fig. 13.14),
the points where the curves intersect correspond to the steady
states of the system. Inspection of Fig. 13.14 shows three inter-
section points.

The steady-state solution that was examined earlier (S1 = 66.9)
corresponds to the second intersection point and, as shown, this
steady state is unstable. Solutions to the system can be found at

Fig. 13.14. Graph showing v1 and v2 plotted against the species concentration, S1 for the
model depicted in Fig. 13.13. The intersection points, where v1 = v2 are marked with small
circles and indicate three possible steady states. Rate equations: v1 = (k1Xo(Xo + 1)(S1 +
1)2)/((S1 + 1)2(Xo + 1)2 + 80000), v2 = k2S1, and parameter values Xo = 1, k1 = 100, k2 =
0.14. The steady-state solutions correspond to values of S1 at 0.019, 66.89, and 288.23.

Fig. 13.13. Simple pathway with positive feedback.
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values of S1 at 0.019, 66.89, and 288.23. By substituting these
values into the equation for dS1/dt we can compute the Jacobian
element in each case (Table 13.4).

This system possess three steady states, one unstable and two
stable. Such a system is known as a bistable system because it can
rest in one of two stable states. One question which arises is what
are the conditions for bistability? This can be easily answered using
BCT. The unscaled frequency response of S1 with respect to v1 can
be computed using Eq. [10] to yield:

CS1
v1
¼ 1

e2
1 � e1

1 þ iw
:

Constructing the Routh-Hurwitz table indicates one sign
change, which is determined by the term, e2

1 � e1
1. Note that e1

1

has a positive value because S1 activates v1. Because the path-
way is a linear chain the elasticities can be scaled without
changes to the stability terms criterion, thus the pathway is
stable if

e1
1
4e2

1:

If we assume first-order kinetics in the decay step, v2, then the
scaled elasticity, e2

1 will be equal to unity, hence

e1
141:

This result shows that it is only possible to achieve bistability
if the elasticity of the positive feedback is greater than one
(assuming the consumption step is first order). The only way to
achieve this is through some kind of cooperative or multimeric
binding, such as dimerization or tetramer formation. The bist-
ability observed in the lac operon is a possible example of this
effect (57, 56).

Table 13.4
Table of steady-state S1 and corresponding value for the
Jacobian element. Negative Jacobian values indicate a
stable steady state, positive elements indicate an unstable
steady state. The table shows one stable and two unstable
steady states

Steady State S1 Jacobian Element: (dS1/dt)/dS1

0.019 �0.086

66.89 0.084

288.23 �0.135
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3.4.2. Feedback and

Oscillatory Systems

The study of oscillatory systems in biochemistry has a long history
dating back to at least the 1950s. Until recently, however, there
was very little interest in the topic from mainstream molecular
biology. In fact, one suspects that the concept of oscillatory beha-
vior in cellular networks was considered more a curiosity, and a
rare one at that, than anything serious. With the advent of new
measurement technologies, particulary high-quality microscopy,
and the ability to monitor specific protein levels using GFP and
other fluorescence techniques, a whole new world has opened up
to many experimentalists. Of particular note is the recent discovery
of oscillatory dynamics in the p53/Mdm2 couple (54, 26) and Nf-
kB (41) signaling; thus rather than being a mere curiosity, oscilla-
tory behavior is in fact an important, though largely unexplained,
phenomenon in cells.

Basic Oscillatory Designs. There are two basic kinds of oscillatory
designs, one based on negative feedback and a second based on a
combination of negative and positive feedback. Both kinds of oscilla-
tory design have been found in biological systems. An excellent review
of these oscillators and specific biological examples can be found in (84,
18). A more technical discussion can be found in (83, 82).

Negative Feedback Oscillator. Negative feedback oscillators are
the simplest kind to understand and probably one of the first to
be studied theoretically (32). Savageau (77) in his book provides
a detailed analysis and summary of the properties of feedback
oscillators. Figure 8 shows a simple example of a system with a
negative feedback loop. We can use BCT to analyze this system by
deriving the characteristic equations (the denominator of the
frequency response) and constructing a Routh- Hurwitz table.
Using this technique it can be easily shown that a pathway
with only two intermediates in the feedback loop cannot
oscillate. In general, a two-variable system with a negative
feedback is stable under all parameter regimes. Once a third
variable has been added, the situation changes and the path-
way shown in Fig. 13.15, which has three variables, can admit
oscillatory behavior.

A critical factor that determines the onset of oscillations,
apart from the number of variables, is the strength of the feed-
back. Savageau (77) showed that if the substrate elasticities were
equal (e.g., all first-order kinetics), then the ratio of the feedback
elasticity (Einh) to the output elasticity esub ; e4

3

� �
determined the

onset of oscillations (Table 13.5). Table 13.5 shows that as the

Fig. 13.15. Simple negative feedback model with three variables, S1, S2, and S3. This
network can oscillate.
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pathway becomes longer less feedback inhibition is required to
destabilize the pathway. This highlights the other factor that
contributes to instability, the delay in routing the signal around
the network. All feedback oscillators require some device to
provide amplification of a signal combined with a suitable time
delay so that the signal response can go out of phase. In metabolic
pathways, amplification is often provided by a cooperative
enzyme while the delay is provided by the intermediate steps in
the pathway. In signaling pathways, amplification can be gener-
ated by covalent modification cycles. Amplification can also be
provided by another means. The criterion for instability is the
ratio of the inhibition elasticity to the substrate elasticity. If the
output reaction of the pathway is governed by a saturable
enzyme, then it is possible to have Esub less than unity. This
means that it is possible to trade cooperativity at the inhibition
site with saturation at the output reaction. The modified Good-
win model of Bliss (7) illustrates the model with no cooperativity
at the inhibition site, but with some saturation at the output
reaction by using a simple Michaelis-Menten rate law.

A second property uncovered by BCT is that stability is
enhanced if the kinetic parameters of the participating reactions
are widely separated, that is, a mixture of ‘‘fast’’ and ‘‘slow’’ reac-
tions. The presence of ‘‘fast’’ reactions effectively shortens the
pathway, and thus it requires higher feedback strength to destabi-
lize the pathway since the delay is now less.

Table 13.5
Relationship between the pathway length and the degree of
feedback inhibition on the threshold for stability. Einh is the
elasticity of the feedback inhibition and Esub is the elasticity
of the distal step with respect to the signal

Length of pathway Instability threshold –�inh/�sub

1 Stable

2 Stable

3 8.0

4 4.0

5 2.9

6 2.4

7 2.1

..

. ..
.

1 1.0
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One of the characteristics of negative feedback oscillators is
that they tend to generate smooth oscillations (Fig. 13.16), and in
man-made devices they are often used to generate simple trigono-
metric functions.

A related oscillator that operates in a similar way to the feedback
oscillator is the ring oscillator (See Fig. 13.17). This device is com-
posed of an odd number of signal inverters connected into a closed
chain. Instability requires sufficient amplification between each inver-
ter so that the signal strength is maintained. A ring oscillator has been
implemented experimentally in Escherichia coli (17) where it was
termed a repressilator. Ring oscillators with an even number of
inverters can be used to form memory units or toggle switches. The
even number of units means that the signal latches to either on or off,
the final state depending on the initial conditions. Toggle circuits
have also been implemented experimentally in E. coli (25).

Relaxation Oscillators. A favorite oscillator design amongst the-
orists (58, 63, 22, 23), as well as biological evolution (86, 24, 29,
67, 12), is the relaxation oscillator. This kind of oscillator operates
by charging a species concentration that, upon reaching a thresh-
old, changes the state of a bistable switch. When the switch

Fig. 13.17. Three ring oscillators, one-stage, three-stage, and five-stage oscillators. All
ring oscillators require an odd number of gating elements. Even rings behave as toggle
switches.

Concentration (S3)

Time

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5

Fig. 13.16. Plot of S3 versus time for the model shown in Fig. 13.15. Note that the profile
of the oscillation is relatively smooth.
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changes state, it causes the species to discharge. Once the species
has discharged, the bistable switch returns to the original state and
the sequence begins again. Positive feedback or a two-step ring
oscillator forming a toggle switch is used to generate the bistabil-
ity, and a negative feedback loop provides the signal to switch the
bistable switch.

One of the characteristics of a relaxation oscillator is the
‘‘spiky’’ appearance of the oscillations. This is due to the rapid
switching of the bistable circuit, which is much faster com-
pared to the operation of the negative feedback. Man-made
devices that utilize relaxation oscillators are commonly used to
generate saw-tooth signals. Figure 13.18 illustrates a plot
from a hypothetical relaxation oscillator published by Tyson’s
group (84).

Oscillator Classification. As previously discussed, oscillators fall
into two broad categories, feedback oscillators and relaxation oscil-
lators. Within the relaxation oscillation group, some authors (84)
have proposed to divide this group into two and possibly three
additional subgroups; these include substrate-depletion, activator-
inhibitor, and toggle-based relaxation oscillators. The grouping is
based on two-variable oscillators and a comparison of the sign
patterns in the Jacobian matrix. Although toggle-based relaxation
oscillations have the same Jacobian sign pattern as substrate-deple-
tion based oscillations, the bistability is implemented differently.

Figure 13.19 shows examples of six different oscillators,
together with their classification and stylized forms.

Even though each mechanistic form (first column) in
Fig. 13.19 looks different, the stylized forms (second column)
fall into one of three types. The stylized forms reflect the structure

0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300

Time

Concentration (R)

Fig. 13.18. Typical spiky appearance of oscillatory behavior from a relaxation oscillator,
from Tyson (84), model 2(c).
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of the Jacobian for each model. Only a limited number of sign
patterns in the Jacobian can yield oscillators (39). Using evolu-
tionary algorithms (16, 65), many hundreds of related mechanisms
can be generated, see the model repository at www.sys-bio.org for
a large range of examples. Although many of these evolved oscilla-
tors look quite different, each one can be classified in a only a few
basic configurations.

Fig. 13.19. Classification of Relaxation Oscillators into substrate-depletion, activator-
inhibitor, and toggle-based. Note that although the mechanistic networks are quite
variable, the underling operation is the same as shown in the stylized column. Type
codes: SD = Substrate-Depletion; AI = Activator- Inhibitor; SD/T = Substrate-Depletion/
Toggle. The stylized form is generated by computing the Jacobian matrix for each
network. Elements in the Jacobian indicate how each species influences changes in
another. Model (a) corresponds to model (c) in Fig. 13.2 of (84) and model (e) to model (b)
in Fig. 13.2 of (84).
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4. Summary

This chapter has focused on describing some of the theory that is
available to analyze the dynamics of deterministic/continuous
models of biochemical networks. Some areas have been omitted,
in particular bifurcation analysis has not been discussed but is
probably one of the more important tools at our disposal because
it can be used to uncover the different qualitative behavioral
regimes a network might possess. Bifurcation analysis would
require an entire chapter to describe; however, good starting
points include the chapter by Conrad and Tyson (13) and the
book by Izhikevich (47).

The most significant area missing from this chapter is
undoubtedly a discussion on stochastic modeling (89). As more
experimental data becomes available on times series changes in
species concentrations, it is becoming abundantly clear that
many processes, particularly genetic networks, are noisy. In pro-
karyotic systems we are often dealing with small numbers of mole-
cules and the stochastic nature of reaction dynamics becomes an
important consideration. Unfortunately, there is at present little
accessible theory on the analysis of stochastic models, which
greatly impedes their utility. In almost all cases, the analysis of
stochastic systems relies exclusively on numeric simulation, which
means generalizations are difficult to make. Some researches have
started to consider the theoretical analysis of stochastic systems
(66, 78) and the field is probably one of the more exiting areas to
consider in the near future.

5. Notes

1. A recent and potentially confusing trend has been to use
the symbol S to signify the stoichiometry matrix. The use
of the symbol N has, however, a long tradition in the field,
the letter N being used to represent ‘‘number,’’ indicating
stoichiometry. The symbol, S, is usually reserved for
species.

2. There are rare cases when a ‘‘conservation’’ relationship arises
out of a non-moiety cycle. This does not affect the mathe-
matics, but only the physical interpretation of the relation-
ship. For example, A ! B + C; B + C ! D has the
conservation, B � C = T.

3. Possibly inviting the use of the term, ultra-rate-limiting?
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6. Reading List

The following lists books and articles that cover the material in this
chapter in much more depth.

Introductory and

Advanced Texts on

Systems Analysis

Fell, D (1996) Understanding the Control of Metabolism,
Ashgate Publishing, ISBN: 185578047X

Heinrich R, Schuster S (1996) The Regulation of Cellular
Systems. Chapman and Hall, ISBN: 0412032619

Klipp E, et al. (2005) Systems Biology in Practice, Concepts,
Implementation and Application. Wiley-VCH Verlag, ISBN:
3527310789

Izhikevich, E. M. (2007) Dynamical Systems in Neuroscience:
The Geometry of Excitability and Bursting, MIT Press, ISBN:
0262090430

Control Theory Ingalls, B. P. (2004) A frequency domain approach to sensitivity
analysis of biochemical systems, Journal of Physical Chemistry B,
108, 1143–1152

Bistablilty and

Oscillations

Tyson J, et al. (2003) Sniffers, buzzers, toggles and blinkers:
dynamics of regulatory and signaling pathways in the cell. Current
Opinion in Cell Biology, 15, 221–231

Stochastic Modeling Wilkinson D. J. (2006) Stochastic Modeling for Systems Biology.
Chapman and Hall, ISBN: 1584885408
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Chapter 14

Kinetic Modeling of Biological Systems

Haluk Resat, Linda Petzold, and Michel F. Pettigrew

Abstract

The dynamics of how the constituent components of a natural system interact defines the spatio-temporal
response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system
has long been pursued with the aim of improving our understanding of the studied system. Due to the
unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics
of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic
multi-scale and stochastic nature of the biological processes.

This chapter discusses the implications for simulation of models involving interacting species with
very low copy numbers, which often occur in biological systems and give rise to significant relative
fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the
mathematical foundations of the stochastic simulation algorithms are presented. How the well-
organized structural hierarchies often seen in biological systems can lead to multi-scale problems and
the possible ways to address the encountered computational difficulties are discussed. We present
the details of the existing kinetic simulation methods and discuss their strengths and shortcomings. A
list of the publicly available kinetic simulation tools and our reflections for future prospects are also
provided.

Key words: Biological network, kinetic simulation, stochastic simulation algorithm, tau-leaping,
hybrid kinetic model, simulation software.

1. Background
and Introduction

Reactions occurring among a set of reactants define a kinetic
reaction network. Traditionally, the set of reactions is described
by nonlinear ordinary or partial differential equations, solutions of
which provide insights into the dynamics of the studied processes.
The size of such networks can vary considerably. In some
instances, hundreds of thousands of reactions may be needed to
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describe the complex, coupled phenomena. Although kinetic
modeling and the underlying fundamental mathematics are used
in vastly different fields of science and engineering, here we will
concentrate on biological kinetic networks that model cellular
activities as a set of reaction processes. Biological networks are
intrinsically very rich in character; feedback loops are common,
and bifurcations and oscillations can lead to interesting dynamical
behavior. Although there are many commonalities, two aspects, in
particular, distinguish biological networks from networks found in
other fields. Firstly, in biological systems, copy numbers of many
species are very low, which can give rise to significant relative
fluctuations. Secondly, biological systems tend to have well-
organized structural hierarchies.

The traditional way of modeling the time evolution of the
molecular populations in a reacting system is to use a set of
coupled, first-order, ordinary differential equations (ODEs) called
the reaction rate equations (RREs). RREs are usually inferred from
phenomenological arguments under the assumption that the sys-
tem is well stirred or spatially homogeneous; that is, no persistent
correlations develop among the positions of the molecules. RRE is
nonlinear in the presence of bimolecular reactions, which is almost
always the case. Owing to the possibility of widely differing reac-
tion rates, RRE can often exhibit vastly different time scales, a
condition known as dynamical stiffness. Sometimes, under certain
simplifying assumptions such as quasi steady-state or partial equi-
librium, RREs reduce to a system of differential-algebraic equa-
tions (DAEs).

However, a deterministic approach alone may not be sufficient
for cellular systems when the underlying problem is inherently
stochastic. Fluctuations in the concentrations of biomolecules
can be quite large and this may require special treatment in mod-
eling the biological networks (1–4). This is particularly true for the
molecular species involved in the transcriptional regulation of gene
expression. In certain such cases, as the small copy number limit is
reached, differential equation-based models break down since the
assumption of continuous molecular concentrations is no longer
valid. In such cases a more general approach, based on stochastic
methods in which natural fluctuations are treated in a direct and
explicit manner, has been advocated for the quantitative analysis of
biological networks (5–7).

A simple argument demonstrates why fluctuations can be
considerable in cellular systems. The typical diameter of a micro-
bial cell is a few micrometers (mm), which corresponds to a cellular
volume on the order of �10 femtoliter (fl). In this volume, the
concentration of 1 molecule is roughly equal to 160 picomolar
(pM). This discrete nature is, of course, more severe when the
molecules are confined to even smaller substructures, which is
typically the case in eukaryotic cells. Thus, given that typical
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binding affinities of the biomolecules are often in the picomolar to
micromolar range, and ignoring whether the thermodynamics are
still valid at this limit, even very small fluctuations in the molecule
copy numbers can cause a regime change in biomolecular interac-
tions. Therefore, the fluctuations resulting from a few discrete
reactions can significantly affect the dynamical patterns in cellular
systems. In a series of papers Gillespie showed the equivalency of
deterministic and stochastic formalisms in the limit as the popula-
tions of all constituent chemical species tend to infinity, and dis-
cussed the importance of stochastic fluctuations when the system
sizes are small (1, 2). We note that stochastic differential equations
are often used in physics, but they are usually obtained by starting
with an assumed ODE and then adding a ‘‘noise’’ term that has
been carefully crafted to give a preconceived outcome. Although
such approaches are computationally less expensive, they do not
capture the true nature of the intrinsic fluctuations. Therefore, the
use of discrete stochastic approaches is often more suitable in study-
ing biological systems.

Although they provide a more realistic modeling frame, dis-
crete stochastic simulations are often too slow and computation-
ally expensive. Building upon earlier fundamental work (1, 2, 8),
the development of new mathematical methods and numerical
algorithms have been pursued by many groups to overcome
some of the computational bottlenecks (5, 6, 9–23). Development
of approximate algorithms was also pursued. For example, the
probability weighted dynamic Monte Carlo method (24) has
been shown to enable the simulation of network models with
tens of thousands of reactions and hundreds of compartments
using desktop computers (25), and various tau-leaping algo-
rithms, which allow the use of larger time steps with tolerable
inexactness (26–32), can also lead to significant speed ups in the
stochastic simulations.

The spatial organization and structural hierarchies that often
occur in biological systems provide an additional degree of com-
plexity. Information transfer and biochemical activity can depend
on location in cellular systems. Indeed, spatial organization
becomes particularly important when the kinetics of the interac-
tion networks depend on the local environmental factors, i.e.,
when they depend on local conditions and the environment or
when material transport is required to convey the information. A
good example to this is syntrophic (mutually interdependent)
microbial systems, in which organisms in the community depend
on each other for metabolite use and production. Here the
metabolic activity necessary for cellular growth and survival can
depend on the substrate availability and favorable environmental
factors that are jointly established by multiple organisms. The
relative concentration of the organisms and their geometrical
arrangement can lead to heterogeneous distributions reflecting
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local variations in the microbial composition. Thus, the dynami-
cal behavior of microbes in syntrophic systems relies on the
combination of highly localized molecular events (i.e., metabo-
lism) and macroscopic transport of products over a much larger
spatial scale (i.e., between the cells of syntroph organisms). An
analogous situation arises in mammalian systems, where eukar-
yotic cells have compartments with specific functionalities. These
subcellular compartments exchange material in a concerted fash-
ion as part of fundamental cellular processes such as synthesis,
degradation, and receptor signaling. At the same time, the milieu
of the cell within its tissue group is a consequence of the tissue
itself. Thus, compartmentalized reactions, though many spatial
scales smaller than the tissue in which they are found, simulta-
neously drive and respond to changes in the tissue. This hierarchy
of compartmentalized activity represents a key challenge in multi-
scale modeling.

Particle transport dynamics can also play a central role in
transferring information in many biological problems (33).
This is particularly true when messenger substrate molecules or
interacting proteins are transported over distances many orders
of magnitude larger than their size. For example, energy meta-
bolism of many bacteria requires cytochrome shuffling as part of
the electron transfer mechanism. Oxygen availability and pene-
tration can be very important in bacterial growth, both in batch
reactors and in biofilms. Plant ecology too involves location-
specific activities. Most plants allow their root nodule cells to
be infected by microbes or fungi for arbuscule development,
which is used to obtain nutrients (particularly phosphorus)
from the soil. At the same time, plants use their leaves for the
necessary carbon production, some of which is also transferred to
the microbial/fungal mycorrhizal symbiotic (intimate interde-
pendent) partner. Material transport also plays a central role in
determining cellular response in higher organisms, for which
stress-induced Ca++/cAMP release in mammalian systems
would be a good example (33).

Recent progress in experimental techniques, particularly
fluorescent labeling and high-resolution microscopy, is begin-
ning to make it possible to collect biological information about
local dynamical activities (see, for e.g., Refs. (34–38)). Models
that represent dynamics using spatially averaged quantities can-
not capture the effects due to local inhomogeneities. For the
types of problems described above, computational biology stu-
dies aiming to complement the experimental efforts require the
development and analysis of spatially resolved multi-scale mod-
els. The standard chemical master equation (CME) and stochas-
tic simulation algorithm (SSA) assume that the system is well
stirred or spatially homogeneous (1, 4), which for some problems
might be an enormous simplification. Currently, the strategy
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most likely to work appears to be the locally homogeneous
approach, which dates back to at least the mid-1970s (39, 40).
In this approach, the system volume is subdivided into K sub-
volumes that are small enough for each to be considered spatially
homogeneous. Each subvolume forms a reactor compartment,
and the compartments are linked at the higher whole-system
scale. Using this framework, whenever a chemical reaction occurs
in the system we now know where it occurred, at least to within
the resolution of the subdivisions. However, this spatial resolu-
tion comes at a considerable cost in computational complexity.
The dimensionality of the state space and the number of chemical
reaction channels have been increased by a factor of K, the
number of subvolumes. Moreover, since a large set of reactions
describing the diffusive transfer between subvolumes is needed to
complete the model, the increase in computational complexity is
in fact even greater.

From a purely mathematical point of view, the locally homo-
geneous approach to a spatially inhomogeneous system is essen-
tially the same as for a spatially homogeneous system, in that one
winds up with a CME and an SSA of the same ‘‘jump Markov’’
form (4, 41, 42). However, the resulting network model has a
much higher dimensional state space and consists of a much larger
set of reaction channels. The challenge of determining how to
divide the system into subvolumes efficiently and without sacrifi-
cing the details of the problem must be overcome before this
model can be routinely implemented. Another challenge is the
development of algorithms that scale efficiently with the model
dimension, as it would be necessary to handle the complexity
resulting from the steep increase in network sizes. For large sys-
tems, the conspicuous absence of algorithms and software capable
of taking advantage of available computing resources indicates a
need for the development of hybrid algorithms in which the
problem is separated into deterministic and stochastic parts to
increase computational efficiency, without sacrificing scientific
veracity.

While both deterministic and stochastic formulations are cur-
rently used in the kinetic modeling of biological systems, as has
been mentioned above, discrete stochastic methods are more sui-
table for biological systems. With this in mind, and because the
numerical simulation of ODE models is a well-established area
with excellent and available software, in the remainder of this
chapter we concentrate on stochastic simulation methods. We
first summarize the fundamental steps and the mathematical foun-
dations for kinetic simulation of reaction networks. We follow that
with a discussion of shortcomings and size scaling properties of
existing stochastic simulation algorithms. We then conclude by
briefly highlighting the future research trends from our
perspective.
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2. Simulation
Methods

2.1. General

Description

Kinetic simulation of biochemical systems involves the following
basic steps.

1. Identification of the kinetic problem: This step involves the
determination of the input and output variables as well as the
intermediates. Key species and physical properties to be simu-
lated are determined and tabulated.

2. Model formulation: Although that does not have to be the
case, most studies employ RREs to model biochemical sys-
tems. In RRE, one simply defines the changes in the concen-
trations (or equivalently the number of molecules) as a
function of time and location. We note that constraints can
be embedded in RRE using a Lagrange undetermined multi-
pliers type formalism.

3. Choosing a method: At this step a decision needs to be made
as to whether to adopt a deterministic or stochastic formula-
tion. Although it is still relatively uncommon, a hybrid
approach that moves between deterministic and stochastic
regimes is another possibility. In the deterministic approach,
a reasonable time step is chosen adaptively, based on the
estimated local error according to a differential equation
model. In contrast, discrete stochastic simulations model
each individual reaction event. Using the probabilities of the
reactions (called the reaction propensities), one determines the
occurrence statistics of the involved reactions. This is gener-
ally done in one of two ways: In next reaction type methods,
the sequence of the reactions are chosen according to the
reaction propensities and the reaction times are computed
to determine the elapsed time. In lumped reaction
approaches, one can choose the size of the elapsed time step
and compute how many times the involved reactions occur
according to their probabilities.

4. Simulation: Integrating RRE deterministically involves
choosing an appropriate algorithm from a wide selection of
sophisticated numerical methods for systems of ODEs and
DAEs. Highly efficient and reliable software is readily avail-
able, although one must usually determine whether or not the
problem is stiff and then choose the software accordingly.
Roughly speaking, an ODE or DAE system is stiff if it involves
a wide range of time scales and the fastest of those scales
correspond to stable processes. In chemically reacting sys-
tems, the wide range of time scales can come from some
reaction rates being several orders of magnitude or more
greater than others. A solver that is designed for non-stiff
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systems will run very slowly (because it needs to choose time
steps on the scale of the fastest process in the system to
maintain stability for its explicit formulas), if it is applied to a
stiff problem. The cure for stiffness is to approximate the
differential equation using implicit methods. The software
that is available for the accurate solution of stiff ODE and
DAE systems always makes use of implicit methods. For more
information on ODE and DAE methods and software, see
Ascher and Petzold (43). Stochastic simulation algorithms are
not as advanced as the deterministic integrators and they do not
scale well with the model size and complexity. Even though
recent algorithmic improvements have led to impressive gains,
stochastic simulations are still too slow for most realistic sys-
tems. However, as discussed in the previous section, fluctua-
tions can be large in biological systems and, more importantly,
stochastic variations may have implications for biological func-
tions and responses. Therefore, when feasible, stochastic simu-
lation methods should be preferred. This is particularly true for
processes that involve small number of regulatory molecules
with large variations in their expression levels.

5. Trajectory analysis: Time courses obtained during the simula-
tions are catalogued and combined to derive the statistical
distributions of the desired output/prediction quantities,
such as the concentrations of experimentally monitored spe-
cies and the resulting material/mass flow in the system or the
probability distribution of the reactions. Similarly, from simu-
lation results for different model parameter sets, one can
study the sensitivity to parameter variations.

The following simple example illustrates Steps (1–3). Assume
that we are studying a receptor (R) system that binds a ligand L. The
ligand-bound receptors (RL) binds an effector/adaptor/scaffold
molecule E that helps with signal transduction. Receptors that are
in complex with the effector molecules are labeled as RLE. For this
case, the kinetic system consists of the following two reversible
reactions L+R$ RL and RL+E$RLE. Forward and reverse reac-
tions for these two reactions are second- and first-order reactions,
respectively. For simplicity, let us use a mass-action formalism where
the rates for the first- (A! C) and second-(A+B!C) order reac-
tions are represented as k[A] and k[A][B], respectively, where [X]
stands for the concentration (or the number of molecules with the
proper volume conversion) of species X.

In this example, the species list would be L, R, RL, E, and
RLE. The reaction list will contain four reactions (i) L+R!RL, (ii)
RL!L+R, (iii) RL+E!RLE, and (iv) RLE!RL+E. If RLE is the
species of interest (signal transducing receptors), the output of the
simulations would be [RLE], the concentration of the species
RLE. This identification completes Step (1).
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Development of RRE follows a simple rule. Reactions that
decrease or increase the concentration of a species appear as a
source term in the rate equation for that species. For example,
the reaction RL+E!RLE decreases [RL] and [E] and increases
[RLE]. So the term k3[RL][E] is included as a negative contribu-
tion in the rate equations for d[RL]/dt and d[E]/dt, and as a
positive contribution in the d[RLE]/dt rate equation. Using this
logic RRE equations for the above example would be:

d½L�=dt ¼� k1½L�½R � þ k2½RL�

d½R �=dt ¼� k1½L�½R � þ k2½RL�

d½RL�=dt ¼þ k1½L�½R � � k2½RL� � k3½RL�½E� þ k4½RLE�

d½E�=dt ¼� k3½RL�½E� þ k4½RLE�

d½RLE�=dt ¼þ k3½RL�½E� � k4½RLE�
Once the model is defined as above, preparation for the simu-

lation is slightly different depending on the method to be used. If a
deterministic approach is chosen, then RRE is investigated in
terms of stiffness of the equations, and an appropriate integrator
is chosen. We note that for more general formalisms singularity of
the Jacobian is another point of concern, but that subject is outside
the scope of this chapter. If a stochastic simulation approach is
chosen, then RRE is converted into a reaction table (Table 14.1)
form where propensities are associated with each reaction.

In the stochastic approach, the stoichiometry matrix defines
the change in the species concentrations when the corresponding
reaction occurs. Entries for the reactants and products appear as
negative and positive, respectively. With this information at hand,
at every step of the stochastic simulation one can update the system
configuration x(t) according to the occurrence of reactions as x!
x+n!o using the information about how many times the reactions
occur o.

Table 14.1
Reactions and stoichiometry matrix defining the example model

Stoichiometry (n)

Reaction Propensity [L] [R] [RL] [E] [RLE]

(1) L+R!RL k1[L][R] �1 �1 +1 0 0

(2) RL!R+L k2[RL] +1 +1 �1 0 0

(3) RL+E!RLE k3[RL][E] 0 0 �1 �1 +1

(4) RLE!RL+E k4[RLE] 0 0 +1 +1 �1

318 Resat, Petzold, and Pettigrew



Step (4), execution of the simulations, is the key step in the
kinetic modeling studies. The numerical solution of ODEs or
DAEs is a well-established area with widely available software
(43) (also see Section 3). Thus, we will focus on stochastic simula-
tion methods in the remainder of this chapter.

2.2. Stochastic

Simulation Algorithms

– Fundamentals

The Stochastic Simulation Algorithm (SSA) developed by Gille-
spie (1–4) and its variants are the basis for stochastic kinetic simu-
lation of biological systems. In SSA it is assumed that successive
reactive molecular collisions in the system are separated by many
non-reactive collisions, which effectively wipe out all positional
correlations among the molecules. Therefore, SSA is suitable for
the simulation of well-stirred systems.

Defining the state of the system by the vector x(t) whose
components xi(t) (i¼1 to N for N species) donate the number of
molecules of species Si in the system at time t, one can establish
from kinetic theory the following result. For each elemental che-
mical reaction channel Rj (j¼1, ..., M), there exists a function aj

such that if the system is in state x¼(x1, . . ., xN) at time t, then the
probability that reaction Rj will occur somewhere inside the system
in the next infinitesimal time dt is aj(x). This can be regarded as the
fundamental premise of stochastic chemical kinetics. The function
aj is called the propensity function of reaction channel Rj. Each
reaction channel Rj is completely characterized by its propensity
function together with its state change vector nj, which represents
the change in the population of the molecular species caused by
one Rj event, i.e., the stoichiometric coefficients of the reactions.
Thus, if the system is in state x and one Rj reaction occurs, the
system jumps to state x+nj. This is mathematically known as a jump
Markov process and a great deal is known about such processes
(8, 41).

The stochastic evolution of the state vector x(t) is specified
by the function P(x,t|x0,t0), defined as the probability that x(t)
will equal x given that x(t0)= x0 for t0 � t. It can be proven
that this function obeys the following time-evolution equation
(4, 44):

@Pðx; t jx0; t0Þ
@t

¼
XM

j¼1

½aj ðx� nj ÞPðx� nj ; t jx0; t0Þ � aj ðxÞPðx; t jx0; t0Þ�: ½1�

This elegant equation is known as the chemical master equation
(CME). Unfortunately, it is of such a large dimension (it includes a
differential equation corresponding to every possible state of the
system) that its solution is almost always intractable, both analyti-
cally and numerically.

An alternate way of analyzing the behavior of x(t) is to con-
struct its unbiased realizations using SSA (1, 2). The steps of SSA
basically are:
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i) Initialize the system’s state x=x0 at time t=t0;

ii) Evaluate the reaction propensities aj(x) and their sum a0(x);

iii) Draw two random numbers r1 and r2 from a uniform distribu-
tion in the unit-interval, and compute the time interval
between the reactions t=�ln(r1)/a0(x) and determine which
reaction type Rj occurs next by finding the smallest integer j

that satisfies
Pj

j 0¼1

aj 0 ðxÞ4r2 a0ðxÞ;

iv) Record and update the changes in the system t!t+t and
x!x+nj; and

v) Return to step (ii) or end the simulation.
The SSA advances the system in time from one reaction event

to the next, and it does so in a way that is rigorously equivalent to
the CME. The SSA is therefore an exact method for simulating the
time evolution of a spatially homogeneous chemical system.
Because SSA processes reaction events serially, i.e., one after
another, it is often too slow to be practical when applied to real
systems of interest. An extremely large molecular population of
even one reactant species, and/or a very fast reaction, will usually
cause the time increments t to be extremely small.

2.3. Acceleration of

Discrete Stochastic

Simulation

Several lines of research have been pursued in attempts to improve
upon the exact SSA. These include more efficient implementations
of SSA and the development of approximate SSAs with improved
numerical efficiencies.

The efficiency of the algorithms can strongly depend on the
formulation and numerical implementation and these are the key
aspects to consider when developing simulation software. Gibson
and Bruck used an efficient implementation strategy for the exact
SSA (10) to remove a key limitation, which restricted the practical
use of the first reaction method of Gillespie (1), by not requiring
the generation of Nr new random uniform deviates following a
reaction event where Nr is the number of active reactions. Rather
than a single waiting time between events, the method stores the
absolute firing time for each reaction in an indexed priority binary
heap queue, with times increasing with increasing depth in the
heap. Assuming a static reaction network topology, a reaction
dependency graph is created initially. Following an event, which
is identified by the element at the top of the heap, a single random
uniform deviate is generated, reaction propensities are efficiently
updated using the dependency graph, and any absolute firing time
requiring updating is adjusted through a linear transformation.
Lastly, the heap queue is reordered. Gibson and Bruck have shown
that the algorithm has a time complexity of order O(Nr+NE log
Nr), where NE is the number of events and generally requires only
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a single random uniform deviate per event (45). While the next
reaction method can be efficient for large, very sparse networks,
significant overhead may incur in maintaining the indexed priority
queue. This has led Cao et al. to conclude that, for most kinetic
systems, the most efficient formulation of SSA is an optimized
direct Gillespie method (46).

One way to speed up the next reaction method type algo-
rithms is to allow multiple reactions to take place in longer time
steps, which is the underlying idea behind the probability-
weighted dynamic Monte Carlo (PW-DMC) method (24) and
the tau-leaping based algorithms (28–32, 47). The basic premise
behind the PW-DMC method is that reactions with large pro-
pensities dominate the stochastic simulation. By attaching
weights that are updated as the simulation progresses, the PW-
DMC approach attempts to equalize the propensities of the
reactions constituting the network model. In this process, the
large propensities are scaled down with an associated factor,
which corresponds to how many times the involved reaction
occurs when selected. It was shown that the PW-DMC algo-
rithm solves the multiple time scale problem to a large extent
(24). Efficient statistical sampling obtained with the PW-DMC
algorithm made the simulation of an integrated stochastic
model of EGFR signaling network, which contains tens of
thousands of reactions, possible using desktop computers in
reasonable wall clock periods (25). The success of PW-DMC
results from its effectiveness in bundling the occurring reactions
and, in this aspect, it is conceptually similar to the approach
pursued in tau-leaping methods. The main differences between
the PW-DMC and the tau-leaping methods are that in PW-
DMC the bundling of the reactions is done for each reaction
type (i.e., some reactions can be selected to be left out if desired)
and the integration time does not have to be set in advance, but
the tolerance in the fluctuation levels for the species need to be
predefined. These features make PW-DMC suitable to deal with
the reaction networks that can be partitioned into subclasses
according to their spatio-temporal properties where the allowed
fluctuation levels can be dictated on a per reaction basis. It was
shown (24) that, while the fluctuation variations may be
affected, PW-DMC conserves the mean quantities. In this
respect, PW-DMC is a weak order (i.e., not a strong order)
stochastic method. The fluctuations in the computed quantities
depend on the achieved speed-up, which can be several orders of
magnitude without any significant effect on the computed mean
quantities (24).

In the tau-leaping (tL) methods (47), advances in the system
configuration are determined based on a pre-selected time step t
during which more than one reaction event may occur. Tau-
leaping is based on the same premises that underlie CME and
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SSA. If t is chosen small enough to satisfy the leap condition, which
says that none of the propensity functions may change noticeably
during t, then given x(t)=x, the system state at time t+t can be
approximately computed as

xðt þ tÞ ¼ xþ
XM

j¼1

Pj ðaj ðxÞ; tÞ nj : ½2�

The Pj are statistically independent Poisson random variables; they
physically represent the number of times each reaction channel
fires in time t. The Poisson random variable P(a,t) is in fact defined
as the number of events that will occur in time t, given that a dt is
the probability of an event occurring in the next infinitesimal time
dt. We emphasize that t must be chosen small enough that none of
the propensity functions changes significantly during the leap.
Algorithms have been developed for estimating the largest value
of t that will satisfy the condition for a prescribed level of simula-
tion accuracy (26, 28).

While the tL methods show significant gains in efficiency, the
unbounded Poisson distribution can lead to nonphysical system
configurations in which negative species populations arise when
the expected number of events is large enough to consume the
reactant populations. Cao et al. have shown how to avoid negative
populations in explicit Poisson tL (PtL) methods (48). The non-
negative PtL algorithm is based on the fact that negative popula-
tions typically arise from multiple firings of reactions that are only a
few firings away from consuming all the molecules of one of their
reactants. To focus on those reaction channels, the modified PtL
algorithm introduces a control parameter nc, a positive integer that
is usually set somewhere between 10 and 20. Any reaction channel
that is currently within nc firings of exhausting one of its reactants
is then classified as a critical reaction. The algorithm chooses t in
such a way that no more than one firing of all the critical reactions
can occur during the leap. Essentially, the algorithm simulates the
critical reactions using SSA, and the remaining non-critical reac-
tions using t-leaping (48).

An alternative approach is based on choosing the reaction
numbers using binomially distributed random variables that have
the appropriate finite sampling ranges. If a short time interval tE is
considered, for each reaction Rj, the Poisson distribution is replaced
with a binomial distribution B(pj,oj

*) with the same mean ajt. Here
oj

* is an upper bound (or limit) on the reaction number and pj is the
probability that Rj will fire in the interval tE/oj

*. In the resulting
binomial tau-leaping (BtL) method, the leap size is then chosen as
the smaller of the times tj computed from the constraints pj=ajtj/oj

*

� 1, j=1:M and the upper bound tE. Once the tau step has been
determined, each network reaction number oj is generated by
sampling the corresponding binomial distribution.
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Although the binomial distribution has the desirable prop-
erty of having a finite sampling range, this in itself does not
completely resolve the non-negativity problem. In networks
with multiple channel reactant dependencies, the interdepen-
dence arising from species participating in multiple reactions
may still generate negative species populations. Tian and Burrage
have shown how the BtL completely resolves the non-negativity
problem when there is at most a two-reactant dependence in a
reaction network (31). In the BtL method of Chatterjee et al.
(29, 30), the issue of multiple-channel reactant dependencies is
dealt with by assigning to each reaction a binomial random vari-
able for the number of reaction events during a step and by
modifying the reaction number limits through tracking currently
available population sizes as reactions fire during that step. Yet, as
critically noted by Chatterjee et al., in the latter approach selected
reaction numbers may depend on the order in which reactions are
processed (29, 30).

The multinomial tau-leaping (MtL) method of Pettigrew and
Resat efficiently extends the BtL method to networks with arbi-
trary multiple-channel reactant dependencies (32). Improvements
were achieved by a combination of three factors: First, tau-leaping
steps are determined simply and efficiently using a priori informa-
tion and Poisson distribution-based estimates of expectation
values for reaction numbers. Second, networks are partitioned
into closed groups of reactions and corresponding reactants in
which no group reactant set is found in any other group. Third,
product formation is factored into upper bound estimation of the
number of times a particular reaction occurs. Together, these
features allow for larger time leaping steps, while the numbers of
reactions occurring simultaneously in a multi-channel manner are
estimated accurately using a multinomial distribution (32). Parti-
tioning of the reaction network into groups with closure can be
done with a graph theoretic algorithm based on the Dulmage-
Mendelsohn decomposition of the stoichiometric matrix repre-
senting the network. Two methods for selecting an upper limit O*
on the system reaction number was advocated, the rate-limiting
reactant and the rejection methods (32). The former is a conser-
vative approach, which guarantees that the chosen reactions do not
lead to negative populations after the system’s configuration is
updated according to the occurring reactions. In contrast, the
selection process in the rejection method only guarantees that
the system configuration after the tau-leaping step is non-negative.
It however does not ensure that all possible multi reaction paths
that take the system to that final configuration involve only physi-
cally feasible intermediate stages. It was argued that, since one can
only detect the relationship between the starting and end points of
a move during the simulation, ensuring the state of the system to
always correspond to physically feasible configurations at the
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observation points (i.e., starting and end points of the moves in a
simulation run) is the most crucial aspect in obtaining accurate
results (32). Therefore, allowing a simulation trajectory to tem-
porarily cross the solution space boundary would introduce insig-
nificant inaccuracies because statistics for intermediate states have
only an indirect impact. In the MtL method, tau-leaping step is
then chosen as the smaller of the times t computed from the
constraint p = tS/O* � 1 and the upper bound tE where S is the
system propensity. The actual system reaction number O is then
sampled from a binomial distribution as discussed above, and the
reaction numbers oj, j=1:M�1, are drawn from a multinomial
distribution with corresponding probabilities aj = aj/S and
oM=O�o1�o2� . . . �oM�1. Implemented advances over the
BtL method were shown to lead to significant speed-ups in the
simulations of biologically relevant models (32). It was also shown
that MtL is less sensitive to the error parameter of the tL methods,
which is a desirable aspect of the kinetic simulation algorithms.

2.4. Thermodynamic

Limit

It is well known that the Poisson random variable P(a,t), which has
mean and variance at, can be approximated by a normal random
variable with the same mean and variance when at>>1. Using this
fact, it can be shown that if t satisfies not only the leap condition
but also the conditions aj(x)t>>1 for all j, which physically means
that during time t every reaction channel can be expected to fire
many more times than once, then the basic tau-leaping Eq. [2]
further approximates to (49)

X ðt þ tÞ ¼ xþ
XM

j¼1

nj aj ðxÞ t þ
XM

j¼1

nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj ðxÞ t

q
Nj ð0; 1Þ: ½3�

Here the Nj(0,1) are statistically independent normal random
variables with mean 0 and variance 1. This modified update for-
mula is computationally faster than the tau-leaping formula Eq.
[2], which it approximates, because samples of the normal random
variable are much easier to generate than samples of the Poisson
random variable. Also, since by hypothesis every reaction channel
fires many more times than once during each time step t, simula-
tions using the updating Eq. [3] will be very much faster than SSA.

If the arguments leading to Eq. [3] are repeated with t
replaced by a macroscopic infinitesimal dt, which by definition is
small enough that no propensity function changes significantly
during dt yet large enough that every reaction channel fires many
more times than once during dt, then one can deduce the
equation

dxðtÞ
dt
¼
XM

j¼1

nj aj ½xðtÞ�þ
XM

j¼1

nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj ½xðtÞ�

q
Gj ðtÞ; ½4�
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where the gammas are statistically independent Gaussian white
noise processes (49–51). This equation is called the chemical Lan-
gevin equation (CLE), and it is an example of what is known to
mathematicians as a stochastic differential equation. It is entirely
equivalent to the Langevin leaping formula given by Eq. [3].

We note that stochastic differential equations are often used in
physics, but they are usually obtained by starting with an assumed
ODE and then adding a ‘‘noise’’ term that has been carefully
crafted to give some preconceived outcome. So it is noteworthy
that the noise term in Eq. [4], namely the second summation
there, has actually been derived from the same premises that under-
lie the CME and the SSA using physically transparent assumptions
and approximations. Use of the Langevin formulas (3) and (4) is
typically justified whenever all reactant species are present in suffi-
ciently large numbers.

At the thermodynamic limit, molecular populations of all
the reactants and the system volume become infinitely large,
while the concentrations of all species stay constant. It can be
proven that, in this limit, all propensity functions scale line-
arly with the system size. Thus, the deterministic terms on
the right sides of Eqs. [3] and [4] grow in proportion to the
system size, while the fluctuating terms grow in proportion
to the square root of the system size. This is another way of
showing that for large systems ‘‘relative fluctuations in the
species populations scale as the inverse square root of the
system size,’’ a central rule of thermodynamics. In the full
thermodynamic limit, the foregoing scaling behavior implies
that the fluctuating terms in Eqs. [3] and [4] become neg-
ligibly small compared to the deterministic terms, and the
CLE reduces to

dxðtÞ
dt
¼
XM

j¼1

nj aj ½xðtÞ�: ½5�

This is none other than the traditional RRE, which is more
commonly used in terms of the concentration vector. Note
that the RRE has not been assumed here; instead, it has been
derived from the same premises that underlie the CME and
the SSA, using a series of physically understandable approx-
imations (49, 50). Thus, the discrete, stochastic CME/SSA
and the continuous, deterministic RRE are actually connected
across the ends of representation spectrum. The challenge, of
course, is to develop both the software infrastructure and the
theory necessary to make reliable adaptive decisions so that we
can accurately and efficiently simulate complex reaction sys-
tems based on detecting a discrete or continuous regime and
using an optimal blend of stochastic and deterministic
methods.
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2.5. Scaling Properties

with Respect to the

Network Size

In addition to the multi-scale nature of the involved kinetic pro-
cesses, computational efficiency of stochastic simulation algo-
rithms also depend on several measures of the size of the
investigated network model, such as the overall complex popula-
tion, the total number of reactions, and the average number of
nodal interactions or connectivity in a network. Understanding
how algorithms scale with size and nodal connectivity is an impor-
tant consideration in the design of numerical experiments for
dynamic biological systems. As the complexity of the systems
studied in biological systems increases, such scaling issues become
a serious point of concern.

To study how stochastic kinetic simulation algorithms scale
with network size, the construction of scalable reaction models
that can be used in benchmark studies has been advocated (42).
Pettigrew and Resat used two scalable reaction models to compare
the efficiency of the exact Gillespie algorithm as implemented
using the popular Gibson-Bruck method (GGB) (10) with the
inexact random substrate method of Firth and Bray (FB) (52).
Foundations of these two algorithms are quite distinct from each
other and the latter algorithm has been stated to be an efficient
method when the total complex population is small and the
number of multi-state interactions large.

The first investigated scalable model, the Size Scalable Model
(SSM), is a four major-compartment model that is typical for a
signal transduction network in eukaryotic cells (42). The SSM
involves two unimolecular and five bimolecular reversible reac-
tions with mass transfer between compartments for eight complex
types including ligands, adapter complexes, and receptors (42).
Upon phosphorylation the receptor can become active in signal
transduction. A sub-compartmentalization process, which is
equivalent to forming smaller locally homogeneous regions,
allows for the creation of refined models where the size of the
model increases in proportion to the number of created subcom-
partments while maintaining the connectivity (i.e., the topology)
between the species. For SSM, it was found that the GGB algo-
rithm, whose numerical efficiency scales with the logarithm of the
total number of active reactions, performs significantly better in all
cases including those characterized by a very small number (�100)
of complex types, each with a very small population (42).

The second scalable model, the Variable Connectivity
Model (VCM), is a single compartment signal transduction
network involving two unimolecular and two bimolecular
reversible reactions for three complex types: ligand, receptor,
and ligand–receptor complexes (42). The receptors in this
model have multiple phosphorylation sites. The size and the
node connectivity between the species increase in proportion
to the number of phosphorylation sites N. For the VCM, it
was shown that the FB random substrate method, whose
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efficiency scales with the square of the total complex popula-
tion, can outperform the GGB algorithm when the node
connectivity is sufficiently high and the total complex popu-
lation sufficiently low. Performance of the FB and GGB
algorithms were determined as a function of the number of
phosphorylation sites for two distinct population sets. In the
first set the total complex population was initially set at 192
complexes (128 ligands and 64 receptors), while for the
second set the total complex population was 10 times higher
with the 2:1 ratio of ligands to receptors unchanged. It was
found that, for the smaller population set, the FB algorithm
becomes more efficient than the GGB when the number of
phosphorylation sites N reaches 6, whereas in the larger
population set the GGB is clearly superior for small N up
to a cross-over point that occur around N�11. Thus, it was
concluded that with the exception of special cases, GGB is a
more efficient method than the FB (42).

This simple study using two sample realistic networks clearly
illustrated that the most efficient algorithm can depend on the
problem type and the used simulation method should be chosen
after a careful study of the topology and multi-scale properties of
the investigated network.

3. Simulation Tools

Table 14.2 lists and briefly describes some of the existing soft-
ware tools that may be used in the kinetic simulations of biolo-
gical systems. We would like to note that the list is in no way
complete and it only represents a small percentage of the available
tools.

4. Future Prospects
of Stochastic
Simulation

In recent years there has been rapid progress in the analysis and
development of algorithms for the accelerated discrete stochastic
simulation of chemically reacting systems. Although these devel-
opments provide a good foundation, existing stochastic simulation
methods are far from being computationally efficient to simulate
detailed biological models. This is particularly true for the models
that involve multiple time and spatial scales while still requiring
high resolution for accurate representation. Thus, the develop-
ment of efficient and adaptive multi-scale algorithms and the
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Table 14.2
Available simulation tools (in alphabetical order)

Name Brief Description

BIONETGEN Automatic generation of physicochemical models of biological systems with
combinatorial complexity such as cellular signaling from user-specified rules
for biomolecular interactions at the protein domain level, integrated with
tools for reaction network simulation and analysis (53).

http://cellsignaling.lanl.gov/bionetgen/

BIO-SPICE Open source software for intra- and inter-cellular modeling and simulation of
spatio-temporal processes, pathways, and interaction- network tools for data
analysis (MIAMESpice), model composition and visualization (BioSenS,
Charon, JDesigner, Sal), mathematical tools including ordinary and partial
differential and stochastic equation-based methods and algorithms for the
simulation of reaction and diffusion-reaction networks (BioNetS Simpathica)
(54, 55).

https://biospice.org/index.php

CELLDESIGNER Gene regulatory network modeling, visual representation of biochemical
semantics with SBML and database support, integration with Matlab or
Mathematica ODE Solvers, and direct access to SBW SBML compliant
simulators such as Jarnac (56, 57).

http://celldesigner.org/index.html

CELLERATOR Open- source Mathematica- based package for the simulation and analysis of
signal transduction networks in cells and multicellular tissues, automated
equation generation with arrow-based reaction notation (58).

http://www-aig.jpl.nasa.gov/public/mls/cellerator/

COPASI Stochastic and deterministic simulation of network pathways, steady- state and
metabolic control analysis including stability analysis, elementary and mass
conservation analysis, optimization and parameter estimation and SBML
support (59).

http://www.copasi.org/tiki-index.php

DIZZY Stochastic and deterministic kinetic modeling of integrated large-scale genetic,
metabolic, and signaling networks with domain compartmentalization,
features include modular simulation framework, reusable modeling elements,
complex kinetic rate laws, multi-step reaction processes, steady-state noise
estimation (60).

http://magnet.systemsbiology.net/software/Dizzy

E-CELL Object-oriented software for modeling, simulation, and analysis of large scale
cellular networks, multi-algorithm multi-time- scale simulation method with
access to Gillespie-Gibson and Langevin stochastic algorithms, Euler and
higher- order adaptive methods for ordinary and algebraic differential
equations, parallel and distributed computing capabilities and SBML support
(61, 62).

http://www.e-cell.org/software/e-cell-system

GRID
CELLWARE

Grid-based modeling and simulation tool for biochemical pathways, integrated
environment for diverse mathematical representations, parameter estimation
using swarm algorithm and optimization, user-friendly graphical display and

(continued)
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Table 14.2 (continued)

Name Brief Description

capability for large, complex models, stochastic algorithms such as Gillespie,
Gibson, and tau-leaping and deterministic algorithms based on ordinary
differential equation solvers (63).

http://www.bii.a-star.edu.sg/research/sbg/cellware

MCELL Monte Carlo simulator for investigating cellular physiology, model description
language or MDL used to specify ligand creation, destruction, and release as
well as chemical reactions involving effectors such as receptors or enzymes,
ligand diffusion modeled with 3D random walks, wide variety of numerical
and imaging options (64).

http://www.mcell.cnl.salk.edu and www.mcell.psc.edu

MESORD Open source C++ software for stochastic simulation of kinetic reactions and
diffusion based on next subvolume method (NSM) for structured geometries
in three dimensions, SBML- compatible, three-dimensional OpenGL
simulation viewer (65).

http://www.mcell.cnl.salk.edu and http://mesord.sourceforge.net/

NWKSIM Fortran 90/95 platform for large- scale general kinetic reaction network
simulation, Java swing graphical user interface, unique modeling features for
the computation of evolving multiple compartments with trafficking and
signal transduction processes, stochastic algorithms include direct Gillespie,
probability weighted dynamic Monte Carlo and weighted Gibson-Gillespie
Bruck, binomial and multinomial tau-leaping algorithms (32, 42).

SIGTRAN Fortran 90/95 modeling and simulation platform for large- scale reaction
networks, Java swing graphical user interface, dual stochastic and
deterministic (ODE/DAE) simulation modes, multi-state macromolecule
specification and simulation using the Firth-Bray algorithm, reaction-
diffusion modeling with Fricke-Wendt algorithm, molecule tagging and
tracking in signal transduction networks using a fully automated graph-
theoretic algorithms for the determination of unambiguous set of base
species, SBML file support (42).

SIMBIOLOGY Matlab toolkit for modeling, simulating, and analyzing biochemical pathways,
graphical user interface with visual pathway expression, manual or SBML file
input, stochastic or deterministic solvers, parameter estimation and sensitivity
analysis, ensemble runs and post-run analysis tools with plotting.

http://www.mathworks.com/products/simbiology/description4.html

SMARTCELL Object-oriented C++ platform for the modeling and simulation of diffusion-
reaction networks in whole-cell context with support for any cell geometry
with different cell compartments and species localization, includes DNA
transcription and translation, membrane diffusion, and multistep reactions, as
well as cell growth, localization, and diffusion modeling based on mesoscopic
stochastic reaction algorithm (66).

http://smartcell.embl.de/introduction.html

STOCHKIT Efficient C++ stochastic simulation framework for intracellular biochemical
processes, stochastic algorithms includes Gillespie SSA and explicit, implicit
and trapezoidal tau-leaping methods, Kolmogorov distance and histogram

(continued)
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software for stochastic-deterministic simulations are urgently
needed. This is particularly true for the simulation of spatially
resolved models because immense recent progress in imaging is
beginning to make the data about the inhomogeneous distribu-
tion of molecular species available. As the expense associated with
spatially resolved models makes fully stochastic simulations nearly
infeasible, efforts to develop hybrid approaches will become very
important. Hybrid methods (22, 71) have recently been proposed
to simulate multi-scale chemically reacting systems. These meth-
ods combine the traditional deterministic reaction rate equation,
or alternatively the chemical Langevin equation, with the SSA. The
idea is to split the system into two regimes: the continuous regime
and the discrete regime. The RRE is used to simulate the fast
reactions between species with large populations and the SSA is
used for slow reactions or species with small populations. The
conditions for the continuous regime are (1) the number of
instances of each molecular species in a reaction in the continuous
regime must be large relative to one, and (2) the number of
reaction events of each reaction occurring within one time step
of the numerical solver must be large relative to one (72). If either
condition is not satisfied for a reaction channel, that reaction
channel must be handled in the discrete regime.

The hybrid methods efficiently use the multi-scale properties
of the problem, but there are still some fundamental unsolved
problems. The first is the automatic partitioning of systems. This

Table 14.2 (continued)

Name Brief Description

distance for quantifying difference quantification in statistical distribution
shapes via Matlab, extensible to new stochastic and multi-scale algorithms
(67).

http://www.engineering.ucsb.edu/�cse/StochKit/StochKit.html

SBTOOLBOX Matlab toolbox offering open and user extensible environment for prototyping
new algorithms, and building applications for the analysis and simulation of
biological systems, deterministic and stochastic simulation, network
identification, parameter estimation and sensitivity analysis, bifurcation
analysis, SBML model import (68).

http://www.sbtoolbox.org/

VIRTUAL CELL Model creation and simulation of cell biological processes, associates
biochemical and electrophysiological data for individual reactions with
experimental microscopic image data describing subcellular locations, cell
physiological events simulated within empirically derived geometries,
reusable, updatable, and accessible models, simulation data stored on the
Virtual Cell database server, and is easily exportable in a variety of formats
(69, 70).

http://www.vcell.org/
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needs to be done very carefully, because both accuracy and effi-
ciency depend on a proper partitioning. It will require a precise
awareness of the assumptions under which algorithms and approx-
imation available in the multi-scale framework are valid, and the
corresponding tests on the system to determine the partitioning.
This is one reason why a proper theoretical foundation for each
algorithm is so critical – to ensure that we are using it only to make
approximations for which the corresponding assumptions are
valid. Concerns about automatic step size selection continue to
exist. Another difficult problem arises in the case when a reaction is
fast, but one of the corresponding reactants has a small population,
thus failing to satisfy the second requirement above for the deter-
ministic regime. Such a reaction channel will still be handled by the
SSA, resulting in a very slow simulation. New approaches and
approximations, such as the slow-scale SSA (73), have the poten-
tial to overcome this limitation.

Another promising area of research is the application of
tau-leaping-based stochastic algorithms to problems involving reac-
tion-diffusion processes. When the SSA algorithm is applied to reac-
tion-diffusion processes, the standard approach is to subdivide the
heterogeneous system volume into a sufficiently large number of
small-volume elements V0�O(h3) so that the assumption of a homo-
geneous, well-stirred system within each element is recovered. With
diffusion considered as a first-order reaction in which molecules of a
species are exchanged between neighboring elements at a rate rD /
V0D/h2, kinetic reactions within an element occur at a rate rC/V0S.
Here D and S are, respectively, the diffusion constant and the total
system propensity. By choosing elements sufficiently small so that
rC << rD is true for all elements, the SSA may be applied, although
under these circumstances it is not usual to be confronted with a
reaction network where the total number of processes and species is
now several orders of magnitude larger than that found in a single
element. Moreover, it has been observed in stochastic simulations
with the SSA that reaction-diffusion processes are strongly domi-
nated by diffusion events. The increase in network size and diffu-
sion-dominated events both contribute to a severe reduction in
efficiency and it is highly likely that a number of more recent stochas-
tic algorithms for reaction-diffusion suffer from the same problem. It
is possible that t-leaping methods may be well suited to overcoming
this issue with the stochastic simulation of reaction-diffusion
problems.

As stochastic simulation is used more and more often in study-
ing the dynamics of biological systems, and as biological models
become larger and more complicated, there is a need for the
development and efficient implementation of simulation algo-
rithms that can handle the increasing complexity. Thus, the issue
of how an algorithm scales with the system size is crucial in asses-
sing the limitations of the algorithm. Scaling concerns expose the
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serious need for establishing realistic scalable models that can be
used in benchmark studies for algorithm efficiency comparison.
Pettigrew and Resat (42) have introduced two such models. It was
observed (42) that the scaling qualities of the algorithms investi-
gated break down significantly when the network reaches a certain
size. We suspect that this is a common occurrence for all of the
existing algorithms, which unfortunately can impose severe limita-
tions on the utility of stochastic kinetic approaches. Roughly esti-
mating, existing stochastic simulation algorithms can be used to
investigate reaction networks containing �105 reactions using a
desktop machine. Utilization of high-performance resources may
push this limit to 108. Considering that even the smallest microbial
community or physiologically relevant eukaryotic network can
easily contain>1012 reactions, it is clear that the scaling properties
of the stochastic simulation algorithms need significant improve-
ments before they can be widely used for larger problems. As
discussed above, hybrid methods that reduce the computational
complexity by treating the non-critical parts of the network using
deterministic models may offer the most suitable solution to the
scaling bottleneck in the near future.

We conclude by observing that while recent improvements in
algorithm development, computational implementation, and
hybrid approaches are indications of a promising future for the
stochastic kinetic simulation of biological systems, there is still
plenty of room for achieving significant advances.
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Chapter 15

Guidance for Data Collection and Computational Modelling
of Regulatory Networks

Adam Christopher Palmer, and Keith Edward Shearwin

Abstract

Many model regulatory networks are approaching the depth of characterisation of bacteriophage l,
wherein the vast majority of individual components and interactions are identified, and research can focus
on understanding whole network function and the role of interactions within that broader context. In
recent years, the study of the system-wide behaviour of phage l’s genetic regulatory network has been
greatly assisted by the combination of quantitative measurements with theoretical and computational
analyses. Such research has demonstrated the value of a number of general principles and guidelines for
making use of the interplay between experiments and modelling. In this chapter we discuss these guidelines
and provide illustration through reference to case studies from phage l biology.

In our experience, computational modelling is best facilitated with a large and diverse set of quantitative,
in vivo data, preferably obtained from standardised measurements and expressed as absolute units rather
than relative units. Isolation of subsets of regulatory networks may render a system amenable to ‘bottom-
up’ modelling, providing a valuable tool to the experimental molecular biologist. Decoupling key compo-
nents and rendering their concentration or activity an independent experimental variable provide excellent
information for model building, though conclusions drawn from isolated and/or decoupled systems
should be checked against studies in the full physiological context; discrepancies are informative. The
construction of a model makes possible in silico experiments, which are valuable tools for both the data
analysis and the design of wet experiments.

Key words: Computational modelling, systems biology, gene regulatory network, experiment design,
promoter regulation, in silico experiment, bacteriophage l, DNA looping.

1. Introduction

In our studies of small gene regulatory networks, our model organ-
isms are two temperate bacteriophages, lambda (l) and the unre-
lated P2-like phage 186. Both phage make a decision between lysis
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and lysogeny upon infection of their host Escherichia coli, and
contain within their genetic circuitry a module that operates as a
bistable genetic switch when isolated and inserted into E. coli.
Phage l’s bistable switch is a paradigm for the molecular basis of
epigenetics, and the lysis-lysogeny decision is the most thoroughly
characterised model system of developmental decision-making.
Both phage l and 186 are sufficiently well characterised that most
key components of the lysis-lysogeny decisions have been identi-
fied, allowing research to extend to both the smaller and larger
scales, respectively, to detailed characterisation of the molecular
mechanisms and to the role of an interaction within the context of
a larger network.

Phage allows us to study the organism on all scales, from atomic
resolution of proteins to behaviour of the whole organism. We
observe the basis of information processing and decision-making
at the level of protein–protein and protein–nucleic acid interac-
tions, which often converge at transcription regulation. However,
the behaviour of a subset of a genetic regulatory network, even as
small as two promoters and two regulatory genes, can display the
complexity of behaviour beyond the ability of intuition or quali-
tative description to fully appreciate. Therefore, our studies of
phage frequently require us to apply quantitative experimental
methods and mathematical and/or computational modelling in
the interpretation of data.

A minority of biochemical and genetic experiments provide
data with the qualities necessary for mathematical modelling; a
change in the character of experimental data is being advocated
by those who see molecular biology progressing to a stage where
quantitative and systems-level understanding will be a central
component of future progress (1, 2). This lab’s 35 years of experi-
ence in phage l and 186 can testify that as the identification of key
components in a system draws to completion, quantitative studies
and theoretical analyses are necessary to assemble the data provided
by reductionist experiments into a coherent picture of the whole
network and to guide future experiments into network function.

2. Data Collection
for Modelling

Production of experimental data suitable for mathematical model-
ling is challenging; for a majority of applications, a large set of
highly quantitative data is a must. Furthermore, although data are
usually obtained as relative units, expression in absolute units is
often valuable, potentially requiring an entirely different experi-
ment for calibration, which again requires quantitative techniques.
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We find the following guidelines useful in the production of
experimental data suitable for computational modelling.

2.1. Use Quantitative

Techniques

Models based upon purely qualitative descriptions of interacting
systems will possibly have different solutions capable of describing
the same data, and are likely to suffer from a lack of detail and
accordingly a lack of predictive power. With quantitative data, the
process of fitting a model to the data provides estimates of relevant
parameters, sometimes providing information that may not be at
all accessible to direct experimental measurement. Production of
reliably quantitative data requires replicate experiments, especially
when working in vivo.

2.2. Acquire a Large

and Diverse Data Set

For a mathematical model to be held in confidence, it must have
fewer parameters than the number of independent data points; a
large and diverse data set has the greatest chance of delivering an
accurate model. Data particularly amenable to modelling include
measurements of concentrations or reaction rates, as a function of
either time or concentration of a regulatory molecule. Such con-
centration or time series appear frequently in biological literature,
but usually with sparse data, adequate to prove a qualitative point.
The inclusion of more frequent or more densely spaced measure-
ments in these studies can easily make data more amenable to
computational modelling, from which much more may potentially
be learnt about the system.

The ‘diversity’ of a data set is a trait distinct from size, and is
also valuable. While it is useful to measure, for example, a time series
with many data points, there is a different advantage in measuring
that time series under different circumstances, such as with certain
components of the system altered or removed. Such changes, parti-
cularly mutations, are routine in most biochemical experiments,
and they are no less useful when acquiring data for the purposes of
computational modelling, as the acquisition of a new data set with
one or two parameters altered can be extremely useful for fitting a
model to the data.

2.3. Keep Conditions as

Close to Physiological

as Possible

In attempting to model a process inside a cell, it is of course
important that any quantitative measurements needed for the
model be performed under conditions as close to physiological as
possible. In vivo experiments are ideal, but for many measurements
only in vitro techniques are available; in these cases, in vitro experi-
ments performed under conditions most similar to in vivo are
most useful. This can be accomplished by the use of physiologically
realistic salt concentrations and pH, with the inclusion of macro-
molecular crowding agents, and by working at the same tempera-
ture as any in vivo experiments.
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2.4. Measure Absolute

Units or Use

Standardised

Measurements

Even using quantitative techniques, measurements often only
provide relative units, e.g. a fold change is provided in protein
concentration or promoter activity. Quantitative techniques may
provide only enough data to draw qualitative conclusions. For the
construction of a computational model, it is much more desir-
able to obtain absolute units, e.g. number of proteins per cell, or
promoter initiations per minute. Calibration against a known
standard will provide this information, which can be immensely
valuable in modelling. Beyond assisting your model, providing
absolute units provides a reliable way to make quantitative com-
parisons of data obtained from different laboratories. Such calibra-
tions themselves require quantitative techniques and may require
substantial effort; if calibrations are not possible or simply low
priority, the use of standardised measurements may at least assist
the comparison of data from different laboratories, the difficulty
of which has been lamented by the researchers interested in
modelling (1).

3. Case Study:
Measurement of
Prokaryotic
Promoters Current techniques for the measurement of prokaryotic promoters

provide a good example of the efforts that can be taken to acquire
the highest quality of data for computational modelling. Promoter
regulation is amenable to quantitative measurement by the place-
ment of a ‘reporter’ gene downstream of a promoter, whose
product is easily measurable, and demonstrates minimal interfer-
ence with cellular behaviour. In E. coli the leading example is the
lacZ gene, whose product b-galactosidase is measured in the Miller
LacZ assay by the rate of enzymatic cleavage of a chromogenic
substrate (3). This assay has been refined to automated kinetic lacZ
assays, which provide a highly quantitative technique for the mea-
surement of promoter activity, with sensitivity spanning 4 orders
of magnitude (4). Chromosomal single-copy reporters are used to
avoid noise due to plasmid copy number variability, by the use of
reporters integrated into the E. coli chromosome at a specific
phage attachment site, using either phage themselves or a system
of plasmids that exploits the integration machinery of temperate
phage (5, 6). Transcriptional terminators isolate the region of
interest from read-through effects from the surrounding E. coli
chromosome (Fig. 15.1). When combining a LacZ reporter with a
lactose/IPTG-inducible expression system, lacY (permease)
should be deleted to avoid feedback from transcription (output)
to transport of the inducer (input) (7). It is worth noting that
chromosomal single-copy reporters, long used in E. coli, have
recently been implemented in mammalian cell lines (8).
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Transcriptional fusions to lacZ are used to enable the place-
ment of an RNAseIII site preceding the lacZ gene, such that all
lacZ transcripts are cleaved between their start sites and the LacZ
coding sequence (Fig. 15.1). This yields a standardised measure-
ment, as lacZ transcripts of identical length and sequence are
produced from any promoter, providing mRNA translation effi-
ciencies and half-lives, which are promoter and context indepen-
dent(9). By using a standardised assay, promoter activities
measured by this assay are directly comparable to any prokaryotic
promoter assayed, provided the host strain and its growth condi-
tions are kept constant. Translation regulation can be studied by
LacZ assays through the use of translational fusions to lacZ (5).
Translational fusions to lacZ also can provide information on the
efficiency of translation from a given message and ribosome-
binding site, subject to the limitation that fusion of a protein to
LacZ may alter its activity and fusion of a transcript to the lacZ
coding sequence may alter mRNA stability.

For the purposes of computational modelling, LacZ units can be
converted into the absolute units of RNA polymerase initiations/
minute, by the work of (10), whose exhaustive study of constitutive
promoters in E. coli characterised the RNA polymerase initiation rate
from a range of promoters, as a function of growth rate. Any given
quantitative assay of promoter activity can be calibrated with the
measurement of one or more of the promoters studied by (10).

In cases where an inducible promoter provides a variable
supply of protein, quantitative western blotting allows for the
conversion of inducer concentration to protein concentration (an
absolute unit), given knowledge of the cells’ internal volume and a
protein standard of known concentration. A protein standard can
be obtained from purified protein or from some fixed internal
supply of protein, such as is common in measurements of the l
lysogenic repressor CI, where the steady concentration present in a
lysogen (Wild-type Lysogenic Unit ¼W.L.U.) is taken as a point
of reference.

Fig. 15.1. Schematic diagram of chromosomal single-copy lacZ reporter. Double slashes
indicate junctions between DNA of different origin.

Data Collection and Computational Modelling 341



4. Experiment
Design for ‘Bottom-
Up’ Modelling

Molecular biology has made enormous strides with the reduc-
tionist approach: ‘The idea is that you could understand the
world, all of nature, by examining smaller and smaller pieces of
it. When assembled, the small pieces would explain the
whole’ (11). ‘Bottom-Up’ modelling is the technique of assembling
these small pieces of information into the whole, and accordingly
for the typical molecular biology laboratory, this is the most useful
way to incorporate theoretical methods into an experimental
program. In contrast, ‘top-down’ modelling involves models
based on global data sets such as whole genome or proteome
expression profiles, for which theoretical analyses are an absolute
necessity. A general investigative procedure that may be of assistance
to experimentalists considering the incorporation of bottom-up
modelling follows (Fig. 15.2).

Fig. 15.2. Generalised experimental procedure facilitating bottom-up modelling. Illustra-
tions are derived from the case study of Section 5.1.
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4.1. Isolate Subsets of

a Network

While not always possible, if a small subset of a network can be
identified and studied in isolation from its full natural context,
detailed characterisation of components and their interactions is
greatly assisted. Though this does not provide all physiologically
relevant information about the isolated components, such as their
responses to now absent inputs, the more thorough characterisa-
tion that can be achieved with a smaller and less complex system
provides an excellent foundation for subsequent expansion to a
larger system. A subset of a network need not necessarily be a
‘module’ in the sense of an independently functioning unit: there
may be value even in dissecting the system beyond the point of
functionality.

Studies of temperate bacteriophage have the rare privilege of
being able to isolate components, e.g. the bistable switch, and
express them within their usual cytoplasmic environment, e.g.,
E. coli, in the absence of any other transcribed phage genes. For
many areas of research, the techniques for isolation of a system while
remaining in vivo do not yet exist, making in vitro reconstitution
the best procedure available. It is reasonable to expect though that
in time the technologies will be developed which will allow for
subsets of biochemical networks to be isolated and studied under
in vivo conditions; the history of phage l research demonstrates
the value of these technologies.

4.2. Decouple Key

Components

Where a complex system is able to settle into one or more stable
states, probing the conditions of these states provides much less
information than can be obtained with a method of probing the
full continuum of states, which exist when the system displays
dynamic behaviour or switches between stable points. An experi-
mental approach to achieve this is to decouple key regulatory com-
ponents, i.e., remove them from the context of their usual control
mechanisms, and make their concentration or activity an indepen-
dent experimental variable.

With regulatory proteins or stimuli controlled experimentally,
they can be varied independently over the physiologically relevant
scope, potentially spanning the entire range from ‘knock-out’ to
overexpression. Detailed measurements over this range will be
much more informative than the measurement of stable states or
extremes only. In particular, this approach is an ideal way to
succeed in the advice mentioned in Section 2.2.

Finally, feedback is a common theme in dynamical systems of
sufficient complexity to justify a modelling approach; gene reg-
ulatory networks and signal transduction pathways have shown
themselves to be prime examples. Even small systems may exhibit
complex behaviour specifically due to feedback, which can com-
plicate the interpretation of experimental results. Removal of
feedback mechanisms by decoupling of a feedback-regulated
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component may both simplify data analysis and expose the pur-
pose of feedback when compared to the non-decoupled
behaviour.

4.3. Check Behaviour in

the Full Context

It is in vivo behaviour that we ultimately aim to understand, and all
interactions observed in a smaller subsystem exist to serve a greater
purpose within an entire cell or organism. Therefore, it is of criti-
cal importance that any conclusions drawn from studies of isola-
ted and/or decoupled systems be checked against the behaviour
observed in the full physiological context. The return to wild-type
can be taken in steps, beginning with the restoration of regula-
tory links that may have been removed in the process of decou-
pling (as described above in investigating feedback), prior to
returning to the study of the subsystem within its full physiological
context.

We find it highly productive to characterise the effects of mu-
tations upon both the isolated subset and the whole organism. If
the effect of a mutation on the isolated subset does not explain the
mutation’s phenotype in the physiological context, a clue is pro-
vided to the discovery of new components or interactions that
were excluded from the previously chosen subset. The physiologi-
cal role of long-range DNA looping in phage l was found by just
such an observation; this example is detailed in Section 5.1.

A noteworthy alternative is the ‘module-replacement’ approach
developed by Little and Atsumi, wherein a regulatory factor and
the cis-acting sites to which it binds (collectively a module) are
replaced by an equivalent exogenous factor and its cognate bind-
ing sites (12, 13). The module-replaced system can in principle be
characterised both as an isolated subset and in the whole organism.
Firstly, this technique will check assumptions about the properties
and functions of the regulatory module, by assessing whether the
replacement module indeed provides functionality; failure may
indicate that more has been removed than is appreciated.
Secondly, the inserted module can be engineered to exclude one
or more features, such as a specific binding site, much more easily
than its wild-type counterpart; all that is necessary is to not add a
feature, rather than removing a pre-existing feature.

4.4. Model Building When a molecular system is characterised to the extent that most
components have been identified and hypotheses have been de-
veloped about interactions between components, bottom-up
models can be built by assembling the known or suspected in-
teractions into a deterministic or stochastic model. Competing
models can be built containing different sets of interactions or
molecular mechanisms, and their ability to explain the quantita-
tive experimental data will assist in the discrimination between
models.
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4.4.1. Modelling

Techniques

The choice of modelling technique is of significance to both the
accuracy and the educational value of the model. For relatively
simple systems, an analytic model can be constructed, that is, a
simple set of descriptive equations, while increasingly complex
systems will require such approaches as the use of the partition
function from statistical thermodynamics, or modelling with ordin-
ary differential equations (ODEs). In our experience, time-series
data is best described by ODEs, and the partition function is most
useful for explaining data expressed as a function of the concen-
tration of some component. All these techniques are deterministic:
they do not account for statistical fluctuations in concentrations
and rates, or ‘molecular noise’, which is increasingly appreciated as
an important factor in the behaviour of biochemical systems (14).
Therefore, even were modellers provided with perfect and complete
information about a system, a stochastic simulation would be the
only way to produce accurate data. However, deterministic meth-
ods remain very worthwhile due to their greater educational value:
inspection of analytic equations can make immediately clear the
relevance of parameters and can highlight important relationships
between components, and deterministic models can easily produce
graphical comparisons of parameters, e.g. oscillation frequency
versus half-life of an mRNA, through the use of mathematical
computing packages. Stochastic simulations are in general com-
putationally demanding, and parametric plots will require a simu-
lation at every desired point on the graph, which may be simply too
time-consuming. We find a combination of deterministic and
stochastic modelling to be most useful, initially modelling with
deterministic techniques to gain insight into the system’s beha-
viour and the underlying principles of the model, and finally turn-
ing to stochastic simulation for accuracy in the final stages of
parameter and data fitting. To give a specific example, our labora-
tory and colleagues developed a mathematical model of transcrip-
tional interference in E. coli, which contains three implementations:
analytic, ‘mean-field’ (probabilistic), and stochastic, the three tech-
niques producing similar but not identical output (15). The devel-
opment of this model benefited greatly from the combination of
approaches, each providing unique contributions to our under-
standing of the system.

4.4.2. Level of Detail The level of detail included heavily influences the educational
value of a model. A model with an excessive number of parameters
might be able to be made to fit any data set, destroying the ability
to discriminate between alternative hypotheses. Conversely, it is
important for all biologically relevant behaviour to be included;
the dismissal of one seemingly unimportant feature may render a
model irredeemably inaccurate. In an interdisciplinary team, pro-
ficient communication between modellers and experimental biol-
ogists is necessary for the important decisions of which features
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are of relevance to the model, and which can be discarded. The
choice of detail is especially significant to modellers of biology, as
here we face a problem: biochemical systems feature an extraordi-
narily large number of parameters relative to most physical or che-
mical systems, thus the inclusion of exhaustive detail in a model may
require impossibly extensive experimental investigation to provide
the necessary parameters. Much may be omitted without a loss of
validity, e.g. a promoter could be characterised in terms of protein
production rate, without including mRNA production, translation,
and degradation; but if mRNA regulation is a significant feature
of the system, this detail may be vital.

4.4.3. Parameter Fitting Given the number of parameters that are likely to exist in any
biological model, it is unlikely that each one has been experimen-
tally measured, requiring parameters to be selected on the basis of
those values that allow the model to reproduce experimental data:
the process of parameter fitting. This is a procedure performed
more easily with deterministic than stochastic models, though
it may be found that parameters selected to fit a deterministic
model may require adjustment when shifting to stochastic simu-
lation (16). If data have been obtained from replicate experi-
ments, the knowledge of confidence limits at each point is of
assistance to the fitting process, as individual data points can be
weighted according to the precision of their measurement, by
minimising

w2 ¼
X

i

ðexperimental valueÞi � ðmodel valueÞi
ðexperimental confidence limitÞi

� �2

:

A model may be held in greater confidence when only a small
number of parameters need be fitted to the data. Indeed, with
many fewer parameters than data points and a conceptually sound
model, the process of fitting the model to the data can itself
constitute an accurate method of measuring those parameters.
The process of parameter fitting can be assisted by the examination
of literature for other measurements or estimates of your para-
meters, and by checking that fitted parameters produce biologi-
cally reasonable values. The process of parameter fitting can itself
be an investigative tool: fits that produce unreasonable values may
need adjustment, or may in fact be highlighting failures in the
model or mistaken assumptions. Biological systems have demon-
strated clever techniques to circumvent physical laws, such as the
use of dual operators in the lac operon, providing the Lac repressor
with an effective association rate to a single operon that is appar-
ently faster than diffusion (17); a fit that provides a physically or
biologically unreasonable value just might be a clue to an exciting
discovery.
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4.4.4. Discrimination

Between Alternative

Hypotheses

After the construction of a basic framework for a model, a large
number of alternative hypotheses can be incorporated into the
model and assessed by their ability to fit experimental data while
selecting realistic parameters. This may highlight some hypotheses
as worthy of direct experimental investigation, while hypotheses
incapable of satisfactory fits can be ostensibly discarded, until such
time as new data are acquired or the model is revised.

4.4.5. Long-Term

Development of a Model

Over the course of a prolonged investigation into a system, the
data available for modelling gradually builds, which places an inc-
reasing demand on the accuracy of the model: it should be fully
consistent with all relevant data. Successfully obtaining a precise
match between theory and experiment will become increasingly
challenging, but correspondingly the confidence that a successful
fit reflects on an accurate model will also increase. With more data
to place constraints on a model and fewer parameters in need of
fitting, the ability to discriminate between alternative hypotheses
improves, increasing the educational value of the model.

4.5. Make Predictions

with In Silico

Experiments

Theorists may be content to have produced a model that ade-
quately explains all data available for a given system, but for the
experimentalist the principal value of a model lies in the ability to
guide the choice and design of future experiments. A model can be
altered to include whatever changes to the system may be planned
for future experiments, such as the introduction of mutations or
additional components, or if appropriate a model may be applied
to a new system. The predictions of the model constitute an in
silico experiment; and if the investigators have adequate confi-
dence in the accuracy of the model, based on fits to past data, then
the most interesting of these predictions can make excellent targets
for wet experimental investigation.

Provided a respectable model is available, in silico experiments
are well worth the effort, especially given how little effort they take:
typically orders of magnitude less time and money than the iden-
tical wet experiment. In silico experiments can suggest which
future experiments are likely to reveal the most useful information;
when working quantitatively, in silico experiments may demonstrate
that a particular perturbation to the system is unlikely to produce
a sufficiently large change in the measured variable(s) to answer
a question. This may guide the experimentalists to an improved
choice of perturbation, potentially saving much time and effort.
When a model contains ambiguity, i.e., two or more theories of
significant difference that equally explain previous data, it may be
valuable to design experiments that distinguish between these
alternatives: here in silico experiments, performed with compet-
ing models, are invaluable. Finally, certain changes to the system
under study may produce emergent behaviour that would elude
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the intuition: in silico experiments can reveal such features and
direct the investigator to experiments that may otherwise have
been discarded as uninteresting.

A large pool of possible wet experiments can therefore be
assessed by in silico experiments to select the most promising
and make predictions about results. These results are then almost
certain to be very interesting: should the model’s prediction be
correct, there is value in both the result itself and in the predictive
power of the model. Should a model fail to anticipate the experi-
mental findings, the previous theoretical understanding of the sys-
tem has been challenged, and new hypotheses need be incorporated
into models in the effort to explain these results. In silico experi-
mentation is a good way to identify the wet experiments most likely
to refute an accepted hypothesis and ‘prove yourself wrong’, to
drive the development of new theories.

4.6. Introduce New

Components

A reasonable benchmark for understanding of the chosen subsys-
tem is the ability of a model to quantitatively explain all available
data, preferably including ‘diverse’ data such as the behaviour of
mutants in addition to the wild-type system. Having elucidated the
roles of components and their interactions in a chosen subsystem,
the system of study can be enlarged to include more components
or more inputs/outputs. A quantitatively characterised and under-
stood subsystem provides a theoretical framework of great value to
subsequent expansion of the system under study, which is likely to
make the identification of new components and new interactions
easier than was the initial characterisation of a subsystem.

5. Case Study:
Promoter
Regulation in
Phage l In this section we use phage l research to illustrate the principles of

experimental design that facilitate the incorporation of ‘bottom-
up’ modelling into an investigative program, and to provide exam-
ples where modelling has provided information inaccessible by
other means. In particular, we focus on research into promoter
regulation, which we find to be a nexus of decision-making, the
product of numerous inputs, and thus a valuable position to probe
the behaviour of a system.

5.1. Design of

Experiments

In our studies of transcription regulation in temperate bacterioph-
age, thorough quantitative characterisation of interactions is instru-
mental in understanding network function. Therefore, we typically
aim to measure the response of each promoter to the full physio-
logical range of all components relevant to its regulation. How-
ever, there are too many interacting components to deconstruct
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behaviour within the whole organism into knowledge of individual
interactions, and it is therefore necessary to isolate subsystems of
interest.

An example of such a subsystem that has been studied by many
labs including our own is the autoregulation of the PRM promoter
by its own product CI. PRM is part of the Right Operator (OR) of
phage l, which contains three adjacent CI dimer- binding sites,
OR1, OR2, and OR3, with decreasing affinity for CI dimers. At
the strongest binding site OR1, CI represses PR; at OR2 CI also
represses PR, and activates PRM by cooperative binding to RNA
polymerase; at the weakest binding site OR3, CI represses PRM.
Within the whole phage, the positive and negative feedback of this
small system is complicated by the many other features, such as
transcription of cI from PRE, and Cro, which also binds to OR1, 2,
and 3. Therefore, to quantitatively investigate this autoregulation,
the cI gene and OR with its promoters PR and PRM need to be
examined in isolation. This can be accomplished by placing the
relevant region of phage l into the E. coli chromosome as a single-
copy reporter (isolation of a subsystem; Fig. 15.2, Step 1). Further-
more, to study the response of PR and PRM to a range of CI
concentrations, cI is not placed downstream of PRM, subject to
autoregulatory control, but placed on a plasmid under the control
of an inducible promoter (decoupling key components; Fig. 15.2,
Step 2), with lacZ replacing cI downstream of PRM. By varying the
concentration of inducer, the response of PRM to a wide range of
CI concentrations can be examined in detail. To further under-
stand the properties of CI autoregulation, measurements of PRM

activity were also performed in the presence of mutations to OR3,
which strengthen (c12) or abolish (r1) CI binding (acquiring a
diverse data set). These experiments showed that PRM was not
repressed even at high CI concentrations, and that the r1 and c12
mutations had very little impact on PRM activity (Fig. 15.3),
indicating that CI association to OR3 and repression of PRM was
not influential to this system (4).

These findings in the isolated system were compared with
results obtained in the whole phage, by introducing the r1 and c12
mutations to l phage (checking behaviour in the full context;
Fig. 2, Step 3). These mutations revealed phenotypic changes in
the process of UV induction of lysogens, wherein CI is degraded in
response to UV-induced DNA damage resulting in lysis of the host
and release of phage. The r1 mutation, which makes little change
to Cro association to OR3 but substantially weakens CI binding,
produced defective UV induction, while the c12 mutation, which
strengthens CI association and weakens Cro binding to OR3,
induced more readily. This suggested higher [CI] in the r1 lysogen
and lower [CI] in the c12 lysogen, subsequently confirmed by
experiment, indicating that these mutations did indeed alter PRM

activity, despite the apparent lack of effect on isolated PRM (4).
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Drawing on previous observations that CI can mediate DNA
loops between OR and the Left Operator (OL) (18), it was rea-
soned that the discrepancy between studies of whole phage (as
lysogens) and of isolated PRM was the presence of OL. The intro-
duction of OL to the isolated PRM lacZ reporters revealed substantial
repression of PRM at physiological CI concentrations, confirmed by
enhancement of repression in a c12 mutant and lack of repression in
an r1 mutant (4) (Fig. 15.3). This experimental procedure was able
to extract from a complex network that OR to OL DNA looping
plays a critical role in the regulation of PRM, and produced data of a
quality enabling a thorough statistical mechanical model of this
process. Subsequent work not detailed here confirmed a model in
which CI bound to OR1 and OR2 forms an octamer with CI at OL1
and OL2, forming a long-range DNA loop, allowing a CI tetramer
to form from dimers at OR3 and OL3, stabilising occupation of OR3
and PRM repression (19) (Fig. 15.4).

5.2. Computational

Modelling of Data

The wealth of thermodynamic data on CI association to operators
in OR and OL permitted the description of the system by the
partition function, which relates the probability of a system to exist
in state ‘i ’, Pi, to the standard free energy of that state, DGi,
through

Pi / exp
�DGi

RT

� �
;

where R is the gas constant and T is the temperature in Kelvin.
Degeneracy must be explicitly accounted for, e.g. when modelling
the binding of repressors to operators, a state containing ‘n’-bound

Fig. 15.3. (A) Activity of wild-type and mutant PRM promoters in the absence of OL. Reproduced from (4). (B) As (A) but in
the presence of OL. Points with error bars show 95% confidence limits of experimental measurements. Solid lines represent
the result of physicochemical modelling of CI regulation, incorporating OR–OL long-range interactions. Reproduced from (19).
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repressors requires an additional factor of (number of repressors)n,
as the same state can be composed in this number of different ways,
each known as a microstate. Hence

Pi ¼
½repressor�ni exp �DGi

RT

� �

Z
;

where Z is a normalisation factor known as the partition function:

Z ¼
X

i

½repressor�ni exp
�DGi

RT

� �

Previous measurements of CI affinity for all six operators at OR

and OL, as well as cooperative CI interactions between adjacent
dimers, permitted the creation of a partition function describing all
possible combinations of CI binding, as well as long-range DNA
looping between OR and OL. By detailing the prevalence of each
species present at any [CI], it is possible to fully describe PR and PRM

activities as a function of [CI]. The experimental data to be fitted by
this model were measurements of PR and PRM activities as a function
of [CI], with and without OL, and also with r1 or c12 mutations at
OR3. Out of 29 parameters in this model (free energies of CI
association/cooperativity, and basal/activated/repressed promoter
activities), 26 had been explicitly measured, leaving only 3 degrees
of freedom with which to fit the model to data. These three
parameters were the strength of non-specific DNA binding by
CI, the free energy of formation of a long-range DNA loop main-
tained by a CI octamer bound to OR1, OR2, OL1, and OL2
(DGoct), and the free energy of formation of a CI tetramer across

Fig. 15.4. Model of CI regulation with long-range DNA looping. Cartoon depicting the
major predicted CI: DNA complexes at OR and OL on the � chromosome and their effects
on transcription as CI concentration increases. Reproduced from (19).
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OR3 and OL3 (DGtet), which is reasoned to only form once the
DNA loop has been stabilised by octamer formation. This model
was able to accurately reproduce all data, but for an overestimate of
PR repression at low [CI], lending strong support to the model of
OR-OL DNA looping and its role in pRM autoregulation (19).

The full implications of this research are discussed in more
detail elsewhere (4, 19–21); here is described two key conclusions
that were provided solely by the thermodynamic model. Describ-
ing the prevalence of each species as a function of [CI] demon-
strated that the lysogenic CI concentration lies precisely at the
point of the sharpest transition between states of active PRM and of
repressed PRM; therefore, the lysogenic state appears poised to
produce the most sensitive response in PRM activity to dampen
fluctuations in [CI], providing optimum stability and resistance
to molecular noise. Computational modelling thus provided the
means to make this striking observation of network architecture,
which could not have been directly acquired from the experimen-
tal methods of this study: it was necessary though to acquire data
of a quality enabling modelling. By fitting DGoct and DGtet to PRM

activities (Fig. 15.3), it was possible to estimate the in vivo free
energy of DNA looping between operators 3.8 kb apart. This
combination of quantitative experimental data and a partition
function to produce a thermodynamic model is the only technique
that has yet produced in vivo measurements of the energetics of
DNA looping. This technique has been used to probe the in vivo
mechanical properties of DNA in work, which challenges prevail-
ing models of DNA (22).

The same approaches to experimental design and data collec-
tion described in this case study do not necessarily require a system
as extensively characterised as l in order to facilitate computational
modelling. Similar approaches were applied to the study of tran-
scriptional interference between two promoters in phage 186, for
the purpose of characterising the molecular mechanisms of inter-
ference (23, 24). On the basis of the diverse set of standardised,
quantitative, in vivo data collected, a general mathematical model
of transcriptional interference by RNA polymerase traffic in E. coli
was developed (15). This model was able to accurately explain all
data in the studies of (23), and further enhanced our understand-
ing of the mechanisms of interference observed in this and other
studies. Our laboratory is currently using a combination of in
vivo and in silico experiments to discriminate between different
hypotheses for the transcriptional interference observed in other
systems, where the model is demonstrating significant predictive
power. As demonstrated, a variety of experimental programs in our
laboratory have benefited from bottom-up computational model-
ling, whose application has been facilitated by the approach to
experimental design and data collection described here. We there-
fore expect that these principles can find widespread utility in
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the study of regulatory networks, in enabling the construction of
bottom-up computational models and their use as experimental
tools.
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Chapter 16

A Maximum Likelihood Method for Reconstruction
of the Evolution of Eukaryotic Gene Structure

Liran Carmel, Igor B. Rogozin, Yuri I. Wolf, and Eugene V. Koonin

Abstract

Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless, different
large-scale studies disagree about even the most basic features of their evolution. In order to come up with
a more reliable reconstruction of intron evolution, we developed a model that is far more comprehensive
than previous ones. This model is rich in parameters, and estimating them accurately is infeasible by
straightforward likelihood maximization. Thus, we have developed an expectation-maximization algo-
rithm that allows for efficient maximization. Here, we outline the model and describe the expectation-
maximization algorithm in detail. Since the method works with intron presence–absence maps, it is
expected to be instrumental for the analysis of the evolution of other binary characters as well.

Key words: Maximum likelihood, expectation-maximization, intron evolution, ancestral reconstruction,
eukaryotic gene structure.

1. Introduction

In eukaryotes, many protein-coding genes have their coding
sequence broken into pieces – the exons – separated by the non-
coding spliceosomal introns. These introns are removed from the
nascent pre-mRNA and the exons are spliced together to form the
intronless mRNA by the spliceosome, a large and elaborate mac-
romolecular complex comprising several small RNA molecules
and numerous proteins. No spliceosomal introns have ever been
found in prokaryotes, and there are no eukaryotes with a comple-
tely sequenced genomes, not even the very basal ones, which
would not possess introns (1–3) and the accompanying splicing
machinery (4).
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Despite the introns being such a remarkable idiosyncrasy of
eukaryotic genomes, their origin and evolution are not thoroughly
understood (5, 6). It is generally accepted that introns can be
regarded as units of evolution and that their presence/absence
pattern is a result of stochastic processes of loss and gain. However,
the nature of these processes is vigorously debated. Recent large-
scale attempts to study these processes using extant eukaryotic
genomes led to incongruent conclusions.

In a study on reconstruction of intron evolution, Rogozin et al.
(7) analyzed �700 sets of intron-bearing orthologous genes from
eight eukaryotic species. The multiple alignment of the orthologs
within each set was computed, and the intron positions were pro-
jected on the alignments to form presence/absence maps. Using
Dollo parsimony to infer ancestral states, these authors observed a
diverse repertoire of behaviors. Some lineages endured extensive
losses, while others experienced mostly gain events. Early for-
bearers, such as the last common ancestor of multicellular life,
were shown to be relatively intron-rich. This work suggested that
both gain and loss of introns played significant roles in shaping the
modern eukaryotic gene structure. However, as these inferences
rely upon the Dollo parsimony reconstruction, the number of
gains in terminal branches (leaves of the phylogenetic tree) is
overestimated, resulting in underestimation (potentially, signifi-
cant) of the number of introns in ancient lineages.

The same data set was analyzed by Roy and Gilbert (8, 9) using
a different methodology. They adopted a simple evolutionary
model, according to which different lineages are associated with
different loss and gain probabilities. Using a variation on maximum
likelihood estimation, they obtained considerably higher estimates
for the number of introns in early eukaryotes and a correspondingly
lower level of gains in all lineages, i.e., a clear dominance of loss
events in the evolution of eukaryotic genes. Roy and Gilbert have
substantially simplified the mathematics involved in the estimation
procedure, at the expense of introducing into the computation
considerations of parsimony, which yielded an inference technique
that is a hybrid between parsimony and maximum likelihood. This
hybrid, however, excludes from consideration different evolution-
ary scenarios, resulting in inflated estimates of the number of
introns in early eukaryotes (10).

The model of Roy and Gilbert is branch-specific, i.e., it assumes
that the gain and loss rates depend only on the branch, thus tacitly
presuming that all genes behave identically with respect to intron
gain and loss. Exactly the inverse approach was adopted by Qiu
et al. (11). These authors developed a gene-specific model, whereby
different gene families are characterized by different rates of intron
gain and loss, but for a particular gene these rates are constant
across the entire phylogenetic tree. They used a different data set
combined with a Bayesian estimation technique and concluded
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that almost all extant introns were gained during the eukaryotic
evolution. This suggests evolution is dominated by intron gain
events with few losses. However, the validity of a gene-specific
model is disputable as it is hard to reconcile with the accumulating
evidence on large differences between lineages (12–15).

Recently, two maximum likelihood estimation techniques
have been developed for essentially the same branch-specific evo-
lutionary model as the one of Roy and Gilbert. Csuros (10) used a
direct approach, while Nguyen et al. (16) developed an expecta-
tion-maximization algorithm. Both methods encountered the
same problem of estimating the number of unobserved intronless
sites. Each employed a technically different but conceptually simi-
lar method to evaluate this number. Both techniques were applied
to the eight-species data of Rogozin et al. (7), yielding very close
estimates. As expected, these methods predict intron occupancy
level of ancient lineages higher than those predicted by Dollo
parsimony and lower than those predicted by the hybrid technique
of Roy and Gilbert. Notably, these estimates are generally closer to
those obtained using Dollo parsimony, and they imply an evolu-
tionary landscape comprising both losses and gains, with some
excess of gains.

While the Dollo parsimony (7) and the hybrid technique of
Roy and Gilbert (8, 9) showed some methodological biases,
the other analyses of intron evolution (10, 11, 16) used well-
established estimation techniques. Nevertheless, these studies
kept yielding widely diverging inferences. The reason seems to be
the differences in the underlying evolutionary models, neither
being sufficient to describe the complex reality of intron evolution.
The branch-specific model fails to account for important differ-
ences between genes, whereas the gene-specific model ignores the
sharp differences between lineages. Additionally, rate variability
between sites, known to be an important factor in other fields of
molecular evolution (17, 18), should be taken into account also in
the evolution of gene structure. This is particularly important for
intron gain in light of the accumulating evidence in favor of the
proto-splice model, according to which new introns are preferen-
tially inserted inside certain sequence motifs (19–21). This means
that sites could dramatically differ in their gain rate depending on
their position relative to a proto-splice site.

Here we describe a model of evolution that takes into con-
sideration all of the above factors. In order to efficiently estimate
the model parameters by maximum likelihood, we have developed
an expectation-maximization algorithm. We also compiled a data
set that is considerably larger than previously used ones, consisting
of 400 sets of orthologous genes from 19 eukaryotic species. App-
lying our algorithm to this data set, we obtained high-precision
estimates, revealing a fascinating evolutionary history of gene
structure, where both losses and gains played significant roles
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albeit the contribution of losses was somewhat greater. Moreover,
we identified novel properties of intron evolution: (i) all eukaryotic
lineages share a common, universal, mode of intron evolution,
whereby the loss and gain processes are positively correlated.
This suggests that the mechanisms of intron gain and loss share
common mechanistic components. In some lineages, additional
forces come into play, resulting either in elevated loss rate or in
elevated gain rate. Lineages exhibiting an increased loss rate are
dispersed throughout the entire phylogenetic tree. In contrast,
lineages with excessive gains are much rarer, and all of them are
ancient. (ii) Intron loss rates of individual genes show no correla-
tion with any other genomic property. By contrast, intron gain rate
of individual genes show several remarkable relationships, not always
easily explained. In brief, intron gain rate is positively correlated with
expression level, negatively correlated with sequence evolution rate,
and negatively correlated with the gene length. Moreover, genes of
apparent bacterial origin have significantly lower rates of intron gain
than genes of archaeal origin. (iii) We showed that the remarkable
conservation of intron positions is, mainly (�90%), due to shared
ancestry, and only in a minority of the cases (�10%), due to parallel
gain at the same location. (iv) We determined that the density of
potential intron insertion sites is about 1 site per 7 nucleotides.

2. Materials

The algorithm learns the parameters of the model by comparing
the structure of orthologous genes in extant species. To carry out
this comparison, it requires two sets of input data, to be described
in this section. The first is a phylogenetic tree, defining topological
relationships between a set of eukaryotic species. The second is a
collection of genes, for which one can identify orthologs in at least
a subset of the species above.

2.1. Multiple

Alignments

Suppose that we have G sets of aligned orthologous genes from S
species. To represent the gene structure, we transform these align-
ments into intron presence–absence maps by substituting for each
nucleotide (or amino acid) 0 or 1, depending on whether an intron
is present or absent in the respective position. We allow for missing
data by using a third symbol (*), and consequently a gene might be
included in the input data even if it is missing in part of the species.
Every site in an alignment, called pattern, is a vector of length
S over the alphabet (0,1,*). Let O be the total number of unique
patterns in the entire set of G alignments, denotedo1; . . . ;oO, and
let ngp count the number of times pattern op is found in the
multiple alignment of gene g . Assuming that the sites evolve
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independently, the set Mg ¼ ðng1; . . . ;ngOÞ fully characterizes the
multiple alignment of the gth gene. Thus, all the relevant informa-
tion about the multiple alignments is captured by the list of unique
patterns o1; . . . ;oO, and the list of vectors M1; . . . ;MG .

2.2. Phylogenetic Tree Let T be a rooted bifurcating phylogenetic tree with S leaves
(terminal nodes) corresponding to the S species above. The total
number of nodes in T is N ¼ 2S � 1, and we index them by
t ¼ 0; 1; . . . ;N � 1, with the convention that zero is the root
node. The state of node t is described by the random variable qt ,
which can take the values 0 and 1 (and * in leaves). We use Vt for
the set of all leaves such that node t is among their ancestors. The
entire collection of leaves is, obviously, V0. The parent node of t is
denoted PðtÞ. We use the special notations qP

t and V P
t for qpðtÞ and

VPðtÞ, respectively. Analogously, the two direct descendents of
node t are denoted LðiÞ and RðiÞ, and we use the special notations
qL

t , qR
t , V L

q , and V R
q for qLðtÞ, qRðtÞ, VLðtÞ, and VRðtÞ, respectively.

We index the branches by the node into which they are leading,
and use Dt to denote the length (in time units) of the tth branch.
We assume that the tree topology, as well as all the branch lengths
D1; . . . ;DN�1 are known.

3. Methods

3.1. The Probabilistic

Model
A graphical model is a mathematical graph whose nodes symbo-
lize random variables, and whose branches describe dependence
relationships between them (22). A bifurcating phylogenetic tree,
when viewed as a graphical model, depicts the probabilistic model

Prðq0Þ
YN�1

t¼1

Prðqt jqP
t Þ: ½1�

We use the notation pi ¼ Prðq0 ¼ iÞ to describe the prior
probability of the root, and Aij ðg ; tÞ ¼ Prðqt ¼ j jqP

t ¼ i; gÞ to
describe the transition probability for gene g along branch t . In
our model, we assume that the transition probability depends on
both the gene and the branch, and that it takes the explicit form

Að g; tÞ ¼ 1� xtð1� e�ZgDt Þ xtð1� e�ZgDt Þ
1� ð1� ft Þe�ygDt ð1� ftÞe�ygDt

 !
: ½2�

Here, Zg and yg are nonnegative parameters, determining the
intron gain and loss rates, respectively, of gene g . Complementa-
rily, xt and ft determine the intron gain and loss coefficients of
branch t , respectively, and are bound to the range 0 � xt ;ft � 1.
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The probability of an intron present in gene g at the beginning of
branch t to be retained along the branch is ð1� ftÞe�ygDt , that is, it
is retained only if the branch does not lose it (with probability
1� ft), and also the gene does not lose it (with probability e�ygDt ).
This comes to reflect a reality where strong forces to strip a gene off
its introns will be practically unaffected by the particular lineage,
and, oppositely, strong forces to strip a lineage off its introns will
be practically unaffected by the particular gene. In the same spirit,
the probability of an intron to be gained in gene g along branch
t is xt ð1� e�ZgDt Þ, that is, it is gained only if both the branch
‘‘approves’’ it (with probability xt) and the gene ‘‘approves’’ it
(with probability 1� e�ZgDt ).

In other fields of molecular evolution, it was long realized that
analysis precision improves if one allows for rate variability across
sites (17, 18). Typically, such rate variability is modeled by introdu-
cing a rate variable, r, which scales, for each site, the time units of
the phylogenetic tree, Dt  r � Dt . This rate variable is a random
variable, distributed according to a distribution function with non-
negative domain and unit mean, typically the unit-mean gamma
distribution. The rate variability reflects the idea that sites differ in
their rate of evolution. Specifically, there are fast-evolving sites
(r441), as well as slow-evolving ones (r551). In our model of
intron evolution we extend this idea by assuming that the gain
and loss processes are subject to rate variability, independently of
each other. Hence, a site can have any combination of gain and
loss rates. To accommodate this idea, we use two independent
rate variables, rZ and ry, that are used to scale, for each site, the
gene-specific gain rate, Zg  rZ � Zg , and the gene-specific loss
rate, yg  ry � yg . We further assume that the distributions of
these rate variables are independent of the genes, and are expli-
citly given by

rZ � ndðZÞ þ ð1� nÞGðZ; lZÞ

ry � Gðy; lyÞ:
½3�

Here, Gðx; lÞ is the unit-mean gamma distribution of variable
x with shape parameter l, dðxÞ is the Dirac delta-function, and n is
the fraction of sites that are assumed to have zero gain rate. These
latter sites, denoted invariant sites, reflect these sites that are not a
proto-splice site (19–21). Intron loss does not have an invariant
counterpart, as the assumption is that once an intron is gained, it
can always be lost. Therefore, the loss rate variable is assumed to be
distributed according to a gamma distribution, which is by far the
most popular in describing rate variability (17, 18, 23).

In practice, the rate distributions in Eq. [3] are rendered dis-
crete (24). We assume that the gain rate variable can take KZ discrete

values rZ1 ¼ 0; rZ2; . . . ; rZKZ
with probabilities f Z

1 ¼ n; f Z
2 . . . ; f Z

KZ
such
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that
PKZ

k¼1 f Z
k ¼ 1. Analogously, we assume that the loss rate variable

can take Ky discrete values ry1; . . . ; ryKy
with probabilities f y

1 ; . . . ; f y
Ky

such that
PKy

k¼1 f y
k ¼ 1. For a particular gain rate value rZk , we denote

the actual gain rate rZk � Zg by Zkg . Similarly, for a particular loss rate

value ryk , we denote the actual loss rate ryk � yg by ykg .

For notational clarity, we aggregate the model parameters
into a small number of sets. To this end, let Xt ¼ fxt ;ftg be
the set of parameters that are specific for branch t , and let
X ¼ ðX1; . . . ;XN�1Þ be the set of all branch-specific parameters.
Similarly, let Cg ¼ ðZg ; ygÞ be the set of parameters that are specific

for gene g, and let C ¼ ðC1 . . . ;CGÞ be the set of all gene-specific
parameters. Additionally, we denote by L ¼ ðn; lZ; lyÞ the para-
meters that determine the rate variability. When the distinction
between the different sets of parameters is irrelevant, we shall use
Y ¼ ðX;C;LÞ as the set of all the model’s parameters. We achieve
further succinctness in notations by denoting the actual gene-

specific rate values for particular values rZk and ryk0 of the rate

variables as Ckk0g ¼ ðZkg ; yk0gÞ.

3.2. The EM Algorithm For each site, the S leaves form a set of observed random variables,
their states being described by the corresponding pattern op. The
state of all the internal nodes, denoted s, form a set of hidden
random variables, that is, random variables whose state is not
observed. In order to account for rate variability across sites, we
associate with each pattern two hidden random variables, rZp and
rZp, that determine the value of the rate variables in that site. To
sum up, the observed random variables are op, and the hidden
random variables are ðs; rZp; rypÞ.

We assume that sites within a gene, as well as the genes
themselves, evolve independently. Therefore, the total likelihood
can be decomposed as

LðM1; . . . ;MG jYÞ¼
YG

g¼1

LðMg jX;Cg ;LÞ¼
YG

g¼1

YO

p¼1

LðopjX;Cg ;LÞngp :

and so

log LðM1; . . . ;MG jYÞ ¼
XG

g¼1

XO

p¼1

ngp log LðopjX;Cg ;LÞ: ½4�

According to the well-known EM paradigm (25)
log LðM1; . . . ;MG jYÞ is guaranteed to increase as long as we max-
imize the auxiliary function

Q ðY;Y0Þ ¼
XG

g¼1

XO

p¼1

ngpQ gpðX;Cg ;L;X0;C0
g ;L

0Þ; ½5�
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where

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ¼
X

s;rZp ;r
y
p

Prðs;rZp;rypjop;X0;C0
g ;L

0Þ

logPrðop;s;rZp;r
y
pjX;Cg ;LÞ:

½6�

Using some manipulations (see Note 1), this can be written as

Q gp X;Cg ;L;X0;C0
g ;L

0
� �

¼
XKZ

k¼1

XKy

k0¼1

Pr rZp¼k;ryp¼k0jop;X0;C0
g ;L

0
� �h i

�

�
X

s

Pr sjop;X0;C0
gkk0

� �
� logf Z

k þ logf y
k0 þ logPr op;sjX;Cgkk0

� �� �
" #

:

Denoting by wgpkk0 and Q gpkk0 the first and second square
brackets, respectively, this expression becomes

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ ¼
XKZ

k¼1

XKy

k0¼1

wgpkk0Q gpkk0 ; ½7�

and consequently

Q ðY;Y0Þ ¼
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0Q gpkk0 : ½8�

3.2.1. The E-Step In this step we compute the function Q ðY;Y0Þ, or, equivalently,
the set of coefficients wgpkk0 and Q gpkk0 . We accomplish this with
the aid of an inward–outward recursion on the tree.

3.2.1.1. The Inward (�)

Recursion

Here we propose a variation on the well-known Felsenstein’s pruning
algorithm (26). Let us associate with each node t (except for the root)
a vector g gpkk0

i ðtÞ ¼ PrðVt jqP
t ¼ i;X0;C0

gkk0 Þ. In words, g gpkk0

i ðtÞ is the
probability of observing the nodes Vt (which are a subset of the
pattern op) for a gene g , when the gain and loss rate variables are rZk
and ryk0 , respectively, and when the parent node of t is known to be in
state i. By definition, this function is initialized at all leaves (t 2 V0) by

gðt 2 V0Þ ¼

1� xtð1� e�ZgkDt Þ
1� ð1� ftÞe�ygk0Dt

 !
qt ¼ 0

xtð1� e�ZgkDt Þ
ð1� ft Þe�ygk0Dt

 !
qt ¼ 1:

8
>>>>><

>>>>>:

½9�

Here, and in the derivations to follow, we omit the superscript
from g. For all internal nodes (except for the root), g is computed
using the recursion

giðtÞ ¼
X1

j¼0

Aij ð g; tÞ~gj ðtÞ; ½10�

where ~gj ðtÞ is defined as gj ½LðtÞ�gj ½RðtÞ� (see Note 2).
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The g-recursion allows for computing the likelihood of
any observed pattern op, given the values of the rate
variables:

PrðopjX0;C0
gkk0 Þ ¼ PrðV0jX0;C0

gkk0 Þ ¼ PrðV L
0 ;V

R
0 jX0;C0

gkk0 Þ ¼

¼
X1

i¼0

PrðV L
0 ;V

R
0 ; q0 ¼ ijX0;C0

gkk0 Þ ¼

¼
X1

i¼0

Prðq0 ¼ ijX0;C0
gkk0 Þ � PrðV L

0 jq0 ¼ i;X0;C0
gkk0 Þ�

PrðV R
0 jV L

0 ; q0 ¼ i;X0;C0
gkk0 Þ:

Given q0, V R
0 is independent of V L

0 , and so

PrðV R
0 jV L

0 ; q0 ¼ i;X0;C0
gkk0 Þ ¼ PrðV R

0 jq0 ¼ i;X0;C0
gkk0 Þ;

and

PrðopjX0;C0
gkk0 Þ ¼

X1

i¼0

pi~gið0Þ: ½11�

This g-recursion can be easily modified to incorporate missing
data (see Note 3).

3.2.1.2. The Outward (�)

Recursion

Once the g-recursion is computed, we can use it to compute a
second, complementary, recursion. To this end, let us associate
with each node t (except for the root node) a matrix
agpkk0

ij ðtÞ ¼ Prðqt ¼ j ; qP
t ¼ ijop;X0;C0

gkk0 Þ. It is beneficial to define
for each node t (except for the root node) a vector
bgpkk0

j ðtÞ ¼
P1

i¼0 a
gpkk0

ij ðtÞ ¼Prðqt ¼ j jop;X0;C0
gkk0 Þ. Upon the

computation of a, b is readily computed too. Again, omitting the
superscripts, a can be initialized from its definition on the two
direct descendants of the root,

aðDð0ÞÞ ¼ 1

PrðopjX0;C0
gkk0 Þ

p0g0ð �Dð0ÞÞA00ðg ;Dð0ÞÞ 0

p1g1ð �Dð0ÞÞA10ðg ;Dð0ÞÞ 0

 !
Dð0Þ 2 V0; q

D
0 ¼ 0

0 p0g0ð �Dð0ÞÞA01ðg ;Dð0ÞÞ

0 p1g1ð �Dð0ÞÞA11ðg ;Dð0ÞÞ

 !
Dð0Þ 2 V0; q

D
0 ¼ 1

p0g0ð �Dð0ÞÞ~g0ðDð0ÞÞA00ðg;Dð0ÞÞ p0g0ð �Dð0ÞÞ~g1ðDð0ÞÞA01ðDð0ÞÞ

p1g1ð �Dð0ÞÞ~g0ðDð0ÞÞA10ðDð0ÞÞ p1g1ð �Dð0ÞÞ~g1ðDð0ÞÞA11ðDð0ÞÞ

 !
Dð0Þ=2V0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

½12�

Here, Dð0Þ stands for any one of the direct descendants of the
root, and Dð0Þ is its sibling. For any other internal node, a is
computed using the outward-recursion

aðtÞ ¼
b0ðPðtÞÞ~g0ðtÞA00ðg ; tÞ=g0ðtÞ b0ðPðtÞÞ~g1ðtÞA01ðg ; tÞ=g0ðtÞ
b1ðPðtÞÞ~g0ðtÞA10ðg ; tÞ=g1ðtÞ b1ðPðtÞÞ~g1ðtÞA11ðg ; tÞ=g1ðtÞ

� 	
½13�

Maximum Likelihood Reconstruction of Intron–Exon Evolution 365



(see Note 4).
Finally, for each leaf that is not a descendant of the root,

aðtÞ ¼

b0ðPðtÞÞ 0

b1ðPðtÞÞ 0

� 	
qt ¼ 0

0 b0ðPðtÞÞ
0 b1ðPðtÞÞ

� 	
qt ¼ 1:

8
>>><

>>>:
t 2 V0;PðtÞ 6¼ 0 ½14�

Again, this recursion can be straightforwardly modified when
missing data are present (see Note 5).

These inward–outward recursions are the phylogenetic
equivalent of the backward–forward recursions known from hid-
den Markov models, and other versions of it have already been
developed (27, 28). The version that we developed here can be
shown to be the realization of the junction tree algorithm (29) on
rooted bifurcating trees (see Note 6).

3.2.1.3. Computing the

Coefficients wgpkk 0

Here we show that the g-recursion is sufficient to compute

the coefficients wgpkk0 . From the definition, wgpkk0 ¼ PrðrZp ¼ k; ryp
¼ k0jop;X0;C0

g ;L
0Þ. Using the Bayes formula Prðx; yjzÞ ¼ Prðx; y; zÞ=P

x;y Prðx; y; zÞ, we can rewrite it as

wgpkk0 ¼
PrðrZp;¼ k;ryp ¼ k0;opjX0;C0

g ;L
0Þ

P
h;h0 PrðrZp ¼ h;ryp ¼ h0;opjX0;C0

g ;L
0Þ
¼

¼
PrðrZp ¼ kjX0;C0

g ;L
0Þ � Prðryp ¼ k0jX0;C0

g ;L
0Þ � PrðopjX0;C0

gkk0ÞP
h;h0 PrðrZp ¼ hjX0;C0

g ;L
0Þ � Prðryp ¼ h0jX0;C0

g ;L
0Þ � PrðopjX0;C0

ghh0 Þ
:

But PrðrZp ¼ kjX0;C0
g ;L

0Þ is just the current estimate of the
probability of the gain rate variable to have the value rZk , namely
ðf Z

k Þ
0. Similarly, Prðryp ¼ k0jX0;C0

g ;L
0Þ is just ðf y

k0 Þ
0. Therefore, the

expression for the coefficients wgpkk0 is reduced to

wgpkk0 ¼
ðf Z

k Þ
0ðf y

k0 Þ
0 PrðopjX0;C0

gkk0 ÞP
h;h0 ðf

Z
h Þ

0ðf y
h0 Þ

0 PrðopjX0;C0
ghh0 Þ

: ½15�

The function PrðopjX0;C0
gkk0 Þ is the likelihood of observing

pattern op for gain and loss rate variables rZk and ryk0 , respectively.
This is readily computed upon completion of the g-recursion, using
Eq. [11].

3.2.1.4. Computing the

Coefficients Q gpkk 0

Here we show that these coefficients require the a; b-recursion. By
definition,

Q gpkk0¼
X

s

Prðsjop;X0;C0
gkk0 Þ�½logf Z

k þlogf y
k0 þlogPrðop;sjX;Cgkk0 Þ�:
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The probability Prðop;sjX;Cgkk0 Þ is just the likelihood of a parti-
cular realization of the tree, thus from Eq. [1]

log Prðop; sjX;Cgkk0 Þ ¼
X1

i¼0

dðq0; iÞ � logpi

þ
X1

i;j¼0

XN�1

t¼1

dðqt ; jÞdðqP
t ; iÞ � log Aij ðg; tÞ:

½16�

Here, dða; bÞ is the Kronecker delta function, which is 1 for a ¼ b
and 0 otherwise. Denote the expectation over Prðsjop;X0;C0

gkk0 Þ
by Es. Applying it to Eq. [16], we get

Es½log Prðop; sjX;Cgkk0 Þ� ¼
X1

i¼0

log pi � Es½dðq0; iÞ�

þ
X1

i;j¼0

XN�1

t¼1

log Aij ðg; tÞ � Es½dðqt ; jÞdðqP
t ; iÞ�:

But Es½dðq0; iÞ� ¼ Prðq0 ¼ ijop;X0;C0
gkk0 Þ ¼ bið0Þ, and simi-

larly Es½dðqt ; jÞdðqP
t ; iÞ� ¼ aij ðtÞ. Hence, Q gpkk0 is given by

Q gpkk0 ¼
X

s

Prðsjop;X0;C0
gkk0 Þ½log f Z

k þ log f y
k0 þ log Prðop; sjX;Cgkk0 Þ� ¼

¼ log f Z
k þ log f y

k0 þ
X1

i¼0

bið0Þ log pi þ
X1

i;j¼0

XN�1

t¼1

aij ðtÞ log Aij ðg ; tÞ:
½17�

3.2.2. The M-Step Substituting Eq. [17] in Eq. [8], we obtain an explicit form of the
function whose maximization guarantees stepping up-hill in the
likelihood landscape,

Q ¼
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0 ðlogf Z
k þlogf y

k0 Þþ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0 ½bgpkk0

0 ð0Þlogp0þbgpkk0

1 ð0Þlogp1�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

00 ðtÞlog½1�xt ð1�e�ZgkDt Þ�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

01 ðtÞ½logxtþlogð1�e�ZgkDt Þ�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

10 ðtÞlog½1�ð1�ftÞe�ygk0Dt �þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

11 ðtÞ½logð1�ftÞ�ygk0Dt �:

½18�
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Actually, any increase in Q is sufficient to guarantee an
increase in the likelihood, suggesting that a precise maximiza-
tion of Q is not very important. Therefore, we speed compu-
tations by performing low-tolerance maximization with respect
to each of the parameters individually. Except for the para-
meters lZ and ly, it is easy to differentiate Q twice with
respect to any parameter. This lends itself into using simple
zero-finding algorithms; we chose the Newton-Raphson algo-
rithm (30). Maximizing Q with respect to the shape para-
meters lZ and ly is more involved, as Q depends on these
parameters only through the discrete approximation of the
rate variability distributions, Eq. [3] (see Note 7).

4. Notes

1. If we replace the formal summing over all states of rZp and rZp in
Eq. [6] by a direct sum, we get

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ ¼
XKZ

k¼1

XKy

k0¼1

X

s

Prðs; rZp ¼ k; ryp

¼ k0jop;X0;C0
g ;L

0Þ

log Prðop;s;rZp ¼ k;ryp ¼ k0jX;Cg ;LÞ:

½19�

Using our notational conventions, we can write the first
term in Eq. [19] as

Prðs; rZp ¼ k;ryp ¼ k0jop;X0;C0
g ;L

0Þ

¼ PrðrZp ¼ k; ryp ¼ k0jop;X0;C0
g ;L

0Þ

� Prðsjop;X0;C0
gkk0 Þ;

½20�

and the second term as

log Prðop; s;rZp ¼ k; ryp ¼ k0jX;Cg ;LÞ

¼ log PrðrZp ¼ kjX;Cg ;LÞþ

þ log Prðryp ¼ k0jX;Cg ;LÞ

þ log Prðop;sjX;Cgkk0 Þ

¼ log f Z
k þ log f y

k0 þ log Prðop; sjX;Cgkk0 Þ:

½21�
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Substituting Eqs. [20] and [21] back in Eq. [19] gives the
desired result.

2. We expand

giðtÞ ¼ PrðVt jqP
t ¼ iÞ ¼ PrðV L

t ;V
R
t jqP

t ¼ iÞ

¼
X1

j¼0

PrðV L
t ;V

R
t ; qt ¼ j jqP

t ¼ iÞ ¼

¼
X1

j¼0

Prðqt ¼ j jqP
t ¼ iÞ � PrðV L

t jqt ¼ j ; qP
t ¼ iÞ

� PrðV R
t jV L

t ; qt ¼ j ; qP
t ¼ iÞ:

½22�

The first term is simply the definition of Aij ðg ; tÞ. Given qt ,
V L

t is independent on qP
t , thus the second term is just

PrðV L
t jqt ¼ jÞ ¼ gj ðtLÞ. By similar arguments the third term

is just PrðV R
t jqt ¼ jÞ ¼ gj ðtRÞ. By substituting those results

in Eq. [22], we recover the recursion formula, Eq. [10].

3. One of the appealing features of this recursion is that it allows
to treat missing data fairly easily. Only a single option has to
be added to the initialization phase Eq. [9],

gðt 2 V0Þ ¼
1

1

� 	
qt ¼ �:

4. To prove this recursion, let us start with the definition of a,

aij ðtÞ ¼ Prðqt ¼ j ; qP
t ¼ ijopÞ ¼ Prðqt ¼ j ; qP

t ¼ ijV0Þ

¼ PrðqP
t ¼ ijV0Þ � Prðqt ¼ j jqP

t ¼ i;V0Þ

¼ biðPðtÞÞ � Prðqt ¼ j jqP
t ¼ i;V0Þ:

½23�

Let us make the decomposition V0 ¼ Vt þ �Vt , with �Vt

being the set of all leaves such that node t is not among
their ancestors. But, given qP

t , the state of node t is indepen-
dent on �Vt , and therefore Eq. [23] becomes

aij ðtÞ ¼ biðPðtÞÞ � Prðqt ¼ j jqP
t ¼ i;VtÞ: ½24�

From Bayes formula,

Prðqt ¼ j jqP
t ¼ i;Vt Þ ¼

Prðqt ¼ j ;Vt jqP
t ¼ iÞ

PrðVt jqP
t ¼ iÞ

¼ Prðqt ¼ j jqP
t ¼ iÞ �PrðVt jqt ¼ j ;qP

t ¼ iÞ
giðtÞ

¼Aij ðg ; tÞ
giðtÞ

�PrðVt jqt ¼ j ;qP
t ¼ iÞ:

½25�
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But given qt , Vt is independent of PðtÞ and therefore

PrðVt jqt ¼ j ; qP
t ¼ iÞ ¼ PrðVt jqt ¼ jÞ ¼ ~gj ðtÞ: ½26�

Combining Eqs. [25] and [26] in Eq. [24], we get

aij ðtÞ ¼
~gj ðtÞbiðPðtÞÞ

giðtÞ
Aij ðg ; pÞ;

which is just another form of writing Eq. [13].
5. When missing data are present, two simple modifications are

required. First, we have to add to the initialization phase Eq.
[12] an option

aðDð0ÞÞ ¼ 1

PrðopjX0;C0
gkk0 Þ

p0g0½ �Dð0Þ�A00½g ;Dð0Þ� p0g0
�Dð0Þ�A01½Dð0Þ�

p1g1½ �Dð0Þ�A10½Dð0Þ� p1g1ð �Dð0Þ�A11½Dð0Þ�

( )
Dð0Þ 2 V0; q

D
0 ¼ �

Second, we have to add to the finalization phase Eq. [14]
an option

aðtÞ ¼
b0½PðtÞ�A00ðg ; tÞ b0½PðtÞ�A01ðg ; tÞ
b1½PðtÞ�A10ðg ; tÞ b1½PðtÞ�A11ðg ; tÞ


 �
qt ¼ �:

6. The junction tree algorithm is a scheme to compute marginal
probabilities of maximal cliques on graphs by means of belief
propagation on a modified junction tree. Indeed, the matrix
a computes marginal probabilities of pairs ðt ;PðtÞÞ, but such
pairs are nothing but maximal cliques on rooted bifurcating
trees.

7. In our implementation, we used Yang’s quantile method (24) to
compute the discrete levels of the gamma distributions such
that each level has equal probability. Formally, f Z

1 ¼ n,
f Z
k ¼ ð1� nÞ=ðKZ � 1Þ for k ¼ 2; . . . ;KZ, and f y

k ¼ 1=Ky for
k ¼ 1; . . . ;Ky. To perform the maximization in this case, we
used Brent’s maximization algorithm that does not require
derivatives (30).
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Chapter 17

Enzyme Function Prediction with Interpretable Models

Umar Syed and Golan Yona

Abstract

Enzymes play central roles in metabolic pathways, and the prediction of metabolic pathways in newly
sequenced genomes usually starts with the assignment of genes to enzymatic reactions. However, genes
with similar catalytic activity are not necessarily similar in sequence, and therefore the traditional sequence
similarity-based approach often fails to identify the relevant enzymes, thus hindering efforts to map the
metabolome of an organism.

Here we study the direct relationship between basic protein properties and their function. Our goal is to
develop a new tool for functional prediction (e.g., prediction of Enzyme Commission number), which can
be used to complement and support other techniques based on sequence or structure information. In
order to define this mapping we collected a set of 453 features and properties that characterize proteins and
are believed to be related to structural and functional aspects of proteins. We introduce a mixture model of
stochastic decision trees to learn the set of potentially complex relationships between features and
function. To study these correlations, trees are created and tested on the Pfam classification of proteins,
which is based on sequence, and the EC classification, which is based on enzymatic function. The model is
very effective in learning highly diverged protein families or families that are not defined on the basis of
sequence. The resulting tree structures highlight the properties that are strongly correlated with structural
and functional aspects of protein families, and can be used to suggest a concise definition of a protein
family.

Key words: Sequence–function relationships, functional prediction, decision trees, enzyme
classification.

1. Introduction

To understand why predicting the Enzyme Commission number
(EC number) of an enzyme is important, consider the related
problems of pathway prediction and of filling ‘‘pathway holes’’.
With recent advances in sequencing technologies, the number of
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genomes that are completely sequenced is increasing steadily,
opening new challenges to researchers. One of the main challenges
is to decipher the intricate network of cellular pathways that exist
in each genome. Understanding this network is the key to under-
standing the functional role of individual genes and the genetic
variation across organisms with respect to key processes and
mechanisms that are essential to sustain life. Of special interest
are metabolic pathways that consist mostly of enzymatic reactions
and are responsible for nucleotide and amino acid synthesis and
degradation, energy metabolism, and other functions. Many meta-
bolic pathways have been studied and documented in the litera-
ture, usually in specific model organisms such as yeast or
Escherichia coli.

Since experimental verification of pathways is a time-consuming
and expensive process, there is great interest in computational
methods that can extend existing knowledge about pathways to
newly sequenced genomes. It is often the case that the same meta-
bolic pathway exists in multiple organisms. The different pathways
are ‘‘homologous’’ to each other in the sense that they have the
same overall structure. In each organism, different enzymes fill the
various roles in the pathway. At the same time, different enzymes
from different organisms that appear in the same location in a
pathway have the same or similar functions. Hence, a pathway can
be viewed as a generic graph diagram, where the nodes of the graph
are the locations in the pathway, and are annotated with just the
function associated with that location. For example, this is the way
pathways are represented in the pathway databases KEGG (1) and
MetaCyc (2), where EC numbers are used to denote the function of
each node in the graph (see Fig. 17.1).

The most popular approach for pathway prediction is to use
pathway diagrams that were experimentally determined in one
organism and map genes from a newly sequenced genome onto
these diagrams (3, 4). This approach requires a functional associa-
tion of genes (and their protein products) with enzymatic reac-
tions or enzyme families. If, for a particular organism, the enzyme
corresponding to a node in the pathway diagram is unknown, this
is called a ‘‘pathway hole’’ for that organism. Only proteins from
that organism with the proper enzymatic activity can be candidates
for filling a hole.

To identify the set of candidate enzymes various approaches
have been employed. For example, Green and Karp (5) used
BLAST to identify the best enzyme from among all candidate
genes. Specifically, for each pathway hole, all proteins in the gen-
ome of interest were BLAST-ed against a set of ‘‘query’’ proteins,
which consisted of proteins with the correct EC number taken
from other genomes. Those proteins most similar to the query set
were viewed as the most promising candidates. Chen and Vitkup
(6) fill pathway holes by choosing an enzyme for each hole which

374 Syed and Yona



Fi
g.

17
.1

.
Le

ft
:

G
ly

ci
ne

bi
os

yn
th

es
is

pa
th

w
ay

.
R

ig
ht

:
I/

G
D

P
-m

an
no

se
m

et
ab

ol
is

m
.

(P
at

hw
ay

la
yo

ut
s

w
er

e
re

tr
ie

ve
d

fr
om

th
e

M
et

aC
yc

da
ta

ba
se

(2
)).

M
et

ab
ol

ic
pa

th
w

ay
s

ar
e

se
qu

en
ce

s
of

co
ns

ec
ut

iv
e

en
zy

m
at

ic
re

ac
tio

ns
.

Ea
ch

re
ac

tio
n

st
ar

ts
w

ith
a

ce
rt

ai
n

m
et

ab
ol

ite
an

d
pr

od
uc

es
an

ot
he

r
m

et
ab

ol
ite

th
ro

ug
h

sy
nt

he
si

s,
br

ea
k

do
w

n,
or

ot
he

r
tr

an
sf

or
m

at
io

ns
.

Th
e

G
ly

ci
ne

bi
os

yn
th

es
is

pa
th

w
ay

pr
od

uc
es

th
e

am
in

o
ac

id
gl

yc
in

e
fr

om
th

e
am

in
o

ac
id

se
ri

ne
.

Th
e

G
D

P-
m

an
no

se
m

et
ab

ol
is

m
is

on
e

of
th

e
pa

th
w

ay
s

th
at

pr
od

uc
e

th
e

co
m

po
un

ds
ne

ce
ss

ar
y

to
bu

ild
ce

llu
la

r
st

ru
ct

ur
es

an
d

or
ga

ne
lle

s,
su

ch
as

ce
ll

w
al

ls
.

Enzyme Function Prediction 375



has a similar phylogenetic profile as nearby enzymes in the pathway.
Kharchenko et al. (7) took an integrative approach to filling holes.
They used phylogenetic profiles, expression profiles, physical inter-
action data, gene fusion data, and chromosomal clustering data to
compare each candidate with the hole’s neighbors in the pathway.
A different integrative approach is used in (8) where genes were
selectively assigned to pathways so as to maximize the co-expression
of genes that were assigned to the same pathway while minimizing
conflicts and shared assignments across pathways. This work was
later extended in (9) where deterministic assignments were replaced
with probabilistic assignments that reflect the affinity of the different
enzymes with different cellular processes.

All these methods require a set of candidates for each hole.
And while they can use the trivial candidate set consisting of all of
the proteins in the subject organism, their performance is likely to
significantly improve if the candidate sets are small and focused.
For example, Yaminishi et al. (10) found in experiments with their
pathway inference algorithm that constraining pathways so that
they are consistent with EC annotations ‘‘improves the [perfor-
mance] in all cases.’’ Similar results were reported in (9). Hence,
accurate EC annotation of proteins is an important step toward
pathway prediction and functional annotation of genes in general.
Producing effective mappings from genes to enzyme families is the
focus of this chapter.

1.1. Enzyme Class

Prediction: Survey

1.1.1. The EC Hierarchy

Traditionally, enzymes have been organized into a systematic,
hierarchical classification scheme devised by the IUB Enzyme
Commission (11). The EC number of an enzyme has the form
A.B.C.D, where the first digit A indicates the enzyme’s major
functional family: oxidoreductase, transferase, hydrolase, lyasase,
isomerase, or ligase. The second digit B places the enzyme in a
functional subfamily, the third into a sub-subfamily, and so on. For
example, the EC number 1.2.3.4 designates enzymes which are
oxidoreductase (the first digit) that act on the aldehyde or oxo
group of donors (the second digit) and have oxygen as an acceptor
(the third digit). In this case, the last digit specifies the particular
reaction that is catalyzed by this family of enzymes. Some enzymes
whose functions are poorly understood have incomplete EC num-
bers, i.e., they have only been assigned the first few digits of an EC
number. Also, some multifunction enzymes have more than one
EC number.

1.1.2. Prediction Based on

Sequence Similarity

Given a new protein sequence, the first step toward predicting its
function is usually through sequence analysis. The most basic form
of sequence analysis is sequence comparison, in search of sequence
similarity. This analysis is still the most common way of functional
prediction today, and the majority of sequences in the protein
databases are annotated using just sequence comparison.
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However, in many cases sequences have diverged to the
extent that their common ancestry cannot be detected even
with the most powerful sequence comparison algorithms. This
is true for many enzyme families; although the proteins that share
a particular EC number all possess the same function, they can
nevertheless have very different sequences. As a result, predicting
the EC number of a protein, even the first few digits, can be very
challenging, and using only sequence alignment techniques is
often insufficient.

For example, Shah and Hunter (12) used BLAST and FASTA
to examine how well sequence alignment can predict the EC
number of an enzyme. They argued that if sequence alignment
was enough to completely characterize an EC family, then every
enzyme should have a higher alignment score with members of its
own family than with members of other families. However, they
found that this is the case for only 40% of EC families; for some
families, the connection between sequence similarity and func-
tional similarity was very weak. They noted several reasons for
this, including the prevalence of multi-domain proteins among
enzymes, as well as convergent and divergent evolution.

1.1.3. Structure-Based

Approaches

When the structure of a protein is known, sequence analysis can be
followed by structure comparison with the known structures in the
PDB database. Since structure is more conserved than sequence,
structural similarity can suggest functional similarity even when
sequences have diverged beyond detection. However, enzyme
families do not necessarily correlate with groups of structurally
similar proteins. Moreover, proteins can have similar functions
even if their structures differ (13, 14).

For example, Todd et al. (15) showed that the same enzyme
family can be mapped to different structural folds. A clear mapping
in the opposite direction also cannot be established. The authors
showed that 25% of CATH superfamilies have members of differ-
ent enzyme types and above 30% sequence identity is necessary to
deduce (with 90% accuracy) the first three digits of the EC num-
ber. Similar results are reported in (16), based on pairs of enzymes
from FSSP (17), a database of structural alignments. The authors
found that among structurally similar proteins, above 50%
sequence identity usually implied that the two enzymes shared
the first three digits of their EC number, and above 80% sequence
identity was enough to preserve all four digits. However, they also
found that it was difficult to classify enzymes correctly below 50%
identity, while below 30% was ‘‘problematic.’’

Wilson et al. (18) performed a similar analysis of the SCOP
database (19). Among enzymes sharing a particular SCOP fold,
they found that the first three digits of the EC number were not
preserved below 40% identity, and even the first digit was not
preserved below 25% sequence identity.
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While these results were not very promising, Rost (20) argued
that they were actually too optimistic since the distribution of
enzymes in curated databases is not representative of the true
distribution of enzymes in nature. He proposed to correct for
this bias by reducing the redundancy in those databases, and
after doing so found that even a very low BLAST e-value between
two proteins did not always imply that they had identical EC
numbers. He did show, however, that structural similarity predicts
EC number much better than sequence similarity, though still not
especially well. But since structural data are sparse, and are not
available for newly sequenced genes, structure-based methods are
not very useful for genome-wide enzyme prediction.

1.1.4. Approaches Based on

Alternate Representation of

Proteins

Instead of traditional sequence or structural alignment techniques,
several groups have proposed comparison algorithms that rely on
an alternative representation of proteins. These representations are
usually derived from sequence motifs (i.e., short patterns), simple
physiochemical properties that can easily be computed from
sequence, or annotations that are independent of sequence but
can be found in databases for many proteins, e.g., subcellular
location.

For example, desJardins et al. (21) represented each protein as
a feature vector where the features were the composition of amino
acids and the composition of secondary structure elements like
helix, loop, etc. Note that this representation completely ignores
the order of the amino acids in the sequence. However, a large
number of generic machine learning algorithms require that train-
ing data instances be described as feature vectors, so the major
advantage of this type of representation is that it allows these
algorithms to be straightforwardly applied. DesJardins et al experi-
mented with the naive Bayes classifier, decision trees, and nearest
neighbor approaches. Although their results were inferior to
sequence alignment methods, they were surprisingly good con-
sidering the simplicity of the features they used.

It is also possible to extract features from the molecular 3D
structure of proteins. These can include per-residue properties like
the contact energy or the distance from the center of mass of the
protein. Obviously, this can only be applied to proteins whose
structure is already known. Recently, Borro et al. (22) applied a
naive Bayes algorithm to this kind of representation, and were able
to predict the first digit of the EC number with 45% accuracy.

Cai and Chou (23) used a feature vector consisting of the
amino acid composition, as well as the correlation of amino acid
properties between residues near each other (but not necessarily
adjacent) on the sequence. Their feature vectors also incorporated
the GO (24) annotations associated with the motifs contained in
the sequence. In order to focus their efforts on difficult cases, they
restricted their data set to proteins that had less than 20% sequence
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identity to each other. Still, they were able to predict the first digit
of the EC number of an enzyme with 85% accuracy. However, as
there are only six possible values for the first EC digit, their
method can uncover only a broad indication of the function of
the enzyme.

A related approach is described in (25). This work uses an
elaborate algorithm for predicting protein function, which inte-
grates several types of data. Given a query protein, they computed
several sequence-derived and database-derived properties for it.
They also performed a PSI-BLAST (26) search to find homolo-
gous proteins, and computed the same properties for those homo-
logs as well. Next, they used inductive logic programming to find
frequently occurring patterns among all these properties, and let
each pattern be a binary feature. Finally, they used those features to
train decision trees. There are several similarities between their
algorithm and ours, but a major difference is that their decision
trees are deterministic, whereas ours are stochastic (as described in
Section 4.1). Although they did not attempt to predict EC num-
bers, they were able to infer annotations from the MIPS classifica-
tion scheme (27), with accuracies ranging from 38% to 75%.

An important subgenre within these methods consists of those
that use Support Vector Machines (SVMs) (28). Alternate protein
representations often reside in very high-dimensional spaces, and
SVMs are particularly well suited for learning in these kinds of
spaces, provided an appropriate kernel can be devised. Jaakola
et al. (29) introduced the idea of using SVMs in biosequence
analysis. They focused on detecting remote protein homologs, and
devised SVM classifiers for SCOP families using an HMM-based
kernel, where the feature vectors were generated by computing the
derivatives of the sequence’s likelihood with respect to the HMM
parameters. Their study was followed by many others who applied
SVMs to various classification tasks, including EC prediction. For
example, Han et al. (30) formed a feature vector from several basic
physio-chemical properties of proteins, and used a Gaussian kernel
in the resulting feature space. They applied their algorithm to a set of
50 enzymes that have no known sequence homologs (the set was
constructed using PSI-BLAST). On this difficult set, they were able
to predict the first two digits of the EC number with 72% accuracy.

A novel kernel function, the ‘‘mismatch’’ kernel, was intro-
duced in (31) and tested on the SCOP classification. They defined
their feature space such that the inner product of two vectors in the
space is large only when the two sequences corresponding to those
vectors contain many of the same k-mers (i.e., amino acid
sequences of length k). Ben-Hur and Brutlag (32) explored a
very similar approach as (31), but used sequence motifs instead
of k-mers in their mismatch kernel. They tried to predict EC
numbers and reported better results than simpler methods such
as the nearest neighbor algorithm.
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1.1.5. Other Approaches Some authors have proposed novel data sources to predict EC
numbers. For example, in prokaryotic organisms, it is well
known that functionally related genes are often grouped together
on the genome. Kolesov et al. (33) extended this concept with the
following hypothesis: if the orthologs of two genes tend to be near
each other on many genomes, then the two genes themselves are
likely to have a similar function.

Other ideas can be viewed as advanced sequence similarity
techniques. For instance, Tian et al. (34) used HMMs to deter-
mine the ‘‘functionally discriminating residues’’ of each EC family.
According to their definition, these are the minimal set of residues
needed to distinguish members of an EC family from non-mem-
bers. Levy et al. (35) proposed a Bayesian method to combine
BLAST scores for the purpose of EC classification. They extend
the simple approach of assigning each enzyme to the same EC class
as its BLAST best hit. Instead, for each enzyme, they estimate its
membership probability in each EC class based on the EC classes of
other enzymes with similar BLAST best-hit scores.

1.2. Our Approach In view of the previous sections, it is clear that multiple aspects of
protein similarity should be considered, beyond sequence and
structure, when functional similarity is sought. Features such as
the domain content, subcellular location, tissue specificity, pair-
wise interactions, and expression profiles may indicate common
context and may suggest functional similarity even in the absence
of clear sequence or structure similarity. These protein attributes
and others are usually ignored, either because data are not available
or because it is not clear how to use them to quantify functional
similarity.

In this chapter we describe a method to predict the function of a
protein based on basic biochemical properties augmented with
(partial) data available from database records of biological properties
that may hint at the biological context of the protein. Our goal is to
identify the most relevant and informative features and combination
of features that best characterize protein families (e.g. enzyme
families) and to create a model for each protein family, which can
be used for classification and function prediction. Our approach
hinges on algorithms for decision tree building (36, 37, 38), but
further expands the traditional work on decision trees, by introdu-
cing a mixture model of stochastic decision trees (SDT). The
trees handle missing attributes, ambiguities, and fuzzyness, which
are to be expected when analyzing database records of proteins by
using a probabilistic framework and are optimized to ensure high
generalization power by testing several validation techniques.

The resulting tree structure indicates the properties that are
strongly correlated with the class of proteins modeled. This set of
properties depends on the classification task. For example, the set
of properties most strongly correlated with structural aspects are
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not necessarily the same as the properties that are most relevant for
functional aspects. Clearly, this set can also change from one
protein family to another. To study these correlations, trees were
created and tested on two different types of known protein classi-
fications: a sequence-based classification of proteins (Pfam (39))
and a functional classification of proteins (the enzyme classification
system (11)).

The learning system consists of two main parts: the first is the
feature extraction system. Much thought was given to selecting an
extensive set of attributes that would create reliable representations
of protein families. The second part is the model used to identify
regularities in the patterns of these attributes for each family – the set
of attributes that best correlate with functional aspects of proteins
and can most accurately predict membership in the family. We first
turn to describing the feature extraction system and then to the
decision tree learning model and our new SDT model.

2. Methods I – Data
Preparation and
Feature Extraction

Our basic data set is the SWISSPROT database release 39.3 and
the TrEMBL database (40) release 14.4 as of July 15, 2000, with
464744 proteins (the dataset is available at http://biozon.org/
ftp/data/papers/ec/). A total of 453 features are used to describe
each protein. The features are divided into three sets of features:
features that can be calculated directly from the sequence, features
that are predicted from the sequence, and features that are
extracted from database records.

2.1. Sequence Features These features include composition percentages for the 20 indivi-
dual amino acids, as well as for 16 amino acid groups adopted from
(41) and (42). The groups are as follows: charged (DEHIKLRV),
positively charged (HKR), negatively charged (DE), polar
(DEHKNQRSTWY), aliphatic (ILV), aromatic (FHWY), small
(AGST), tiny (AG), bulky (FHRWY), hydrophobic (ILMV),
hydrophobic aromatic (FWY), neutral and weakly hydrophobic
(AGPST), hydrophilic acidic (EDNQ), hydrophilic basic (KRH),
acidic (ED), and polar and uncharged (NQ).

Despite the overlap between these amino acid groups, each
one has a unique characteristic. It is this characteristic that may play
a role in defining and distinguishing family members from non-
members, and therefore all the groups were considered to be
distinct features.

We also calculated composition percentages for each of the
400 possible dipeptides. However, to save computation time, only
the most informative dipeptides were used during learning. The
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selection of dipeptides was done dynamically, during the training
phase of the algorithm, on a per-family basis. We discuss this
refinement further in Note 1a.

In addition to sequence composition, we also computed the
average hydrophobicity, average isoelectric point, and average
molecular weight of the protein sequence, as well as the overall
sequence length. The hydrophobicities used are the scaled values,
as described in (43). The values for isoelectric point can be found
at (44).

2.2. Predicted Features These represent the percentage of each protein that is predicted to
be a coil, helix, or strand, as computed by PSIPRED (45), a
secondary structure prediction program. We ran PSIPRED in
‘‘single’’ mode for each sequence, meaning that the program did
not search for sequence homologs to assist in its prediction.

2.3. Database Features We extracted nine database features from SWISSPROT: three
binary, five nominal, and one numerical (integer). The three bin-
ary features respectively indicate the presence of alternative pro-
ducts, enzyme cofactors, and catalytic activity in each protein, as
determined from the optional fields of the CC section of each
SWISSPROT protein record (see SWISSPROT user manual
(46)). A lack of annotation was interpreted as a ‘‘0’’ value; other-
wise, the value was set to ‘‘1’’.

The nominal features (tissue specificity, subcellular location,
organism classification, and species) are more involved. Each pro-
tein is defined over zero or more values for each nominal feature: if
Values(A) is the set of all possible values for nominal attribute
A, then each protein is defined over a subset of Values(A). In all
cases, a complete lack of information for A in a protein record was
interpreted as an ‘‘unknown’’ value for that attribute, and was
treated specially by the decision tree algorithm (described in the
Note 1e). Two definitions of tissue specificity were included, one
derived from the RC:TISSUE field and one from the CC:TISSUE
SPECIFICITY field. The subcellular location of the protein was
derived from the CC:SUBCELLULAR LOCATION field, while
the organism classification and species were taken from the OC
and OS fields, respectively.

Lastly, we also computed the number of PROSITE patterns
exhibited by each protein by consulting the appropriate DR line of
each record. Specifically, for each protein, we summed the number
of certain and uncertain hits over all PROSITE patterns. This
attribute is an indication of the domain/motif ‘‘complexity’’ of
the protein. (Alternatively, one could use an attribute for each
possible motif, or a single motif attribute that indicates the set of
motifs that is present in the protein. However, with more than
1300 PROSITE patterns, the set of possible values or combina-
tions of values is too large to handle efficiently during learning.)
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It should be noted that we intentionally skipped the keywords
in the KW field of SWISSPROT records. These keywords are
strongly linked with protein function. However, as opposed to
the other database attributes, these keywords explicitly describe
protein functionality and are based on human annotation and
interpretation. If ours was purely a classification task, the perfor-
mance clearly could have improved by integrating SWISSPROT
keywords. However, since we are interested in learning the map-
ping between proteins’ properties and their function, we decided
to exclude these keywords. We selected only the database attri-
butes that are based on experimentally verified information.

3. Methods II - The
Decision Tree
Learning Model

To model protein families, we developed a novel learning algo-
rithm, which we call a mixture model of stochastic decision
trees (SDT). Each family is modeled by a collection of decision
trees that capture the salient features which are common to the
members of the family. Our choice of the model was motivated
by the nature of the data. Decision trees are useful when the data
are nominal, i.e., when there is no natural notion of similarity or
even ordering between objects. Such is the case for some of the
attributes we associate with proteins, for example, tissue specifi-
city and subcellular location. These attributes rule out the use of
many other popular machine learning models, such as Support
Vector Machines. Other attractive aspects of decision trees are
robustness to errors both in classification and in attribute values.
Moreover, decision trees can be used when some of the data are
missing, and this is often the case with database attributes. In the
next sections, we first describe the traditional decision tree
model, and then introduce the mixture model and other varia-
tions. The reader who is not interested in the details of the
learning model can skip to Section 6. However, we recommend
reading Sections 3.1 through 5 to get an idea of the main
components of the model.

3.1. The Basic Decision

Tree Model

Decision trees classify instances by sorting them down the tree
from the root to a leaf node, which provides the classification of the
instance. Each leaf node is either associated with a category label or
probabilities over different categories. Each internal node specifies
a test of some attribute of the instance and each branch descending
from that node corresponds to a subset or range of the possible
values of this attribute. An example decision tree is given in
Fig. 17.2. An instance is classified by testing the attributes of the
instance, one at a time, starting with the one defined by the root
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node, and moving down the tree along the branch corresponding
to the specific value of the attribute in that instance, until it reaches
a leaf node. Note that this kind of scenario does not require a
metric over instances.

3.2. The Traditional

Training Procedure for

Decision Trees

When training decision trees from sample data S, the goal is to
create a concise model that is consistent with the training data.
Most learning algorithms use variations on a core algorithm that
employs a top-down, greedy search through the space of all pos-
sible decision trees. Trees are grown from the root to the leaves,
and the algorithm progressively splits the set of training examples
into smaller and purer subsets by introducing additional nodes to
the bottom of the growing tree with tests over new properties.

Usually, the criterion according to which the next attribute is
selected is based on the reduction in impurity (class mixup) when
testing on the attribute: the difference between the impurity before
and after the split. One possible measure of the impurity or uncer-
tainty is the entropy of the sample set at that node. The entropy
impurity is also called the information impurity and is defined as

iðSÞ ¼ EntropyðSÞ � �
Xc

j¼1

pj log2 pj

where pj is the fraction of examples in the set S, which are in category
j. The common strategy is to select the attribute that decreases the
impurity the most, where the drop in impurity is defined as

DiðS;AÞ ¼ iðSÞ �
X

v2ValuesðAÞ

Svj j
Sj j iðSvÞ

Subcellular Location?

Nuclear MitochondrialOther

Percentage of positively
charged residues?

< 10% > 30% < 30%> 10%

Percentage of predicted
beta strands 

NO NO YES

NO

YES

Fig. 17.2. A sample decision tree for a specific class of proteins. An instance is classified by testing its attributes,
starting from the test at the root node. If the final answer is yes, then the instance is classified to the class.
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where Values(A) is the set of all possible values for attribute A, and
Sv is the subset of samples in S that have value v for attribute A.
When the measure used is the entropy impurity, the drop in
impurity is called information gain and is denoted by Gain(S, A)

GainðS;AÞ ¼ EntropyðSÞ �
X

v2ValuesðAÞ

Svj j
Sj j EntropyðSvÞ

The ID3 learning algorithm (47) uses this criterion to decide
on which attribute to test next. The outline of the algorithm is
given below:

1. Initialize a root node with the set of all samples S.

2. If no node reduces the node impurity
a) Then node is a leaf.

3. Else
a) Select best test for decision node.

b) Partition instances by test outcome.

c) Construct one branch for each possible outcome.

d) Build subtrees recursively.

After the learning procedure has terminated, the learned tree
can be used to classify new instances, as depicted in Fig. 17.2.
During classification, an example is repeatedly subjected to tests at
decision nodes until it reaches a leaf, where it is assigned a prob-
ability equal to the percent of training examples at the leaf that are
class members.

3.3. The Extended

Training Procedure for

Decision Trees

The ID3 algorithm may result in trees that over-fit the training
data, capturing coincidental regularities that are not necessarily
characteristic of the class being modeled. Such trees will perform
poorly on new unseen examples. The C4.5 algorithm (48) is an
improvement over ID3 by using rule post-pruning to prevent
overfitting and several other modifications to handle missing attri-
butes and to account for bias in information gain introduced by
multi-value attributes (using the GainRatio and Mantaras func-
tions described in Note 1f ).

Our basic learning procedure (which is one component of our
new learning system) is similar to the C4.5 algorithm. We make
intensive use of validation-based post-pruning in our algorithm.
We refer to the set of samples available for learning as the learning
set (the remaining samples are compiled into the test set used later
for performance evaluation). The proteins in the learning set are
divided into 10 equal parts. Let n be the size of the learning set.
Ten different trees are generated for each family, and each one uses
9
10 n as its training set and 1

10 n as its validation set. Each tree is

built using the training set and pruned using the validation set.
Pruning is done by running an exhaustive search over all tree
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nodes. Each node is temporarily pruned (i.e., converted to a leaf)
and the performance of the new tree is evaluated over the valida-
tion set. The node that produces the largest increase in perfor-
mance is selected and the corresponding subtree is pruned. The
process continues as long as it does not cause a decrease in perfor-
mance over the validation set (we evaluate performance using a
variety of different evaluation functions, which are discussed in
Section 4.2).

Cross-validation pruning improves consistency and provides a
more balanced model, which learns the regularities that are com-
mon to different subsets of the data rather than those that are
coincidental and occur only in a specific data set.

Eventually, the ten trees are combined to obtain a single
prediction. Each tree is weighted according to its performance
over the learning set, where the performance is measured in terms
of the evaluation function, denoted by Q (see Section 4.2). The
final output is a performance-weighted average of the probabil-
ities returned by each of the ten trees. Denote by Pi(+ | x) the class
probability of the sample x according to the ith tree, then the
total probability assigned by the set of trees is given by

PTreesðþjxÞ ¼
P

i2Trees Q ðiÞPiðþjxÞP
i2Trees Q ðiÞ ½1�

where Q(i) is the quality (performance) of the ith tree over the
learning set (the higher, the better the tree separates the samples).
It should be noted that the ten trees that are learned from the
ten sets are generally very similar to each other, and their similar
core structure is a reflection of the properties that truly character-
ize the protein family. However, because of the greedy nature of
the search for the optimal tree, other competing tree structures
may be missed. This issue is addressed in the next section where we
introduce the concept of a stochastic decision tree.

In addition to cross-validation based post-pruning, our algo-
rithm includes other variations and enhancements that were
adopted from different papers in this field, as well as several novel
elements that we introduced into the learning procedure. Among
the enhancements are

l Dynamic attribute filtering (see Note 1a).

l An effective procedure for discretizing numerical features (see
Note 1b).

l An efficient algorithm for finding binary partitions of multi-
valued attributes (see Note 1c).

l Methods to handle instances that have missing or multiple
values for an attribute (see Notes 1d and 1e).

l Various impurity measures for attribute selection (see
Note 1f).
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l Different weighting functions and adjusted impurity mea-
sures (such as mixed entropy and interlaced entropy) to
handle skewed distributions in which negative samples far
outnumber positive samples, such as in our protein classifica-
tion problem (see Notes 1g and 1h).
For more details on these and other elements of the extended

learning algorithm, the interested reader is referred to Note 1.

4. Methods III – The
Mixture of
Stochastic
Decision Trees The next elements of our model address some of the fundamental

problems with traditional decision tree learning algorithms. Spe-
cifically, we address three elements: optimization, evaluation, and
model selection. More precisely, we first propose an effective
method of searching the hypothesis space that overcomes the pit-
falls of the deterministic learning algorithms. Secondly, we intro-
duce some novel criterion functions to evaluate decision tree
performance. Thirdly, we propose an alternative method (MDL-
based pruning) for deciding on the most probable model that is
especially effective for small data sets. The first two elements are
described next. The third is described in Note 2.

4.1. The Stochastic

Framework

The basic procedures for building decision trees (such as those that
are described in Section 3) are deterministic. They employ a
greedy approach that always selects the attribute which maximizes
the information gain. However, this local maximization is not
guaranteed to produce the ‘‘best’’ decision tree that describes the
data. It happens quite often that several attributes have very similar
information gain values. The choice of the one that marginally
outperforms the others at some point in the training process may
prove to be less advantageous later on. Even if the chosen attribute
has a significantly better information gain, it still does not guaran-
tee that in the optimal tree this attribute is indeed used at this
point. To address this limitation imposed by the classical decision
tree learning algorithm, we switched to a stochastic (probabilistic)
framework in which the attribute is selected with probability that
depends on its information gain.

P ; ðAÞ ¼ GainðS;AÞP
i

GainðS;AiÞ

Thus, attributes with higher information gain have higher prob-
ability to be selected, but even attributes with small information
gain have a non-zero probability to get selected. To diversify the

Enzyme Function Prediction 387



composite model of a protein family, a total of ten trees are learned
for each training set; one deterministic (using the traditional
approach) and nine stochastic trees. With ten training sets per
family (see Section 3.3), the final mixture model has a total of
100 trees per family. As before, denote by Pi(+ | x) the class
probability of the sample x according to the ith tree, then the
total probability assigned by the hybrid mixture of trees is given by

PMixtureðþjxÞ ¼
P

training set j

P
i2TreesðjÞQ ðiÞPiðþjxÞP

training set j

P
i2TreesðjÞQ ðiÞ

; ½2�

where Trees(j) is the set of trees learned from the jth training set.
Our model was originally introduced in (49). It is similar to

other methods that use ensembles of decision trees, such as (50)
and (51). In particular, Breiman (52) introduced the random
forests model in which a large mixture of decision trees is trained
and where the best split at each node is chosen from among a
randomly selected subset of all the attributes. The parallels with
our method are clear, but a major difference is that our method
biases the selection toward higher quality attributes, instead of
randomly constraining the selection to a small set. Moreover,
some of the trees in our mixture are trained using the traditional
deterministic method. Breiman’s analysis suggests that these
changes may yield improved performance, since he proves that
the generalization error of a random forest decreases as the quality
of the individual trees in the forest increase.

4.2. Evaluation of

Decision Trees

The evaluation function Q is a key element of our learning model
(see Eq. [1] and [2]) as well as for performance assessment. A
common measure of performance that is used in many machine
learning applications (including decision tree learning algorithms
such as C4.5) is the accuracy, i.e., the percentage of correctly
classified examples

accuracy ¼ tp þ tn

tp þ tn þ fp þ fn
¼ tp þ tn

total

where tp is the number of true positives, tn is the number of true
negatives, fp is the number of false positives, and fn is the number
of false negatives. However, with the majority of the samples
being negative examples, the accuracy may not be a good indi-
cator of the discriminating power of the model. When the task is
to discern the members of a specific class (family) from a large
collection of negative examples, better measures of performance
are the sensitivity and selectivity (the positive predictive power),
defined as

sensitivity ¼ tp

ðtp þ fnÞ selectivity ¼ tp

ðtp þ fpÞ
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The categorization of samples as true (false) positives/negatives
depends on the model and on the output it assigns to the samples.
Since decision trees output probabilities, we need a way to inter-
pret these real numbers as either ‘‘positive’’ or ‘‘negative’’. Usually,
one sets a threshold score T, a probability above which samples are
predicted to be positive. Thus, if a sample reaches a leaf node j with
membership probability Pj(+) (defined based on the relative frac-
tion of positive samples in this node), then it will be classified as
positive if Pj(+) > T (see Note 3 for discussion on methods for
setting the threshold).

The ROC measure. An alternative that does not require
defining a threshold first is the Receiver Operating Characteristic
(ROC) score. To compute this score, one first has to sort all
samples according to their probabilities (as assigned by the
model), then plot the number of true positives as a function of
the number of false positives, and finally measure the area under
the curve. This measure will be maximized when all the true
positives are assigned higher scores than the negative samples. A
variation on this score is ROC50, which only measures the area
under the curve up to the first 50 false positives. The idea behind
this plot is that in scanning database search results one may be
willing to overlook a few errors if additional meaningful similarities
can be detected. The area under the curve can be used to compare
the overall performance of different methods.

The Jensen-Shannon measure. We propose a new evaluation
function that takes into account the complete distributions of
positives and negatives induced by the decision tree model, and
accounts for their statistical distance. Specifically, we use the Jen-
sen-Shannon (JS) divergence between probability distributions
(53). Given two probability distributions p and q, for every 0 � l
� 1, the l-JS divergence is defined as

D JS
l p jj q½ � ¼ lDKL p jj r½ � þ ð1� lÞDKL q jj r½ �

where DKL[p||q] is the relative entropy of p with respect to q (also
called the KullbackLeibler divergence (54)) and

r ¼ lp þ ð1� lÞq

can be considered as the most likely common source distribution
of both distributions p and q, with l as a prior weight (here we set
l ¼ 1/2 since the weighted samples are divided equally between
the two categories; see Note 1g). In our case, p and q are the
empirical distributions of the positive and negative examples with
respect to the class probabilities assigned to them by the decision
tree model. We call the corresponding measure simply the diver-
gence score and denote it by D JS. This measure is symmetric
and ranges between 0 and 1, where the divergence for identical
distributions is 0.
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All the measures provide rough estimates of the expected
accuracy. However, unlike the other measures, the divergence
score is less sensitive to outliers and is more likely to reflect the
true estimate when applied to future examples. Moreover, there is
no need to define a threshold T. Our goal is to maximize the
statistical distance between the distribution of positives and the
distribution of negatives, as exemplified in Fig. 17.3, and mini-
mize the overlap. The smaller the overlap, the better the expected
accuracy.

All four performance measures were tested during post-
pruning (a node is pruned if the probabilities induced by the pruned
tree are better at separating the positives from the negatives in
terms of the evaluation function selected; see post-pruning in
Section 3.3 for more details). Also, while testing a particular prun-
ing technique, we always used that same evaluation function to
compute Q(i) in Eq. [1] and [2].

5. Methods IV -
Optimization of the
Learning Algorithm

There are many strategic decisions that one can take throughout
the learning process. To find a good choice of parameters, we first
optimized the learning strategy. Having incorporated the modifi-
cations described in Sections 3.3 and 4 into our model and the
tree-generating program, we converged to a locally optimal learn-
ing strategy by conducting a rough greedy search over the space of
decision tree learning algorithms. All performance evaluations

Frequency

Class probability

Positives

Negatives

Fig. 17.3. Optimizing performance with the Jensen-Shannon measure. Ideally, the
model should assign high probability to class members and low probability to non-class
members. The goal is to maximize the statistical distance between the distribution of
positives and the distribution of negatives and minimize the overlap.
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are done over the test set using the Pfam data set (see Section 6.1)
and averaged over all families. A step-by-step description of that
search procedure is as follows.

The initial basic configuration is very similar to the C4.5
learning algorithm (48). It uses a multiple (variable) branching
factor, unweighted entropy-based gain ratio, five cross-validation
sets, accuracy-based post-pruning (with the equivalence-point-
based threshold as described in Note 3), unweighted leaf nodes
in prediction, and a smaller subset of 53 features after removing all
dipeptide information. The performance of this configuration was
poor (sensitivity of 0.35). Introducing dipeptide information and
increasing the number of cross validation sets to ten resulted in a
significant improvement in performance (0.55). This setup was
gradually improved by considering each one of the modifications
discussed in the previous sections. The modifications were added
one by one, and were accepted only if they improved performance
over the previous configuration of the parameters. Each config-
uration includes only modifications that were previously accepted
during the optimization procedure. However, not all previously
accepted modifications are included in each configuration, since
some of them override each other. This is the case, for instance,
with the various pruning strategies, since only one pruning strat-
egy is used at a time. The results of the optimization procedure are
summarized in Table17.1.

Switching to binary splitting, weighted entropy and JS-based
post-pruning, and the introduction of the stochastic decision
trees improved performance and were accepted. Especially
noticeable is the improvement due to the replacement of a single
deterministic tree with a mixture of stochastic trees. Increasing
the number of cross-validation sets did improve the performance,
but only until a certain point (ten sets) beyond which no further
improvement was observed. Some of the weighting procedures
(such as mixed-entropy and leaf weighting) were rejected, as well
as other modifications that were later outperformed by alterna-
tive strategies (e.g., sensitivity/selectivity based pruning was
selected first during the search but was then outperformed by
Jensen-Shannon based pruning). It should be noted that very
good performance was also obtained with MDL-based pruning
(see Note 2). The MDL approach is especially effective for small
families (see Section 6.1). However, because of its dependency
on an external parameter that requires additional tuning we focus
here on the simpler Jensen-Shannon-based pruning. The final
average performance, after adding the stochastic trees, was the
same with Jensen-Shannon and MDL-based pruning (in both
cases it was 0.81).

The final configuration was set to the mixture of stochastic
decision trees, including information on dipeptides (dynamically
selected on a per-family basis, during training as described in
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Note 1a), with binary splitting, weighted entropy, ten sets of
cross-validation, and JS-based pruning and evaluation. The prob-
ability assigned by the mixture model to a sample x is defined as

PMixtureðþ=xÞ ¼
P

training set j

P
i2TreesðjÞQ JSðiÞPiðþ=xÞ

P
training set j

P
i2TreesðjÞQ JSðiÞ

where Q JS(i) is the divergence/separation score of the ith tree
over the validation set. Note that the divergence score does not
require a method to choose a threshold.

6. Results

We used two types of known protein classifications, the Pfam data-
base of protein families and the EC database of enzyme families. We
tested our model over both databases by training models for all
families using the optimal learning strategy, as described in the
previous section, and testing them over unseen examples.

Table 17.1
Optimization of learning strategy. We started with a basic learning algorithm that is
very similar to the C4.5 learning algorithm. Then, one step at a time, we introduced
another modification to the learning algorithm and tested its impact on the
performance. Performance was measured in terms of the prediction sensitivity
over the test set using the equivalence point criterion (see Note 3). At the
equivalence point, the sensitivity equals the selectivity

Step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Modification

Initial configuration (C4.5)

Sensitivity (=selectivity) Accepted/rejected

0.35 Initial

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

Rejected

Rejected

Rejected

Rejected

Rejected

Rejected

Rejected

0.55

0.56

0.66

0.69

0.63

0.69

0.7

0.7

0.69

0.71

0.73

0.72

0.67

0.73

0.81

Dipeptides + 10 cross-validation sets

Mantaras metric

Binary splitting

Weighted entropy

Confidence-based threshold

Sen/sel post-pruning

JS-based post-pruning

Roc50 post-pruning

20 cross-validation sets

MDL post-pruning (entropy based)

MDL post-pruning (probability based)

Weighted leafs

Mixed entropy

Interlaced entropy

Stochastic trees
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6.1. The Pfam

Classification Test

Our first test was on the Pfam database of protein domains and
families. Of the 464744 proteins in the SWISSPROT and TrEMBL
databases, 237925 proteins are classified into 2128 families (Pfam
release 5.2). Most of the families in the Pfam database are domain
families that characterize only a small part of the member proteins
(these domains usually appear in conjunction with other domains).
To prevent ambiguity in the class labels, we included in our data set
only those proteins that were labeled as belonging to exactly one
family. In particular, since sequence databases are constantly grow-
ing, the absence of a label does not necessarily mean that the protein
does not belong to a functional family. Since the properties we use
in our model are global (calculated based on the complete
sequence), only protein families that cover most of the sequence
were considered for learning and evaluation. Specifically, we used a
subset of 233 families with more than 80% coverage of the sequence
and at least 50 members. Because of the high coverage, we expect
that for these families their functionality is indeed associated with
the complete protein chain.

Each family was randomly partitioned into a learning set and a
test set in the ratio of 3:1, so that 75% of the member proteins were
used for learning and 25% for testing, and a model was trained for
each family using the optimal learning strategy as described in
Section 5. The mixture model was then used to assign probabilities
to each sample in the test set and the performance was evaluated by
measuring sensitivity at the equivalence point (i.e., the point where
the selectivity equals the sensitivity; see Note 3 for details).

In all cases, the mixture model performed better than the best
individual tree. Interestingly, for almost half the families, the best
stochastic tree performed better (by up to 10%) than the greedy,
deterministic tree, which is evidence for the usefulness of the
stochastic approach. In Fig. 17.4 we show five trees for the Pfam

Fig. 17.4. Alternative decision trees for Pfam family Apolipoprotein. The leftmost tree is a deterministic tree. The
others are stochastic. The rightmost tree performed the best. The shading of each decision node is proportional to the
(weighted) entropy at that node. Darker shades indicate higher entropy values (high class impurity).
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family Apolipoprotein (proteins whose function is to carry choles-
terol and other fats through the blood and help in maintaining
normal levels of these molecules). The first one is deterministic while
the other trees were built using the probabilistic algorithm. The
performance of the five trees is 0.96, 0.85, 0.84, 0.89, and 0.99,
with the fifth stochastic tree outperforming the deterministic tree.

To assess the power of our new model we compared it with
BLAST (26), the most popular database search algorithm. Since
BLAST is a pairwise comparison algorithm, we repeated the search
for all query sequences in the family. Specifically, for each query, we
sorted all proteins by their BLAST score against the query, and then
measured sensitivity for detecting the family at the equivalence point
(i.e., the threshold where the selectivity equals the sensitivity; see
Note 3). For each family, we report the best performing query, as
well as the performance of a typical BLAST search, by averaging over
all queries. Table 17.2 gives the results for the 30 largest families.
The average performance of the SDT model over all families was
81%. A typical BLAST search detected 86% of the member proteins,
while the best BLAST search detected 94% of the proteins on
average (in a blind prediction scenario one does not have a knowl-
edge of which is the best query, as this is determined based on the
performance over the test set, and therefore the average perfor-
mance should be considered as the typical performance). Note
that for many families, especially the larger ones, the SDT model
outperformed a typical BLAST query, and in some cases the best
BLAST query (e.g., picornavirus coat proteins [rhv], Hemaggluti-
nin-neuraminidase [HN] and histones). This is very encouraging
considering that our model does not use any information about the
order of amino acids in the sequences beyond pair statistics.

Our analysis suggests three main reasons why our model is short
of detecting all member proteins for some of these sequence-based
protein families. First, since Pfam is not necessarily a functional
classification but rather a domain classification, many of the features
that we associate with complete protein chains may not be corre-
lated with the specific domain. It is possible to ‘‘localize’’ some
features and calculate them just along the domain region. However,
some features, such as database attributes, cannot be localized.

The second reason is the use of weighted entropy. Although
weighted entropy definitely improves performance (see Table 17.1),
it can also stop the learning too early, leaving some of the leaf
nodes impure and thus affecting performance (see Fig. 17.5).
Specifically, because of the skewed background distributions, posi-
tives are assigned a much higher weight than negatives. Take for
example the UbiA family. There are 58 family members and
237867 negative examples, of which 43 and 178400 are in the
learning set, respectively. The weight of each one of the positive
examples is more than 4000 times the weight of a negative exam-
ple. Consider a node with 20 positive examples and 1000 negative
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examples. If the total weight of the initial set of positives and
negatives is 100 (50 each), then the sum of the weighted positive
examples in that node is 26 while the negative samples sum to 0.3,
resulting in weighted entropy of 0.09. However, this node is far
from being pure, and although we set a very low impurity thresh-
old some nodes do end being somewhat impure. In the case of
the UbiA family, one of the nodes has an entropy of 0.15535 with
0.27 weighted negative examples and 11.8 weighted positive
examples. However, the number of actual negatives and positives
is 876 and 9, respectively. This node clearly needs refinement.
Employing other weighting protocols can resolve this problem
(see Note 1g). Indeed, switching to unweighted sample entropy
after exhausting weighted sample entropy (interlaced entropy)
improved performance over the 25 worst performing families by
several percent.

Table 17.2
SDT performance for the 30 largest Pfam families. Perfor-
mance is evaluated using the equaivalence point criterion
(see text). For BLAST two numbers are given, for the best
query and for a typical query (in parenthesis). The average
performance of the SDT model over all 233 families was 0.81
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But perhaps a more significant flaw is that validation-based
pruning is overly aggressive for small families. This is because, for
these families, the validation set typically contains only a handful
of family members. It is unlikely that such a small sample will be
representative of the family overall. So during pruning, many
branches of the tree (which was trained on a much larger sample)
will be deemed irrelevant and pruned away. For these families,
MDL-based pruning (see Note 2) may be a better alternative, as it
seeks to balance tree size with the performance of the tree over
the entire learning set. We tried MDL-based pruning on a subset

Fig. 17.5. An example tree for the UbiA family. Our model did not perform well over this
family. The main reason is demonstrated in this tree. One of the leaf nodes (circled ) has
an entropy of 0.15535 with 2727.95 weighted negative examples and 118421 weighted
positive examples. However, the number of actual negatives and positives is 876 and 9,
respectively.
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of 50 small families. Compared to JS pruning, the lowest per-
forming families seem to make the biggest gains, with perfor-
mance boosting over this subset from an average of 0.34 to 0.47
(Fig. 17.6).

6.2. The Information

Content of Features

In our representation, each protein sequence is represented by
a set of 453 attributes. However, not all of the attributes are
equally important and not all of them are necessarily used in
the model for each protein family. Those that are used are not
exclusive in that they allow even proteins with unknown values
for these attributes to be classified to the family. This is
because the learning system can accommodate ambiguities by
defining multiple rules for each protein family during the
learning process.

To evaluate the quality of each feature as a protein family
predictor, and to quantify its information content, we trained
453 trees for each family, one for each feature. The tree was trained
using the optimal configuration as described in the previous
section. (A simple way to estimate the information content of an
attribute would be to calculate the class entropy for each feature,
and average over all families. However, this calculation ignores
some of the aspects of decision trees that are addressed in the
Notes.) The results were averaged over all families and are given
in Table 17.3. Results for just the dipeptide attributes are available
in Table 17.4.

Clearly, no single attribute can serve as a good predictor in
general. Performance varies between the different attributes
and database attributes seem to have less information content

Fig. 17.6. Improvement in performance with MDL-based pruning. The left plot shows performance (on the y-axis) vs.
family size (on the x-axis) under JS-based pruning. Each circle represents a family. The right plot shows the improvement
from MDL-pruning. Note that the mass of families clustered at the bottom-left of the JS plot shifted upward in the MDL
plot, while the rest of the distribution seems relatively unchanged.
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Table 17.3
Attribute information – part 1 (excludes dipeptides).
Attributes are sorted by decreasing information gain with
respect to that attribute only (second column). The results are
averaged over all families. Since throughout the learning
phase we use the weighted entropy (see Note 1g) the
information gain in this case is given over the weighted
samples. These numbers are also more effective for
identifying informative attributes; because the skewed
distribution of positives and negatives, the background
unweighted entropy is very small to begin with and signifi-
cant improvement in prediction power will translate only to
slight improvements in the unweighted entropy (the non-
linearity of the entropy function further obscures significant
changes in classification accuracy). The third column is the
average depth in the trees at which the attribute is used.
The depth of the root is 0; the average depth of the bottom
of the trees is16.83

(continued)
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than the predicted and calculated attributes, perhaps because
little information is currently available in database records. For
most proteins these attributes are undefined and fractions of
these proteins reach many leaf nodes (following the ratios for
proteins with known values for these attributes, as described in
Note 1e), thus affecting the discriminative power of the
attribute.

Surprisingly, the organism classification attribute is the best
predictor (information gain of 0.390). Note also its depth (5.6),
meaning that it is usually used higher in the decision trees. Indeed
many protein families exist only in a single kingdom or subphyla.
The success of this attribute suggests that other database attributes
can play a more significant role, as more data become available.
The organism class is followed by the average hydrophobicity and
the length. Other informative attributes are the relative composi-
tions of different groups of amino acids, such as acidic, negatively
charged, aromatic, and so on.

We also recorded the usage frequency of attributes. The usage
frequency of an attribute (Table 17.5) is an indication of its role in
classification at a more general level. Such attributes are the length,
the organism class, predicted secondary structure, and the fre-
quency of different amino acid groups.

Table 17.3 (continued)
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6.3. The EC

Classification Test

While the Pfam test establishes the validity and proves the poten-
tial of our method, it is the EC classification test (which was
independent of the optimization of the learning strategy) that
shows the true prediction power in cases where sequence-based
methods can fail.

The EC classification system is an extensive collection of func-
tionally based protein families. Enzyme families are defined based
on the functional role of the enzymes in the cell rather than on
common evolutionary ancestry, and enzymes that perform similar
functions are not necessarily homologs and might not exhibit any
sequence or structure similarity. Clearly, detecting this kind of
similarity is much more difficult, as it involves inferring the func-
tionality of the proteins in vivo.

Table 17.4
Attribute information – part 2 (dipeptides only). Missing
depth information means that the dipeptide was never used
in the mixture of stochastic decision trees. Only the top 40
dipeptide attributes are listed
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Table 17.5
Attribute usage. Percentage of all splits in the mixture of stochastic decision trees
that use each attribute. The third column lists the percentage of all trees that used the
attribute, and the fourth is the ratio between the two. A higher ratio of the percentage
of splits to the percentage of trees indicates multiple tests over the same attribute in
the same tree (usually because of a range of values or multiple values where the
information about family association is not limited to a single transition point)
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To test our model on this functional classification we extracted
all enzyme families and trained models for all families with more
than 50 members, for a total 229 families. In our training and test
sets, we only included proteins that belonged to exactly one EC
family. Models were trained as described in Section 6.1. As with
the Pfam classification test, we compared our results to BLAST.
We also compared our model with another statistical model, the
HMM-based alignment program SAM (55). Each SAM model
was trained first over the set of unaligned training sequences and
then used to search the database and assign probabilities to each
sample in the test set. The performance was evaluated as before
using the equivalence point criterion.

The average performance of the SDT model over all 229 families
was 71%. Many of these were ‘‘high-level’’ EC families (e.g., 1.-.-.-),
so we compared our performance against other methods over just the
122 families with complete, four-digit EC numbers (e.g., 1.2.3.4).
(This data set is available at http://biozon.org/ftp/data/papers/
ec/.) SAM performance over this subset was 89%. The performance
of our model over the same subset was 76%. The results for the 30
largest families in this subset are listed in Table 17.6. Note that in this
case the SDT model outperformed the best BLAST in many cases,
especially when the enzyme family is composed of several sequence-
based families. As most members of the same EC family have similar
sequences, the success of this model is not surprising. However, for
extremely diverse and large families, our model was more effective in
detecting family members (see 1.9.3.1, 3.6.1.34, and 2.7.7.48).
Again, one has to remember that the SDT model was trained on
features rather based on the sequences, and yet it was surprisingly
successful in classification. Integrating this model with other models
can be expected to boost the overall performance by detecting remote
homologies. For example, the mixtures of trees from the SDT model
might be used to refine sequence similarity-based models, combining
the strengths of both approaches. One can also expect integration of
higher-order significant sequence elements (conserved k-tuples) to
improve performance as well. Indeed, k-tuples were successfully used
to classify proteins into families using support vector machines with a
string kernel (31).

It should be noted that for the EC classification task we used
the same final configuration of the learning system which was
optimized over the Pfam data set (see Table17.1). By optimizing
the parameters of our learning system over a separate classification,
we avoided the danger of overfitting the learning strategy to the
irregularities of the EC families.

6.4. Interpretability of

Decision Trees –

Decision Rules

A decision tree represents a disjunction of conjunctions of con-
straints on the attribute values of instances, where each path (each
decision) from the tree root to a leaf corresponds to one such
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conjunction. Thus, a decision tree can be converted to an equiva-
lent rule set that can be considered a logical description of a
category. Each one of our decision trees was converted into a
rule set, with rules sorted by their accuracy over the test set.
Some of these rules are especially interesting as they might suggest
a concise description of a family in terms of a few elements or
principles. For example, one of the features that characterizes EC
family 1.14.14.1 of monooxygenases (including cytochrome
P450) is subcellular location. Many members of this family are
located in the membrane-bound endoplasmic reticulum (see
Fig. 17.7). Note that after the initial split according to subcellular
location, other features refine the definition of family members.
One rule given by this tree indicates that proteins located in the
membrane-bound endoplasmic reticulum, which have above-

Table 17.6
SDT performance for the 30 largest EC families that have complete EC numbers.
Performance is evaluated using the equivalence point criterion (see text). For
BLAST two numbers are given, for the best query and for a typical query (in
parenthesis). The fifth column is the number of different sequence subfamilies in
each family (Chau and Yona, unpublished work). The last column shows the
performance of SAM. The average performance of the SDT model over all 122 EC
families that have complete EC numbers was 0.76, while the performance of SAM
over the same set was 0.89

Family
number

4.1.1.39 Ribulose-bisphosphate carboxylase 3879 970 2 0.99 0.95 (0.91) 0.99
0.92
0.69
0.78
0.76
0.90
0.97
0.77
0.89
0.92
0.92
0.98
0.69
0.82
0.95
0.91
0.90
0.98
0.95
0.89
0.83
0.94
0.99
0.85
0.92
1.00
0.95
0.32
0.96
0.96

0.85 (0.47)
0.42 (0.23)
0.37 (0.14)
0.42 (0.18)
0.45 (0.24)
0.83 (0.59)
0.70 (0.58)
0.92 (0.82)
0.77 (0.61)
0.92 (0.66)
0.98 (0.94)
0.40 (0.18)
0.80 (0.57)
0.72 (0.55)
0.77 (0.49)
0.51 (0.31)
0.97 (0.86)
0.67 (0.46)
0.43 (0.23)
0.82 (0.66)
0.91 (0.82)
0.92 (0.82)
0.76 (0.57)
0.57 (0.42)
0.98 (0.73)
0.97 (0.93)
0.50(0.33)
0.99(0.85)
0.73(0.52)

0.95
0.87
0.95
0.64
0.67
0.85
0.76
0.79
0.91
0.81
0.88
0.68
0.77
0.76
0.77
0.73
0.87
0.77
0.40
0.76

0.79
0.74
0.88
0.80
0.69
0.92
0.74

0.93
0.91

18

13
3
1

1

1

1
9

5
3
3
2
2
1
2
2
2
3

37

2
2
2

2
5
2

2

26

26
21

476
403
122
119
116
99
96
92
90
80
80
79
71
62
60
56
54
53
52
45
44
43
42
42
41
40
39
38
38

1904
1612
488
473
461
395
382
367
360
320
318
315
284
245
240
222
213
211
207
179
175
170
168
168
161
157
154
150
150

Cytochrome-c oxidase
H+-transporting two-sector ATPase
RNA-directed RNA polymerase
DNA-directed RNA polymerase
DNA-directed RNA polymerase
Protein-tyrosine-phosphatase
Unspecific monooxygenase
Protein-tyrosine kinase
Alcohol denydrogenase
DNA topoisomerase (ATP-hydrolyzing)
Glyceraldenyde-3-phosphate dehydrogenase
NADH dehydrogenase
RNA-directed DNA polymerase
Peptidylprolyl isomerase
Glutathione transferase
Chitinase
Glutamatte–ammonia ligase
Phosphoprotein phosphatase
Cellulase
Peroxidase
Phospholipase A2
Catalase
α-Amylase
Nitrogenase
Proteasome endopeptidase complex
Phosphoglycerate kinase
Calf thymus ribonuclease H
Phosphoenolpyruvate carboxylase
β-Lactamase

1.9.3.1
3.6.1.34
2.7.7.48
2.7.7.6
2.7.7.7
3.1.3.48
1.14.14.1
2.7.1.112
1.1.1.1
5.99.1.3
1.2.1.12
1.6.99.3
2.7.7.49
5.2.1.8
2.5.1.18
3.2.1.14
6.3.1.2
3.1.3.16
3.2.14
1.11.1.7
3.1.1.4
1.11.1.6
3.2.1.1
1.18.6.1
3.4.99.46
2.7.2.3
3.1.26.4
4.1.1.31
3.5.2.6

Family
description

Family
size

Test set
size

Number of
subfamilies

Percent test set
SDT BLAST SAM

Detected by
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average content of F residues, and are approximately 500 residues
long, have a 75% probability of belonging to family 1.14.14.1 (i.e.,
selectivity¼ 0.75), with 52% coverage of the family (i.e., sensitivity
¼ 0.52). For comparison, the probability to select a member of
this family by chance (the background probability) is 0.01

Interestingly, one of the stochastic trees highlights another
feature that characterizes the family: members are more abun-
dant in several tissues (blastocyst, mycelium, prostate, liver,
adrenal, lung, hepatopancreas, blood, and ovary) while rare in
others. The split by this attribute reduces the impurity by 30%.
However, this is just one element of a more complex set of
dependencies, and to understand the role of tissue specificity in
characterizing family members it is necessary to look at the
complete set of rules.

Another example where subcellular location is useful for pre-
diction is family 1.10.2.2 (including the ubiquinol-cytochrome-c
reductases). Family members tend to be located in the inner mito-
chondrial membrane, particularly the matrix side, and half of the
deterministic trees in the mixture for the family use this subcellular
location in the root split of the tree. Yet another example is enzyme
family 2.7.7.6 (RNA polymerases). It turns out that, among pro-
teins that have low content of A, G, W, and E residues, and have
fewer than 1000 residues, proteins in the nucleus are disproportio-
nately likely to be members of 2.7.7.6 (selectivity¼ 0.12, compared
to background probability of 0.013, and sensitivity¼ 0.11). Tissue
specificity plays a role in defining the trees of the enzyme family
1.6.99.3 (NADH dehydrogenases), as proteins in the thorax muscle
disproportionately belong to the family (selectivity ¼ 0.21, com-
pared to background probability of 0.004, and sensitivity ¼ 0.77).
Twenty percent of deterministic root splits in the mixture for
1.6.99.3 are based on tissue specificity.

Some EC families are naturally annotated as having co-fac-
tors. For example, members of the 1.18.99.1 hydrogenases often
have iron-sulfur and nickel as cofactors. These co-factors in
themselves are not enough to distinguish family members from
non-members (in fact, a search in Biozon (56) reveals that there
are more than 30 different enzyme families that use Nickel as co-
factor), but inclusion of this information in decision rules can
greatly increase their accuracy. For example, proteins that have
iron-sulfur as co-factors have high CT dipeptide content, are
found in bacteria or viruses, and are significantly enriched for
membership in family 1.18.99.1 (see Fig. 17.8). Another exam-
ple is the co-factor thiamine pyrophosphate. There are 30
enzyme families from four different (out of six) major EC groups
that use thiamine pyrophosphate as a co-factor (source: Biozon
(56)). However, when this fact is combined with information
about amino acid and Prosite domain content, it yields an effec-
tive classifier for family 1.2.4.1 (ROC50 score of 0.65 vs. 0.51 for
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best BLAST). Twenty percent of trees in the mixture for this
family use the co-factor attribute in the root split of the tree,
including 90% of the deterministic trees.

Another type of information that can be extracted from these
trees is structural information. For example, family members of
1.10.3.2 (including laccases and urishiol oxidases) tend to have
high predicted beta sheet content. Indeed, members of 1.10.3.2
with solved 3D structure all belong to ‘‘mainly beta’’ class in
CATH and ‘‘all beta’’ class in SCOP. Again, by itself, this infor-
mation is clearly inconclusive. However, proteins that have high
predicted beta sheet content, above-average content of P and N
residues, and are present in flowering plants, are significantly
enriched for membership in 1.10.3.2 (selectivity ¼ 0.30, com-
pared to background probability of 0.001, and sensitivity ¼

Fig. 17.8. A decision tree for EC family 1.18.99.1. The complete tree is shown at lower-left. The part of the tree
discussed in the text has been enlarged. The highlighted rule detects members of 1.18.99.1 with 10% selectivity
(compared to background probability of 0.001) and 86% sensitivity.
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0.97). A similar observation can be made about enzyme family
3.6.1.23. In this case, proteins low in predicted helix content,
high in tryptophan, and present in flowering plants are dispro-
portionately likely to be members of 3.6.1.23 (selectivity¼ 0.10,
compared to background probability of 0.002, and sensitivity
¼ 0.85).

Many such rules can be extracted from the set of trees. It must
be emphasized that only on rare occasions is a single rule sufficient
to produce a highly accurate classifier (such as with family
1.14.14.1, described above). It is the combination of many rules
in the mixture of stochastic decision trees that yields superior
performance over BLAST. However, the examples given in this
section illustrate that the non-sequence attributes used in our
algorithm do contribute substantially to the overall performance
of the mixtures.

7. Conclusions

The gene data that are available today present us with a major
challenge: how to decipher the rules that define protein function-
ality. Obviously, the sequences of these proteins have a bearing on
this question. According to the central dogma of molecular biology,
it is the protein sequence that dictates the structure of the protein
and this structure in turn prescribes the biological function of the
protein. Moreover, sequence similarity can suggest common heri-
tage and similar functions. Traditionally, sequence analysis has
played a significant role in predicting gene function. However,
there are a growing number of protein families that cannot be
defined based on sequence similarity, and are linked and grouped
based on other features. Some may argue that the tools that are
available today for sequence analysis already exhaust sequence infor-
mation. Indeed, in some cases it seems that new evidence must be
presented, either in the form of structural similarity, expression data
or protein interaction data before relationships can be established.

Here we argue that there is more information to utilize from
sequence data. Our ability to analyze an entity and explore its
relationships with other entities really depends on the representa-
tion we employ for that entity. Traditionally, proteins were ana-
lyzed as sequences of amino acids. This fairly simple representation
was complex enough to detect many relationships. But once the
order of amino acids was eliminated much of the information was
lost. In this paper we present a new representation for proteins,
through an extensive set of attributes, and introduce a novel model
to decipher the regularities that distinguish family members from
non-members. The model uses only sequence data and features
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extracted from database records, but can detect subtle principles
that cannot always be established based on pure sequence
similarity.

The set of attributes covers a broad range of protein features,
from basic compositional properties to physiochemical features,
predicted features that hint at the topology and the shape of the
protein structure, and database attributes that provide additional
information about the subcellular location of the protein, its tissue
preferences and other features that are likely to be linked to protein
functionality. This set of features can be extended as more data
become available. The combination of nominal attributes with
numeric attributes in our model suggested the use of decision
trees, one of the very few machine learning techniques that can
handle mixed data. In addition to being suited for our learning
task, the model can tolerate noise and missing data, as is often the
case with database attributes. However, even the most recent
learning algorithms for decision trees proved unsuccessful and
the accuracy of the learned models was insufficient for effective
prediction. Therefore, we embarked on developing a new model
based on the decision tree model, which we call stochastic decision
trees. In addition, we introduce several other components and
options in the learning algorithm, such as different pruning meth-
ods and different weighting schemes. To find the optimal learning
strategy we search through the space of decision tree learning
algorithms until we converge to a locally optimal strategy. Four
main elements characterize our final model: (1) dynamic feature
and value selection for large feature and value sets, (2) probabilistic
attribute selection protocol, (3) the use of a mixture of trees, and
(4) the use of positive and negative sample divergence properties in
all stages of tree learning, from pruning to tree weighting and
evaluation. We use the Jensen-Shannon divergence measure to
assess the trees in terms of the separation they induce over the
data set between the positive and the negative samples (members
and non-members). Trees that maximize the separation are
assigned a higher score (weight) and play a more dominant role
in prediction. Thus the learning process essentially maximizes the
buffer between the positive and the negative samples. One might
notice the similarity with kernel-based methods such as Support
Vector Machines that try to maximize the margins around the
separating hyper-planes. A good alternative to the JS-based prun-
ing is the MDL-based approach that is described in the Note 2.
This approach compensates for some of the deficiencies of valida-
tion-based post-pruning and is especially useful with small data-
sets, where not enough samples are available for training and
validation.

To assess our model we evaluated it over two well-known
classifications; the Pfam sequence-based classification and the EC
function-based enzyme classification. The results were compared
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to the popular BLAST algorithm and SAM, an HMM-based align-
ment program. Indeed our model compares favorably with
BLAST and SAM over the Pfam data set, but the power of our
model is more pronounced when the protein family is defined
based on function, as in the EC database, rather than just based
on sequence. Although for most EC families sequence similarity is
still the most dominant factor in their definition, these families are
less conserved than Pfam families, and in some cases are composed
of multiple sequence subfamilies. Learning such families is a com-
plex task, especially when the subfamilies do not seem to be related
and cannot be reliably aligned. As was demonstrated here, our
method can be applied successfully to predict the enzyme class of
a protein, a task that sequence similarity-based methods often
perform poorly on.

One of the advantages of our method is that the sequences
need not be aligned. The model can learn the features common to
a diverse set of proteins of shared function, sometimes without
even evident sequence similarity. When these features are clearly a
property of the protein family and are not found in other
sequences, then they serve as good predictors and are integrated
into the model.

There are several modifications that may improve performance.
One modification that we are considering is to modify the pruning
algorithm and switch from a local approach to a global approach
(where all nodes are considered before deciding on the node to be
pruned). Another modification would be to assign probabilities to
attribute values, since for some nominal attributes it is possible to
quantify the likelihood of the different values. Clearly, integration of
other features can refine the models and, finally, boosting techni-
ques can also help to improve the performance.

8. Notes

1. The extended training procedure for decision trees. Our
extended decision tree learning algorithm includes the fol-
lowing elements:
a. Dynamic attribute filtering. In the case of dipeptide

composition, the number of attributes is too large to be
used exhaustively during training. To narrow the scope of
data that will be input to the decision tree algorithm, we need
a filtering criterion that can examine the training data and
retain only those attributes that seem important. This impor-
tance is estimated by computing the ratio of the frequency of
a dipeptide among family members to its frequency among all
non-family members. For example, for an attribute like ‘‘AA’’,
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this ratio is the percent composition of ‘‘AA’’ in family mem-
ber sequences divided by the percent composition of ‘‘AA’’ in
non-family member sequences. Note that these calculations
are restricted to the training set only. We retain only those
dipeptides for which this ratio is one standard deviation from
the mean. However, to keep the computation feasible, we
used at most the top 30 such dipeptides.

b. Discretizing numerical features. In a decision tree, numer-
ical features must be divided into subranges before they can
be used to split a node. Many researchers have approached
this problem and the best solution is by no means clear. The
Fayyad-Irani heuristic (57) is an efficient and flexible
method for discretizing numerical attributes. It is a greedy
recursive protocol, inspired by the Minimum Description
Length principle, which produces a partition of k-arity,
where k is selected by the protocol itself. Given a k-ary
partition, the algorithm splits it into a (k+1)-ary partition
by examining every remaining cut point and selecting the
one that maximizes an MDL-like criterion function. If its
value is less than zero for every remaining cut point, the
protocol terminates and the current partition is used. The
specific formula for scoring cut points is

GainðS;A;T Þ � log2ðN � 1Þ
N

� DðS;A;T Þ
N

where N is the number of samples, T is the cut point and

DðS;A;T Þ ¼ log2ð3k � 2Þ � ½k � EntropyðSÞ � k1

� EntropyðS1Þ � k2 � EntropyðS2Þ�

with k, k1, and k2 being the number of classes in each set
(2 in our case). For more details see (57).

Although others have used this protocol to globally
partition numerical attributes (58), we use it at every
decision node to induce local partitions of the numerical
attributes based on the given subset of sample points at
that node, thus adjusting the decision to the subset of
data available. The protocol can also be constrained to
produce only binary splits (see Binary splitting, below).

c. Binary splitting. While many of our attributes are naturally
suited to having multiple values, we wanted to test the
impact of forcing all splits to be binary. This preserves
training data for later splits, and consequently may improve
accuracy, particularly since a very small fraction of our data
set represents class (family) members. Moreover, binary
splits are not susceptible to the biased entropy of many-
way splits (see Selection measures below). With numerical
attributes, the most straightforward procedure is also the
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most efficient and exhaustive: simply restrict discretization
to exactly two subranges (i.e., a single cut point). For a
particular attribute, the optimal split can found in O(N)
time, where N is the number of possible cut points (57).
However, for nominal attributes, since there is no ordering
over the values, the exhaustive procedure of testing every
possible binary partition of the values leads to a time com-
plexity of O (2d) where d is the number of possible values for
the attribute d ¼ Values(A). There are at least two ways to
deal with this problem. The most naive way is to examine
only those binary partitions of Values(A) in which one value
is assigned to one branch and all other values are assigned to
the other branch. This is functionally equivalent to convert-
ing each value of A into a separate, purely binary attribute,
and it reduces the time complexity to O(d).

A more sophisticated partitioning algorithm is found in
CART (59). Our problem can be expressed as having to find a
subset of Values(A) to assign to one child, such that Gain(S,
A) is maximized. Let each value vi 2 ValuesðAÞ correspond
to a subset Si of S, which will consist of the examples that have
vi as a value. Sort the vi’s in order of increasing class purity of
the Si’s. In this new order, the optimal subset is the union of
S0, . . ., Sk, where k is some number in {0, . . ., d}. Therefore,
one can find the optimal binary split in only O(d) time,
excluding sorting time. This optimal partitioning algorithm
is the one we use during tree training.

d. Multiple values for attributes. The nominal database attri-
butes that we use are somewhat different than those typically
found in the literature on decision trees. Each example can
take on several values for each nominal attribute, instead of
just one. For example, a protein can be abundant in the liver
as well as in heart tissues, and the number of possible com-
binations is huge. During training, when a node is split
using a nominal attribute A, the set Values(A) is partitioned
across the node’s children. With traditional nominal attri-
butes, each example would be assigned to the unique child
that corresponds to its value. In our model, however, each
example may correspond to several children. To overcome
this problem we divide the example itself across all children,
weighting each child’s portion by the number of values the
example has in common with that child.

e. Missing attributes. Sometimes, an individual example will
lack the attribute being tested by a decision node. We
adopt the approach implemented in the C4.5 algorithm
to handle these samples, and partition them across the
child nodes maintaining the same proportions as the rest
of the training examples (i.e., the proportions are
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calculated using only samples that have reached the split-
ting node and that have known values for the test attri-
bute). These fractions can be partitioned again and again
with every unknown attribute. Consequently, the ambig-
uous examples will reach several leaf nodes during classifi-
cation. In these cases, the final probability is defined as the
average of all leaf probabilities, weighted by the fraction of
the example that reached each leaf.

f. Selection measures. The C4.5 algorithm improves upon
ID3 by using GainRatio(S, A) (48), which is Gain(S, A)
normalized by the split information:

SplitInfoðS;AÞ ¼ �
X

v2ValuesðAÞ

jSAj
jSj log2

jSv j
jSj

Note that this expression is just the information content of
the attribute itself. This modification is meant to compensate
for the bias of Gain(S, A), which tends to be higher for
attributes with more values. However, GainRatio(S, A) is
itself less than ideal, since it may be biased toward attributes
with very low SplitInfo(S, A) instead of high Gain(S, A). To
counter this, we also tested a closely related distance metric
introduced by Mantaras (60), who showed formally that his
measure does not suffer from the limitations of Gain(S, A) or
GainRatio(S, A) (though there is empirical evidence that it is
not guaranteed to eliminate the bias altogether (61)). To
simplify notation, in the following sections we refer to both
GainRatio and the Mantaras selection functions as informa-
tion gain, unless specified otherwise. Note that these mea-
sures are only used when computing multi-branch splits,
since their purpose is to combat high arity splitting. The
basic Gain(S, A) is sufficient when dealing with binary splits.

g. Handling skewed distributions. When trying to discern pro-
tein families, the overwhelming majority of the training set is
composed of negative examples (usually more than 90%). As
a result, one may run into problems when trying to learn
models of small families. Because of its greedy nature, most
of the learning phase will concentrate on learning the reg-
ularities in the negative examples that result in significant
information gain. Not only will this process cause extended
learning times but it may also totally miss subtle regularities
observed in the positive samples. The simple solution of
presenting only a small set of negative samples equal in size
to the set of positive samples is insufficient because some
regularities observed in the positive set may be mistakenly
considered as discriminating regularities, while if considered
along with the whole set of negative examples they may
prove to be uninformative.
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To overcome this problem, we adopted a different
approach where all the negative examples are presented,
but their sum is given the same weight as the sum of all the
positives examples (as suggested in (62)). Thus, every
positive example contributes 1/#positives and every nega-
tive example contributes 1/#negatives to the total counts,
and are weighted accordingly in the calculations of the
information gain.

However, by doing so we introduce another problem. It
may happen that we will end with a tree of high purity (when
using the weighted samples), but of high impurity when
considering the original unweighted samples, thus increasing
significantly the rate of false positives. We tested two possible
solutions that attempt to balance the two approaches. In the
first, the criterion function for splitting and pruning is
the average of the weighted-sample information gain with
the unweighted-sample information gain (this protocol is
called mixed entropy). The second solution starts by train-
ing the trees using the weighted samples. The usage of
unweighted-sample entropy is delayed until the maximal
information gain over all possible attributes at a given node
is below a certain threshold. At that point each attribute is
reconsidered using unweighted entropy and the training
proceeds for as long as the information gain is below the
threshold (we call this protocol interlaced entropy).

Note that the weighted samples are used only during the
calculations of the information gain. For all other pur-
poses, including pruning and prediction, the probabilities
based on the unweighted samples are used.

h. Leaf weighting. Not all leaf nodes are good predictors and
different nodes may have different accuracies, when tested
on new samples. This is especially true if the number of
samples in a node is small. To address that we tested also a
variant where weights are associated with leaf nodes, and
the final prediction is adjusted accordingly. The weights
are trained using the perceptron learning algorithm (36),
until a local minimum of the performance is achieved over
the training set.

2. Post-pruning by the MDL principle. One of the major pro-
blems of validation-based post-pruning methods is that a
sufficiently large number of positives in the validation set are
required to ensure high generalization power. Otherwise,
many true regularities learned from the positives in the train-
ing set may be pruned, since they are not supported by the
small validation set. The effect of post-pruning on decision
trees in such cases can be drastic.
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With very small data sets, where every single sample is
important, one might want to consider alternative prun-
ing methods that use all the given data. The chi-squared
test, used in a pre-pruning context, is one possibility.
However, it may suffer from what is called the horizon
effect. (This refers to the phenomenon where decision
node splits that initially appear poor in fact lead to better
performance later on during the training process. Any
pre-pruning technique will be susceptible to this kind of
short-sightedness (36)). Here we use an alternative
method based on the minimum description length prin-
ciple (63), abbreviated as MDL.

The MDL principle is a common heuristic for selecting the
most probable or valid model. It is based on an argument that
was postulated by Occam in the 14th century. According to
this argument (called Occam’s razor), given two models that
explain an observation equally well, it is advised to select the
simpler model, under the assumption that it will generalize
better to new examples. Therefore, the most probable model
(of all possible models) for a given data set is the one that
minimizes the complexity of the model while maximizing its
ability to explain the data. This concept is captured by the
description length. The description length of a given model
(hypothesis) and data is defined as the description length of
the model plus the description length of the data given the
model.

One way to define the description length of a model is by its
algorithmic complexity (Kolmogorov complexity). However,
this approach is not very practical, since to define the algo-
rithmic complexity of a model, one has to find the shortest
program that encodes this model, something that is hardly
ever possible.

A more practical method that formulates the same princi-
ple in probabilistic terms is the Bayesian approach. Under
this approach, the most probable model is the one that
maximizes the posterior probability of the model given the
data

PðhjDÞ ¼ PðhÞPðDjhÞ
PðDÞ

The optimal hypothesis h* is the one that maximizes P(h | D)
or, equivalently, minimizes –P(h | D)

h� ¼ arg min
h
½�PðhÞPðDjhÞ

PðDÞ �

¼ arg min
h
½�PðhÞPðDjhÞ�

¼ arg min
h
½� log2 PðhÞ � log2 PðDjhÞ�
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By Shannon’s theorem, –log2 P(x) is related to the shortest
description of a string x (in our case the model h), and the
likelihood –log2 P(D | h) is a measure for the description of
the data given the model. Therefore, the MDL principle and
the Bayesian approach as formulated above are practically the
same.

To approximate the first term we calculate the binary
encoding of a tree. For each node j we devote log N + log kj

bits, where N is the number of attributes in our model and kj

is the number of possible values for the attribute associated
with node j. In this way, the total description length of a tree is
approximated by the sum of the descriptions of its nodes.
Note that the number of possible trees increases exponentially
with the description length; therefore, the probability of each
tree decreases exponentially. Thus, the logarithm as applied to
the probability of the tree generates a term that is linear in the
binary encoding of the tree, as desired.

To calculate the second term we used two different
approaches. The first, called probability based MDL post-
pruning, calculates P(D | h) based on the probabilities the
model assigns to each sample. Specifically,

PðDjhÞ ¼
Yn

i¼1

PðþjxiÞ ¼
Yn

i¼1

X

j2leavesðT Þ
fj ðxiÞProbj ðxiÞ

where fj(x) is the fraction of xi that reaches leaf j and Probj(xi)
is the probability assigned to xi by that leaf. (The reason that a
fraction of a sample can reach a node is related to the problem
of missing values and is explained in Note 1e.) Intuitively, the
likelihood term log P(D | h) accounts for the uncertainty that
is left in the tree. With probability 1 the uncertainty is zero, or
in other words, the tree describes the data perfectly. Other-
wise, some uncertainty exists and we must include in the
description the variance or the deviation of the data from
the tree, since only a combined description of the tree and
the variance will enable complete recovery of the data set. Our
second approach, called entropy-based MDL post-pruning,
attempts to directly estimate the total uncertainty that
remains in the tree by measuring the total entropy in all the
leaf nodes. Our tests indicate that the probability-based
approach outperforms the entropy-based approach.

Finally, the two terms are combined together into a single
measure. Although the MDL heuristic relies on sound argu-
ments, the exact formulation requires some adjustment and
one usually needs to introduce a factor a to fix the scale such
that

DescLen ¼ ModelDesc þ a � Likelihood
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To determine a, we study the distribution of uncertainties
in the trained trees versus the description lengths of the
nodes, and set the range of possible values for a so that they
scale similarly. The exact value is selected based on perfor-
mance optimization (see Fig. 17.9).

To find the optimal tree, using this new pruning
method, we train a complete tree and then prune it in
an exhaustive fashion, similar to the post-pruning method
described in Section 3.3, but using this new MDL criter-
ion function. The elimination of the validation set pro-
vides us with more training samples at our disposal.
However, it also eliminates a stochastic element that can
increase robustness, as it unifies all ten training sets used
by the post-pruning procedure into one. To compensate
for the missing validation set in that aspect, we re-intro-
duce ten training sets by using the bootstrapping sampling
method (64) of the learning set. Specifically, each training
set of size m is generated by selecting instances from the
learning set at random, with repetitions. Theoretical
results (65) indicate that models estimated from bootstrap
data sets will converge to the optimal model at the limit
of infinite bootstrap data sets. Moreover, the bootstrap
method was proved to be more robust in providing reli-
able estimates of performance in the presence of small data
sets (66).

Fig. 17.9. The minimum description length. The description length consists of two
elements, and the relative contribution of each is determined by the weight � (see text).
We tested a range of possible values for over a random subset of 50 PFAM families to
determine the one that maximizes the performance. For each value of �we trained a new
set of trees and measured the average performance over the subset. The graph plots the
average performance as a function of the value of �.
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With the MDL-based pruning and evaluation, the final
output of the mixture model is given by

PMixtureðþjxÞ ¼
P

training set j

P
i2TreesðjÞQ MDLðiÞPiðþjxÞP

training set j

P
i2TreesðjÞQ MDLðiÞ

where QMDL(i) is defined as 1/MDL(i) and MDL(i) is the
description length of the ith tree.

3. Setting the threshold for evaluation and prediction. When eval-
uating the performance of a model that assigns probabilities
to samples, one needs a clear definition of positives and nega-
tives. Usually a threshold T is defined, and if the sample
probability exceeds this threshold, then the sample is defined
as positive.

How should one define the threshold T? We tested two
different approaches. The naive approach would be to take a
majority vote, so that all samples with probability higher
than 0.5 are defined as positive. However, this may be mis-
leading, since the number of positives and negatives may
differ significantly to begin with. A more sensible approach
would be to take into account the prior probabilities of
positives P0 (+) and negatives P0 (–), and set the threshold
to P0 (–). To account for random fluctuations due to the
varying sample sizes at the nodes, a different significance
threshold Tj is calculated for each node. Specifically, if the
total number of samples in a leaf node j is Nj, then the
number of positives that will reach this node by chance
(the null hypothesis) is expected to follow a binomial dis-
tribution with mean Nj � P0 (+) and variance Nj � P0 (+)
� P0 (–). Using the normal approximation for the binomial
distribution, we set the threshold at the 95th percentile of
the distribution, and if the node probability Pj (+) exceeds
this threshold then we define this instance to be positive.
Thus, each example is classified unambiguously in a discrete
manner, and the accuracy is computed thereby. If the sample
reaches a single leaf node, then only the confidence interval
for this node is used to assign a label. If it reaches more than
one node, a ‘‘combined’’ node is created, where the datasets
are collected from the different leaf nodes, weighted by the
fractions of the sample that reach each leaf node, and
the sample probabilities, the threshold and the label are
calculated accordingly. We refer to this approach as the
confidence-based approach.

The second approach uses the equivalence point criterion.
All sequences in the database are sorted according to the
output assigned by the model. The equivalence point is the
point where the number of false positives equals the number
of false negatives (67). All proteins that are predicted with
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higher probability are labeled as positives. In other words, the
equivalence point is the point that balances sensitivity and
selectivity. We refer to this approach as the equivalence
point approach.
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Chapter 18

Using Evolutionary Information to Find
Specificity-Determining and Co-evolving Residues

Grigory Kolesov and Leonid A. Mirny

Abstract

Intricate networks of protein interactions rely on the ability of a protein to recognize its targets: other
proteins, ligands, and sites on DNA and RNA. To recognize other molecules, it was suggested that a
protein uses a small set of specificity-determining residues (SDRs). How can one find these residues in
proteins and distinguish them from other functionally important amino acids? A number of bioinfor-
matics methods to predict SDRs have been developed in recent years. These methods use genomic
information and multiple sequence alignments to identify positions exhibiting a specific pattern of
conservation and variability. The challenge is to delineate the evolutionary pattern of SDRs from that
of the active site residues and the residues responsible for formation of the protein’s structure. The
phylogenetic history of a protein family makes such analysis particularly hard. Here we present two
methods for finding the SDRs and the co-evolving residues (CERs) in proteins. We use a Monte Carlo
approach for statistical inference, allowing us to reveal specific evolutionary patterns of SDRs and CERs.
We apply these methods to study specific recognition in the bacterial two-component system and in the
class Ia aminoacyl-tRNA synthetases. Our results agree well with structural information and the experi-
mental analyses of these systems. Our results point at the complex and distinct patterns characteristic of
the evolution of specificity in these systems.

Key words: Specificity-determining residues, co-evolving residues, correlated mutations, mutual
information, Monte Carlo, protein evolution, two-component system, aminoacyl tRNA synthetase.

1. Introduction

The structure of complex biological networks is determined by
a large number of protein–ligand interactions. Each interaction
involves a protein precisely recognizing and binding its target: a
protein, a site on DNA, or a small molecule. What determines the
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specificity of these interactions on a molecular level? How does
specificity change during evolution? How can we alter the existing
or engineer novel specificity of a protein?

It was suggested that for many proteins specificity is deter-
mined by a small set of amino acids, so-called specificity determin-
ing residues (SDRs) (1, 2). Mutations of SDRs can lead to altered
(not necessarily diminished) specificity, i.e., one can mutate SDRs
to make proteins bind new targets.

It is important to make a distinction between SDRs and other
amino acids forming a binding pocket or a protein interface. While
the binding interface of a protein can be very extensive and mu-
tations of this interface can affect binding, only a small group of
SDRs is responsible for specific interactions. For example, a DNA-
binding protein can have a large non-specific DNA-binding inter-
face through electrostatic interactions with the DNA backbone,
while a only a few amino acids (SDRs) form specific interactions
with the nucleotides and determine the sequence of DNA to be
recognized by the protein (1). Mutations of amino acids forming
the binding interface can affect the affinity of binding, while muta-
tions of SDRs can affect the specificity of recognition.

Finding SDRs is an important problem in molecular biology.
While crystallographic and NMR structures of proteins and pro-
tein complexes reveal organization of the binding interface, they
provide little information on the relative importance and ener-
getics of interactions of individual amino acids with the target.
Usually, SDRs are determined by trial-and-error (through struc-
ture-guided) mutations of the protein. While finding mutations
that diminish binding can be relatively easy, identifying muta-
tions that alter specificity may require a large amount of experi-
mental work.

Our approach, in contrast, is based on the use of evolutionary
information as ‘‘lab notebooks from the nature’s laboratory’’.
Indeed, a large number of mutations have been made, and only
those that provide viable and fit phenotypes have been recorded in
genomes of different organisms. Here we show how this informa-
tion can we be used to understand protein specificity and detect
SDRs.

We use two approaches to identify SDRs. Both methods look
for specific patterns of amino acid evolution as a signature of SDRs.
One method uses proteins grouped by specificity and finds resi-
dues that are the same within a group (among proteins of the
same specificity) and are different between the groups (among
proteins of different specificities). Another method uses co-evolving
residues in interacting proteins and identifies positions that co-
evolve, i.e., a substitution of an amino acid in one protein corre-
lates with a specific substitution of an amino acid in its interaction
partner.
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Importantly, our methods rely on a novel method to calculate
the statistical significance of detected residues. A statistical control
takes into account potential biases due to specific evolutionary
history and structure of considered proteins. Neither approach
requires the knowledge of the proteins’ structure, thus allowing
us to use structure to validate our predictions.

Several similar techniques have been developed in the field.
Different techniques require different inputs (e.g., some need
structures), rely on somewhat different set of assumptions, and
use different methods to compute statistical significance of their
predictions.

Livingstone and Barton (3) grouped sequences according to
overall sequence similarity, functional similarity, origin or other
criteria. Conservation scores took into account physicochemical
properties of each amino acid. This technique has been applied to
SH2 domain family, and it has been shown to correctly identify
locations of core a-helices. No scheme for the calculation of sta-
tistical significance has been reported.

Lichtarge et al. (4) further developed this idea into a method
dubbed evolutionary tracing (ET). In ET, sequences are divided
into subgroups by cutting phylogenetic tree at different cutoffs.
Each cutoff provides a grouping, which in turn provides a list of
putative specificity determining residues. SDRs are detected as
residues that are 100% conserved within every subgroup and not
conserved across the whole family. Such definition is sensitive to
small rare substitutions and does not require the sought residue to
be different in different subgroups. To filter-out false positives emer-
ging in such selection process, 3D structure is employed. Residues
forming surface patches are predicted as SDRs. It has been demon-
strated by Lichtarge et al. that the different partitionings obtai-
ned by applying different cutoffs on the tree of SH2 domains
indeed results in finding residues of different specificity levels.
The method has been applied to several protein families, including
SH2, SH3, nuclear hormone receptors, G-proteins and G-protein
coupled receptors, zinc-binding domains, and the RGS/G–protein
interaction. The main drawbacks of the method are that (1) it
requires the knowledge of a 3D structure, (2) it does not evalu-
ate of statistical significance of predicted residues, (3) SDRs
not located in the surface patches (e.g., specificity pockets) are
missed.

Hannenhalli and Russel presented another method of detec-
tion of SDRs using specificity subclasses (5). Unlike Lichtarge et al.,
the major focus of their work was on the problems of identifying
regions that confer specificity of subtypes already known and
of predicting subtypes for ‘‘orphan’’ sequences. Given a multiple
sequence alignment and a classification of different subtypes (e.g.,
difference in enzyme specificity), the method utilizes the relative
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entropy value to determine such positions in hidden Markov pro-
files of subtypes that are most discerning of each subtype. Also
hidden Markov profiles were used to predict the subtype for
unclassified proteins. Authors performed a large-scale assessment
of their method by applying it to PFAM collections of multiple
alignments partitioned into subtypes by using SWISS-PROT func-
tional assignments. The method has been shown to be able
to detect positions known to confer specificity in close agree-
ment with experiment. Good performance of the method in
terms of predicting protein subclass has been demonstrated.
The method suffers similar drawbacks: (1) division into sub-
grouping is arbitrary user-defined and (2) statistical significance
is not evaluated. Statistical significance is important not only for
the elimination of false predictions but for the discrimination
between several evolutionary patterns. Kalinina et al. (6) used
substitution matrices to account for varying rates of substitution
of different amino acids and, following our earlier work (7), uti-
lized shuffled MSAs and a linear correction technique to compute
statistical significance. In addition, they have developed method
to select cutoff values, which uses a Bernoulli estimator. Recently,
Pei et al. (8) have developed a method called SPEL that using
log-likelihood ratios finds positions which evolve significantly
differently from a random model of evolution and, correspond-
ingly, from the phylogenetic tree for a given MSA. The latter two
methods have been shown to perform well on the LacI protein
family.

CERs, which are also called ‘‘correlated mutations’’, are resi-
dues in the protein sequence where a mutation in one region is
compensated by mutation at a certain position(s) in the same
or other protein. CERs have been shown often to participate
in contact regions of the proteins (9, 10). They can be also
be used to improve the prediction of protein structure and
docking (11).

Several approaches have been developed to detect CERs using
MSAs. For example, Göbel et al. (10) used correlation coeffici-
ent matrices to detect CERs. At the same time Shindyalov et al.
(12) introduced a phylogeny reconstruction-based method to take
into account phylogenetic relations. Pollock et al. used a maximum
likelihood method to detect CERs (13). Numerous other app-
roaches have been developed including machine learning-based
approaches (14). Yu et al. (15) tried to combine CERs and SDRs in
their surface patch ranking (SPR) method, which uses a support
vector machine (SVM) to find the correlated positions that best
discriminate between protein domains grouped according to their
function. Their method, however, requires knowledge of the pro-
tein structure and cannot distinguish between functional and phy-
logenetic signal.
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2. Model of Protein
Evolution

2.1. Sources of

Conservation and

Variation

Protein sequences evolve under several constraints. A globular pro-
tein must fold into a 3D structure, get transported into the right
compartment, bind its targets, catalyze reactions, etc. Mutations
that disrupt some of these functions lead to lower fitness of the
organism and thus are eliminated in evolution. Each constraint
leads to a specific pattern of conservation and variation in
protein sequences. Here we focus on four major sources (evolu-
tionary signals): structural, non-specific functional, specificity-
determining, historic.

Structural signal leads to higher conservation of buried, mostly
hydrophobic residues, while letting non-functional solvent-exposed
residues to vary to some extent among hydrophilic ones. The non-
specific functional constraint causes amino acids of the active site
to be highly conserved, while keeping amino acids involved in the
formation of binding interfaces to be somewhat conserved as well
(e.g., binding the DNA backbone or formation of a hydrophobic-
pocket to recognize a protease target). Specificity-determining amino
acids are expected to conserved among homologs of the same spe-
cificity, while being different among proteins of different specificity.
Finally, historic signal is a reflection of the individual phylogenetic
history of a protein family, leading to a higher preservation of amino
acid sequence among proteins that diverged more recently (e.g.,
orthologous proteins that were separated by recent speciation).
Proteins that have diverged earlier in the history are expected to
be more diverged in sequence as well (e.g., distant homologs).

In analyzing patterns of protein evolution, we should take into
account all these factors and try to separate them to find the sig-
nal of interest. Here we focus on revealing specificity-determining
signal.

To separate the signals we use the following strategy. First,
we compute the measurement of SDR signal in the alignment of
natural proteins. Second, we obtain the parameters of this align-
ment, such as amino acid composition and the phylogenetic tree of
the family and generate pseudo-random protein sequences that have
the same amino acid composition at each position and the same
phylogenetic tree of the whole family. Third, we compute the prob-
ability of obtaining observed natural signal in the pseudo-random
proteins. Residues that have very low such probability are conside-
red as statistically significant predictions (see Section 3 below).

2.2. Consequences of

Protein Duplication

Upon duplication, proteins can diverge in their specificity and
function (16, 17). We take advantage of this divergence and
assume that paralogous proteins in closely related genomes have
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changed their specificity but did not have sufficient time to sig-
nificantly change the type of binding partners or alter the geometry
of the binding site.

2.3. Using Genomic

Proximity

In identifying CERs, we use the genomic proximity of genes of
bacterial two-component system as a predictor that these genes
participate in the same pathway and interact with each other (18, 19).

3. Methods

3.1. Outline Here we briefly outline our procedure. Details of the method are
presented in the following sections.

3.1.1. Finding SDRs 1. Data collection and alignment. We start from a single seq-
uence, collect groups of orthologous and paralogous proteins,
and build a multiple alignment of them. The alignment is
grouped such that orthologs are put together, while paralogs
in separate groups.

2. Calculation of mutual information. Calculate mutual informa-
tion for each position in the alignment and for the group index.

3. Estimation of statistical significance. Construct a pseudo-
random multiple sequence alignment that has the same amino
acid composition of each column and the same phylogenetic
tree as the real alignment used above. Calculate the distribution
of the mutual information in each position of the alignment.
Compare random and real mutual information and identify
statistically significant SDRs

4. Validation. Use known structures of proteins and their com-
plexes with ligands to test (i) clustering of obtained SDRs in
space; (ii) surface/pocket locations of SDRs; (iii) proximity
between SDRs and ligands, active sites, etc.

3.1.2. Finding CERs 1. Data collection and alignment. To find CERs, we start from a
pair of interacting proteins, collect and align homologs for each
of them, and establish pairwise interactions between collected
proteins (e.g., by using proximity in a bacterial genome as an
evidence for interaction). This produces a double alignment,
i.e., side-by-side alignments of interacting proteins.

2. Calculation of mutual information. Calculate mutual informa-
tion for each pair of positions in the two proteins (alignments).

3. Estimation of statistical significance. Construct a pseudo-
random multiple sequence alignment for both participating
proteins. Each pseudo-random alignment has the same
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amino acid composition of each column and the same phylo-
genetic tree as the real alignments used above. Calculate the
distribution of the mutual information in each pair of position
of the alignments. Compare random and real mutual infor-
mation and identify statistically significant CERs.

4. Validation. Use known structures of proteins and their
complexes to test (i) clustering of obtained SDRs in space;
(ii) surface/pocket locations of SDRs; (iii) proximity of SDRs
to the protein–protein interface.

3.2. Finding SDRs

3.2.1. Pattern of SDR

Evolution

Due to their nature, SDRs exhibit a particular pattern of evolution;
they can be highly conserved among proteins carrying out the same
function in related organisms (e.g., orthologs). On the other hand,
SDRs are typically different in homologous proteins that have dif-
ferent functions (e.g., paralogs) (Fig. 18.1).

3.2.2. Ortholog Detection

and Clustering

If specificities of proteins of interest are known (e.g., from experi-
ment), one can simply group proteins by specificity and apply our
algorithm for the identification of SDRs. Unfortunately, such in-
formation is not available for most of the proteins. Instead, we use
orthology and paralogy relationships between proteins to group
them and detect SDRs. Each group consists of orthologs from
closely related species. Paralogs, in contrast, are placed into separate

Fig. 18.1. Example of a multiple sequence alignment of three orthologous groups.
Variable residues on the surface of the protein are depicted in light gray, conserved
residue in hydrophobic core in dark gray and putative SDRs in white on gray background.
Correlation of the group of orthologs and type of amino acid at putative SDR positions
may arise from the phylogenetic history of the family, depicted as a phylogenetic tree on
the left.
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groups. By assuming that orthologs have the same specificity and
paralogs have different specificities, we obtain the sought grouping
of proteins by specificity.

In this paper we focus on prokaryotic genomes, where, in
general, the degree of duplication of specific function is typically
negligible, and best-to-best similarity matches are often used as
orthologs. We apply the following simple strategy to derive groups
of orthologs. (1). A number of genomes are scanned with an HMM
domain profile and domain sequences are extracted; (2) domain
sequences are aligned all-against-all using BLAST or PSI-BLAST
program (3) best-to-best hits are identified and a graph is constructed
where proteins are the nodes and best-to-best relations are the edges
(4) starting from a protein in the largest genome the graph is tra-
versed depth-first with the depth 2. All proteins (domains) encoun-
tered in the traversal are assigned to the same orthologous groups.
Groups of size one are eliminated.

3.2.3. Multiple Alignments Accurate multiple alignments are crucial for our method. We used
the recently developed MAFFT(20) and MUSCLE(21) algo-
rithms to build multiple alignments.

Due to extensive domain shuffling and gene fusion events, it is
impossible to construct reasonably good multiple alignments if
whole protein sequences are used. Therefore, we extract a parti-
cular domain type from the set of given proteins using profile
models such as PFAM or CDD and then use the extracted domains
for multiple alignments.

3.2.4. Data Collection and

Alignments for Bacterial

Two-Component System

Twenty bacterial genomes were scanned with PFAM HMM pro-
files for corresponding domains: RR (Response_reg), DD (HisKA),
ATPase (HATPase_c). It is known that often cognate HKs and RRs
are located next to each other inside the operon. Triples of domains
(RR, DD and ATPase) that were nearest to each other and occurring
within the same putative operons were detected. Putative operons
were loosely defined as the strings of genes on the same strand of
DNA separated by no more than 400 bp. The domain triples were
then considered as interacting domains later in the correlated
mutations analysis. Sets of each domain type were then aligned
using MUSCLE multiple alignment program.

To obtain clusters of orthologs, triples of domains were con-
catenated to form pseudo- proteins and then aligned pairwise all-
against-all using BLAST program (22). Best-to-best matches were
then identified. For each pseudosequences in the largest genome
(Bradyrhizobium japonicum) best-to-best matching pseudose-
quences in the other genomes were extracted. Such clusters were
considered to be groups of orthologs. Starting the clustering from
the psequedosequences in the same genomes ensures that clus-
ters do not contain paralogous sequences. This assumes that
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prokaryotic genomes rarely contain close gene duplicates that carry
out the same function. The largest genome was chosen in order to
get the largest number of orthologous clusters. Clustering depth
of 1 guarantees that clusters do not overlap. To ensure quality of
the clusters, pseudosequences that were linked by just one best-to-
best match to the clusters were recursively deleted from the cluster.

Concatenation of the triples of domains into pseudosequence
implicitly incorporates genome neighborhood information into
orthology clustering.

3.2.5. Calculation of Mutual

Information

To identify residues that tend to be the same within groups and
different between the groups, we use mutual information as a
measure of association between a residue and group index. Mutual
information is frequently used in computational biology for co-
variational analysis in RNA and proteins.

If x = 1, . . ., 20 is a residue type, y = 1, . . ., Y is the specificity
index, which is the same for all proteins of the same specificity
group and is different for different groups, and Y is the total
number of specificity groups, then the mutual information at
position i of the MSA is given by

I i ¼
X

x¼1;:::;20
y¼1;:::;Y

fi x; yð Þlog
fi x; yð Þ

fi xð Þf yð Þ ;

where fi xð Þ is the frequency of residue type x in position i of the
MSA, f yð Þis the fraction of proteins belonging to the group y, and
fi x; yð Þ is the frequency of residue type x in the group y at position i.
Note that althoughf yð Þ does not depend on position i in practice,
f yð Þ need to be recomputed for each position i since proteins that
contains gaps at each position are skipped in calculations of fi x; yð Þ.
Use of mutual information requires f yð Þ and fi xð Þ to be marginal
distributions of a joint distributionfi x; yð Þ, i.e.,

fi xð Þ ¼
X

y¼1;:::;Y

fi x; yð Þ f yð Þ ¼
X

x¼1;::;20

fi x; yð Þ:

Using these relationships to calculate f yð Þ and fi xð Þ avoids
mistakes due to gaps in the alignments. Positions that have gaps
in more than 20% of sequences are neglected.

Mutual information has several important properties: (1) it is
non-negative; (2) it equals zero if and only if x and y are statistically
independent; and (3) a large value of I i indicates a strong associa-
tion between x and y. Unfortunately, a small sample size and a
biased composition of each column in the MSA influences I i a lot.
For example, positions with less conserved residues tend to have
higher mutual information. Hence, we cannot rely on the value of
I i as a sole indicator of specificity, instead we estimate the statis-
tical significance of I i.
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3.2.6. Estimating Statistical

Significance

Orthologs are in general more similar to each other than to para-
logs due to the topology of the underlying phylogenetic tree. This
represents a problem for any method used to detect SDRs: on one
hand, we are trying to find positions where the sequence correlates
with tree topology (with orthologous groups); on the other hand,
we can expect correlation of all residues and tree topology purely
from the random mutation process (Fig. 18.1).

The goal is to distinguish an evolutionary pattern of SDRs from
the background of signals arising due to phylogenetic history of the
protein family and due to constraints imposed on protein sequence
to enable it to fold into a stable structure (see above).

What are the characteristics of a purely phylogenetic process?
(1) Probability of substitution depends on the branch length, or the
time to the common ancestor of the two proteins. (2) Substitutions
are chosen randomly in accordance with the amino acid substitution
matrix. Due to various physical and structural constraints that can be
imposed on the particular position in the sequence, each column of
the MSA would have an unique substitution matrix.

In contrast to this, SDRs (ideally) would have different char-
acteristics. (1) Within orthologous group SDR is conserved regard-
less of how far the sequences have diverged. (2) Between paralogs,
SDRs would have to be different however phylogenetically close the
sequences are. Numerous ways have been proposed to estimate the
influence of phylogeny on a particular position. Here we describe a
Monte Carlo approach developed in our group.

3.2.6.1. Monte Carlo The purpose of our Monte Carlo (MC) algorithm is to generate
MSAs that would have tree topology and amino acid composition
(entropy) inside each MSA column identical to original alignment
while otherwise being random (Fig. 18.2). By generating a num-
ber of such alignments, we can estimate the influence of phylogeny
and physicochemical constraints on a sequence position and there-
fore compute expected mutual information and statistical signifi-
cance of the mutual information in each position for original MSA
(Fig. 18.3).

We do not explicitly construct and use a phylogenetic tree.
Instead, we utilize a matrix M mn

0 that contains mean pairwise
sequence identity between proteins of group m and group n, i.e.,

M mn ¼
X

i2m;j2n

Dij

�
NnNm;

where Dij is the sequence identity between sequences i and j, and
Nn is the number of proteins in group n. Such a sequence identity
matrix M mn

0 is an approximation of the phylogenetic tree (this is
similar to a tree obtained by the distance matrix method, e.g., by
neighbor joining). The MC algorithm aims to generate sequen-
ces that have a pairwise identity matrix M mn

mc as close to M mn
0 as

possible. Simultaneously, it aims to produce an MSA that has
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conservation in each column (as measured by entropy Si
mc) close to

the entropy in the original alignment Si
0. Entropy of a column i of

the MSA is given by

Si ¼ �
X

x¼1;::;20

fiðxÞ logð fiðxÞÞ:

Taken together, these constrains lead to the following func-
tion to be minimized in MC simulations

F S;Mð Þ ¼ a
XY

n;m¼1;
n 6¼m

M nm
0 �M nm

mc

� �2 þ b
XY

n¼1

M nn
0 �M nn

mc

� �2

þ g
XL

i¼1

Si
0 � Si

mc

� �2
;

½1�

where i=1..L is the index of position in MSA, a; b, and g are empiric
weights. Parameters a;b, and g are chosen in such way that corre-
sponding terms in Eq. [1] are roughly (same order of magnitude)
equal when F converges.

Fig. 18.2. A demonstration of MC procedure. Given an MSA (top right), the algorithm finds
a random MSA (bottom right) that has the pairwise identity matrix Mnm

mc as close to the
original Mnm

o as possible and entropy in each position Si
mc as close to the entropy of the

original alignment Si
o as possible.
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We use standard Metropolis MC (23) with the energy given by
function F and moves that consist of swapping two randomly
chosen letters in the MSA or replacing a randomly chosen residue
with another one (chosen uniformly at random). All moves are
made on positions that carry amino acids and exclude gaps, i.e.,
gaps in the MC-generated alignment are in the same position as in
the original one. The algorithm starts with a MSA obtained from
original MSA by shuffling each column. The temperature of the
Metropolis procedure T is chosen as the maximum temperature
that allows F to converge.

3.2.6.2. Calculating

Statistical Significance and

Predicting SDRs

The mean expected mutual information Imc and variance s are
derived from a number of MC alignments. The probability to
observe mutual information greater than or equal to Io in the
alignment is calculated from Gaussian cumulative distribution
function:

PðIoÞ ¼
Zþ1

Io

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �ðI � ImcÞ2

2s2

 !
dI ½2�

Fig. 18.3. (a) Observed mutual information I (solid black line) and expected from MC MSAs. The expected MC mutual
information Imc corresponds to the central points of the thick gray line with the width of the line corresponding to 4�
(Imc � 2�) at each position of the alignment. Positions with P-value 510�2 are marked with black squares. (b)
Probabilities of observed I in position calculated from MC MSAs.
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The positions that have probability P below a certain cutoff are
putative SDRs. The cutoff is usually chosen based on the effective
length of the alignment (length of the alignment minus number
of positions with >20% of gaps) and is 0.02–0.001 for a typical
alignment.

3.3. Locating CERs in

Double Alignments

3.3.1. Co-Evolving Residues

Groupings by specificity and orthology may be hard to obtain
and/or hard to automate. In such cases, we identify co-evolving
residues (CERs, also known as ‘‘correlated mutations’’). Our method
to identify CERs does not require grouping by specificity, it rather
requires knowledge of binding partners. We take advantage of known
binding interactions between pairs of homologous proteins to iden-
tify CERs. For example, bacterial histidine-kinases (HKs) are known
to bind corresponding response regulators (RRs). Genomic infor-
mation allows us to find interacting HK-RR pairs and to construct
a ‘‘dual alignment’’ needed to identify CERs (see Fig. 18.4).

To identify residues that display correlated evolution, we also
use mutual information as a measure of their correlation. For exam-
ple, residues in dark gray columns on Fig. 18.4 are highly corre-
lated between two sets of homologous proteins, but residues in
light gray columns (conserved residues) and light gray residues
(highly variable residues) are not. To quantify the extent of their
correlated behavior we use mutual information. Given two multi-
ple sequence alignments (MSAs), each corresponding to one of
two sets of homologous proteins and arranged in such a way that
interacting proteins are located in the same row of the alignments,
mutual information is computed as

I ij ¼
X

x;y¼1;:::; 20

fij x; yð Þlog
fij x; yð Þ

fi xð Þfj yð Þ;

where fij x; yð Þ is joint distribution of residues x and y in positions i
and j of the two proteins, fi xð Þ is the marginal frequency of x in
column i. Gaps are not counted and distributions are properly
normalized (as described above for SDRs).

Fig. 18.4. Two hypothetical MSAs that have two co-evolving positions. The pair of CERs
is shown in white on dark gray background, conserved residue in dark gray on light gray
background and variable residues in light gray. While positions with variable residues do
not correlate with each other, certain amino acids in a CER position of one alignment
always correspond to certain amino acids of another in the ideal case.
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3.3.2. Estimation of

Statistic Significance of

CERs

Similar to SDR analysis, identification of CERs is prone to errors
due to a bias introduced by other evolutionary signals: structural
signal, a signal from functional amino acids, and a signal originat-
ing in the phylogenetic history of the two families. Often inter-
acting proteins are co-evolving and as a result may have similar
topology of phylogenetic trees. Such shared history can make all
positions in these proteins to be somewhat correlated. Often CERs
are sought within one protein where all positions share the same
phylogenetic tree.

To take these factors into account we conduct MC procedure
similar to the one described above. For CERs, we set all sequence
group sizes to 1 and b ¼ 0. Thus sequence identity between indi-
vidual random sequences is optimized until the exact tree topology
of original set is reached.

Similar to SDRs, this is the crucial step in our method of CER
identification. High correlation does not necessarily imply co-
evolution and most position pairs with high mutual information
are discarded by statistical significance procedure, because MC can
reproduce the values of mutual information given a phylogenetic
history and entropy at each position.

3.3.2.1. Computing

Statistical Significance

The probability P for value I ij
o to occur for two given columns i,j

in two MSAs is computed using formula (2), where expected value
and variance of I ij

mc is derived from MC MSAs.
A position i is defined as a CER in the first MSA if it occurs at

least in one position pair i,j with the probability P below cutoff.
Likewise, position j is defined as CER in the second MSA. The
cutoff for the probability P is usually chosen as reverse propor-
tional to the product of both MSA’s effective lengths.

4. Results and
Discussion

4.1. Bacterial Two-

Component System

Signal transduction in bacteria often involves two-component
systems. The system consists of two parts: sensor histidine kinase
(HK) and a response regulator protein. Upon receiving an external
signal (such as a small molecule, e.g. fumarate), the ATPase domain
of an active homodimerized HK autophosphorylates the second
monomer in conserved His residue, which is usually located in the
dimerization domain (DD) (24) (Fig. 18.6).

Upon binding a response regulator protein, the phosphoryl
group is then transferred to its conserved Asp residue. The response
regulator protein usually consists of two domains: phosphate-
accepting response regulator domain (RR) and effector domain
(Fig. 18.5). The effector domain is typically one of a broad vari-
ety of DNA-binding domains that regulates the transcription of
response genes.
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Despite a large number of different two-component systems in
bacteria and a significant sequence similarity between their com-
ponents, the signaling is very specific: there is virtually no cross-
talk between different signal transduction pathways in vivo (19).
We applied our method to locate the residues that determine this
specificity of HK-RR and HK-ATPase recognition.

4.1.1. Results Predicted SDRs and CERs are schematically summarized on
Fig. 18.5. Detailed predictions are presented in Table 18.1 and
on (Fig 18.6a) for the RR domain; in Table 18.2 and on Fig.
18.6b for the ATPase domain; and in Table 18.3 and Fig. 18.6b
for the DD. Here we provide structural rationale for the role of the
identified residues in the function of two-component system and
compare our predictions with experimental results.

4.1.2. SDRs RR. Five SDRs have been found on RR domain (Table 18.1). Three
residues are located on the interface with DD, which is specifically
recognized by RR. Two of these the SDRs are close to the conserved
Asp1454, where the phosphate from DD is transferred (Fig. 18.6a).

Two SDRs located on the a4 helix of the RR do not appear to
interact with DD or ATPase. However, in some RR domains the a4
helix has been shown to swing approximately 90� (25), roughly into
the plane of interaction with HK (see Section 4.1.4 below). The a4
helix was also shown to serve in the dimerization of the active
(phosphorylated) RR (26), thus suggesting a role of the identified
SDRs on the a4 helix in providing specificity of RR dimerization.

Fig. 18.5. A scheme of interactions between domains in two-component systems. After
dimerization via the DD and activation by extraneous signal, the ATPase autophosphor-
ylates the DD by the conserved His residue (shown as a pentagon on the DD). Active
dimer is then bound by RR that accepts phosphoryl group from the DD. SDRs and CERs
on domain interfaces are shown as black circles.
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ATPase. All three SDRs are located on the interface with the
DD. Two SDRs are located close to the active site (i.e., conserved
His260 in DD), strongly suggesting their role in specific ATPase-
DD recognition.

DD Two SDRs on the DD (Table 18.3, Fig. 18.6) are part of
the specific dimerization interface. Lys251 is known to be impor-
tant for dimerization (27). Gln298 forms a contact with Pro265
(see Section 4.1.3 below), which has been shown to help exposing
phosphate accepting His260 residue (27). Gln298 may also be
involved in recognition of RR, suggesting its role as a key residue
in controlling the access to His260 by ATPase (upon dimeriza-
tion) by RR for signal transduction.

In summary, structural analysis demonstrates that the identi-
fied SDRs are consistent with the mechanism of activation and
recognition in two-component proteins, pinpointing recognition
to a small group of residues in the two-component system.

4.1.3. CERs Here we take advantage of known pairwise interaction between the
RR, DD and ATPase, derived from their genomic proximity and
identify residues exhibiting coordinated evolution in interacting
domains. These results are summarized on Figs. 18.5 and 18.6.

BA

Fig. 18.6. Structural localization of putative SDRs and CERs in two-component system domains. (a) RR Spo0F (red-brown
ribbon) bound to structural analog of the DD in Spo0B protein. The conserved His is shown in purple, the conserved Asp in
RR in magenta. SDRs and CERs are shown in yellow or, when located on the �4 helix, in white (PDB entry 1F51). (b) The
non-catalytic conformation of HK homodimer. ADP is shown as a purple wireframe, the phosphate-accepting conserved
His residue in magenta spacefill. SDRs and CERs on the ATPase are shown in yellow, or in white if located on the
unresolved ATP-lid loop that was superimposed from PhoQ kinase (PDB entry 1ID0), or in green in the RR-specific CERs
side patch. SDRs and CERs on the DD are shown in red on one homodimer and orange on another (PDB entry 2C2A).
(see Color Plate)
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RR-DD. CERs in the RR domain include all SDRs and two
additional residues: Tyr1482 and Leu1499 (for the RR, residues
are numbered according to the PDB entry 1F51). Tyr1482 forms
a tight contact with the DD in the immediate neighborhood of
conserved His. Leu1499 is located on top of the a4 helix and may
participate in RR dimerization.

In contrast the DD contains lots of co-evolving residues. Nine
residues are located on the surface of the domain facing and
interacting with RR, seven of them in immediate neighborhood
of conserved His260. Pro265 and Glu298 (an SDR) form a con-
tact and may be recognized by the RR. Two RR-specific CERs,
Tyr272 and Phe291, form a contact and are likely to interact
exclusively with the RR. The other patch of residues is located
closer to the N-terminus and consists of known dimerization
residues (27); some of them may also be in contact with ATPase
domain in the non-catalytic conformation.

DD-ATPase. When we examined residues in the DD that co-
evolve with the ATPase domain, we found nearly the same set of
CERs as those co-evolved with the RR. Some of these DD residues
are in contact with their counterparts in the ATPase domain (e.g.
Leu315); some are located close to the phosphorylated histidine
and are likely to interact with both ATPase and RR domains
residues during phosphate transfer events.

This suggests that mostly the same residues in the DD are
responsible for recognition of the ATPase domain and recognition
of the RR.

The ATPase domain residues that co-evolve with the DD
contact the DD and/or surround the ATP (Fig. 18.6b, ATP
shown in purple wireframe). They include all three SDRs. Inter-
estingly, one of the residues (Ala439) was mapped on a disordered
mobile loop (ATP-lid) in 2C2A X-ray structure, which is especially
close to the DD. Two CERs, Ile448 in the ATPase and Leu315 in
the DD, are the part of the labile hydrophobic interdomain inter-
face that controls release of the ATPase for autophosphorylation
when it receives a signal from the sensor domain. Mutations in
these residues most significantly alter the degree of the autopho-
sphorylation (27). It should be noted that, on crystal structure
2C2A, the ATPase domain is in the inactive conformation and the
transfer of the phosphoryl group is not possible (see Section 4.1.4
below).

RR-ATPase. Interestingly, the RR-ATPase CERs in RR domain
are residues that contact DD or reside on the a4 helix, coinciding
with RR-DD’s CERs and RR’s SDRs. However, the corresponding
CERs in ATPase are different: although most of them also corre-
spond to the ATPase–DD interface and ATPase–DD phosphate
transfer, there is a distinct patch of residues located on the putative
contact surface of the ATPase and RR (green residues on
Figs. 18.6b and 18.7b).
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4.1.4. Modeled Structures Unfortunately, the structure of HK in its active autocatalytic con-
formation has not been solved. The transfer of phosphoryl group
is not possible on the available structure of HK depicted on
Fig. 18.6b. The structure of the RR–DD complex has not been
solved either. Although the structure of the RR-phosphotransferase
complex Spo0F-Spo0B from Bacillus subtilus has been solved, the
Spo0B phosphotransfer domain that structurally corresponds to
DD is not homologous to the DD family, making mapping of
predicted results unreliable and difficult. Likewise, the Spo0B cata-
lytic domain is not homologous to any sequence in our ATPase
dataset.

To solve these problems Marina et al. have modeled the HK in
the active autocatalytic conformation and the RR (Spo0F) bound
to HK (27). Figure 18.7 presents predicted SDRs and CERs
mapped onto the modeled structures that were kindly provided
by Marina et al.

Our results agree well with the modeled structure. Predicted
residues that surround ATP in ATPase domain make contacts with
SDRs and CERs that surround conserved His on the DD (Fig.
18.7a). There is a distinct patch of ATPase-RR CERs on the
ATPase that does not contact the DD. It appears to be close to
the RR when it is bound to the DD (Fig. 18.7b). Moreover, it
contacts the a4 helix and some of the predict residues on it when

A B

Fig. 18.7. Localization of putative SDRs and CERs on computationally obtained models (models provided by Marina et al
(27)). (a) HK in the active conformation, the ATPase is docked on the DD so that transfer of the phosphoryl group is
possible. SDRs and CERs on the ATPase domain are shown in yellow or green when located in the RR-specific CERs side
patch. SDRs and CERs on the DD are shown in red on one homodimer and orange on another. (b) Spo0F computationally
docked on HK and subsequently superimposed with RR from OmpR. RR (brown-red ribbon) (PDB entry 1KGS) with its �4
helix swung�90�: the phosphorylated Asp in the RR is shown in magenta, SDR and CERs are shown in light red or, when
located the �4 helix in white. DD (dark blue and dark green ribbon): SDRs and CERs are shown in light blue on one dimer
and in light green on another. ATPase (yellow-green ribbon on the left and light-blue on the right): the colors are the same
as in (a). (see Color Plate)
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a4 is swung �90� as has been observed in OmpR homolog (25)
(Fig. 18.7b). Specificity residues of the RR, except for the ones
that contact the ATPase, are likely to interact with their counter-
parts on the DD. Interestingly, one of them (Lys1456) contacts
the conserved His on the DD, although the precision of the
computationally docked RR (Spo0F) makes it difficult to resolve
this interaction.

4.1.4.1. Comparison with

Experiment: Ala-Scan of RR

The predictions agree well with the available experimental
data. According to the alanin scan of Spo0F (28) (see Table
18.1), 4 out of six predicted residues with available Ala-
mutants indeed affect the recognition of the HK by the RR.
Two residues located on the a4 helix were predicted, but did
not affect phenotype in Ala mutagenesis (marked white on
Fig. 18.7a). They do not contact the phosphotransfer domain
(DD analog) in Spo0B-Spo0F, but are very likely to contact
ATPase and/or participate in the RR protein homodimeriza-
tion as discussed above.

This demonstrates that while finding specificity-determining
residues in a broad class of two-component proteins is instructive,
using more narrow groups of specific two-component proteins can
provide predictions suited for these groups. While the same inter-
faces and patches are used for specific recognition through a broad
class of two-component proteins, individual subclasses of the two-
component system may use different residues in these patches to
provide specificity.

4.2. Discussion of

Two-Component

Systems Putative SDRs

and CERs

In conclusion, both methods – correlated mutations and SDRs,
found two largely overlapping groups of residues – the ones that
surround sites involved in the phosphotransfer and the ones
located on the interfaces of the interacting domains. Somewhat
unexpectedly, the method detected specificity residues on the a4
helix of the RR that have not been known to contact with HK.
These residues may interact with the corresponding patch of
CERs on ATPase domain or participate in activated RR
dimerization.

The results point to the highly correlated evolution of the
binding interfaces between all three domains. For instance, the
surface residues of the RR that interact with the DD and residues
of the ATPase that interact with the DD show a pattern of co-
evolution, though no direct contact between these residues is
observed in the available structures. We can see two possible
explanations of co-evolution among apparently non-interacting
domains. First is that some residues in the DD, especially the
ones that are close to the phosphorylated His, contact both
domains during different stages of the phosphate transfer reaction.
The mutations in these residues must cause compensatory muta-
tions in both the RR and the ATPase, thus making these domains
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co-evolve. Likewise, a mutation in the His contact patch in RR or
ATPase can cause compensatory mutation(s) in the DD and, in
turn, in the third domain.

The second reason is that such correlation may be caused by
‘‘negative design’’ constraints. The concept of negative design has
attracted lots of attention in the protein engineering community.
Negative design assumes that not binding certain targets or not
folding into certain conformations is as important for a protein as
binding its targets and folding into its native conformation. In the
context of the two-component (and broadly, signaling) proteins,
negative design would be required to minimize a cross-talk
between different signaling pathways. Thus, evolution of the
two-component system can driven by need to minimize affinity
between proteins of different pathways, rather than a need to
increase affinity within pathways. Negative design can lead to a
constant accumulation of mutations that reduce cross-pathway
affinity and compensatory mutations that keep affinity within a
pathway at the required level. Since negative design does not target
any particular interface or domain, it will lead to global co-evolu-
tion of protein interfaces within a pathway, even when such inter-
faces do not interact directly. Negative design can also cause
specificity within a pathway to get distributed across several inter-
faces, consistently with our observation. This can explain, for
example, why DD dimerization residues and DD residues that
exclusively contact the ATPase are correlated with RR residues.
This is also likely to be the reason for the strong overlap between
SDRs and CERs.

Another interesting observation is that the DD is the fastest
evolving domain among three (Table 18.4), which makes SDRs
detection particularly difficult. Indeed, many DDs do not even
share any detectable sequence similarity. This may be due to the
simpler function, lack of catalytic activity, and, consequently, the
smaller number of structural constraints imposed on the DD. An
alternative explanation is that negative design targets homodimer-
ization of HKs as the first and important step controlling the
specificity of the two-component systems. Since many HKs are
membrane-bound via their transmembrane and sensor domains,

Table 18.4
Average pairwise identities in three domain families of
two-component system

DD RR ATPase

Average identity 0.19 0.25 0.25

Average identity within orthologous groups 0.48 0.49 0.43

442 Kolesov and Mirny



the concentration of different two-component HKs on the mem-
brane can be very high, increasing the probability of non-cognate
heterodimerization. This may lead to high selective pressure on
the specialization of DDs and hence their rapid evolution.

4.3. Aminoacyl-tRNA

Synthetases

The aminoacyl-tRNA synthetases are the enzymes involved in the
core process of the cell – the translation of genetic information
from messenger RNAs to proteins. Such encoding, i.e., implemen-
tation of the genetic code, relies on the correct assignment of
nucleotide triplets to amino acids through correct ‘‘charging’’ of
tRNAs with corresponding amino acids. The aminoacyl-tRNA
synthetases attach an amino acid molecule to the corresponding
tRNA in a highly specific way. Even small number of errors in this
process would be harmful for a biological system, as it would result
in numerous errors in protein synthesis.

The aminoacyl-tRNA synthetases (aaRSs) represent a diverse
group of enzymes varying in structure and evolutionary history.
They are roughly divided into two classes: I and II. Classes are then
subdivided into smaller subclasses a, b, and so on, to reflect the
sequence and structural similarity between different synthetases.

Here we focus on aaRSs belonging to the class Ia, namely the
enzymes corresponding to leucine, isoleucine, methionine, and
valine and aim to understand the mechanism that allows the
enzyme to recognize the correct tRNA and amino acids for
charging.

We collected catalytic domains of class Ia aaRSs from 20
bacterial genomes using tRNA-synt_I PFAM HMM profile. It
should be noted that this profile does not include major part of
the tRNA recognition arm. Then we manually grouped
sequences according to their amino-acid specificity into four
groups and applied the SDR method. We then paired each of
the aaRSs with the corresponding tRNAs and applied CER ana-
lysis to the double-alignment of protein and RNA. Only one
tRNA for each aaRS was used in CER analysis to avoid bias
toward the amino acids encoded with more codons. In CER
statistical evaluation, only the protein part of the double align-
ment was subjected of MC simulations, while the set of tRNAs
remained unchanged.

Predicted SDRs and CERs are presented on (Fig. 18.8) and
in Table 18.5, demonstrating a very good agreement between
both methods.

Next, we used available structures of aaRS-tRNA complexes to
validate the SDRs and CERs. Examination of the structures of class
Ia aaRS shows that the side chain of a substrate amino acid fits into
a hydrophobic pocket. Surprisingly, most of the residues of this
pocket are the same in Val-, Ile-, and LeuRS, making it hard to
understand how the specificity of amino acid recognition is
achieved. Detected SDRs provide a mechanism for specific
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recognition. Only two amino acids in this hydrophobic pocket:
Asn44 and Pro41 are variable among aaRS and both have been
detected as SDRs. They form immediate contact with the side
chain of valine in ValRS (29)(PDB:1GAX). While several other
SDRs (Val496, Leu485, Ser458) do not directly interact with the
substrate amino acid, they form a layer around the conserved
hydrophobic pocket and are likely to modulate its shape in aaRSs
of different specificity, thus contributing to specific recognition.
This structure also made it clear that one SDR is involved in the
recognition of tRNA: Phe264 in ValRS (Trp227 in IleRS) forms

Fig. 18.8. Valine aminoacyl-tRNA synthetase (PDB entry 1GAX). The tRNA is shown
as a purple wireframe structure, SDRs and CERs are red balls, and amino
acid (valyl-adenylate analog) is in yellow wireframe. (see Color Plate)
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strong Van der Waals interaction with adenine-76 (29, 30). A76
was experimentally shown to be essential for correct recognition of
tRNA by aaRS (31).

5. Summary and
Conclusions

Related, homologous, proteins often perform the same general
biochemical function. At the same time, different homologous
variants of the protein can be utilized in the cell in similar ways
but in different contexts. Often there are no physical barriers such
as membranes to separate homologous proteins, preventing pro-
teins from interacting with wrong, yet similar, targets. This neces-
sitates highly specific recognition to be performed by the protein
in order to bind its substrate and/or interacting partners.

In many cases, due to structural properties imposed by the
general function common to the protein family, the specificity
determinants are also constrained to certain locations on the
3D-structure and in the amino acid sequence of the protein.

Here we presented two techniques that allow the identifica-
tion of amino acids involved in specific recognition. The first one
relies on sets of orthologs from close species as proteins of the same
specificity and contrasts them with paralogs that have different
specificities. Another technique uses pairs of known interacting
proteins to identify residues exhibiting coordinated evolution.
Both methods rely solely on sequence information, allowing us
to use available structures for validation. The techniques are very
different in their assumptions and input information, so their
predictions can be treated as independent pieces of evidence for
the functional role of the identified residues.

These techniques allowed us to study the origin of specificity
in two bacterial systems: two-component signaling and tRNA
synthesis. Strikingly, the two very different techniques yield similar
sets of amino acids. While the two-component system showed a
very complicated pattern of specificity distributed across interfaces
between three participating domains, the specificity of tRNA
synthetases seem to be focused in a few specific locations on the
protein–amino acid and protein–tRNA interfaces.

Our predictions generate a set of experimentally testable
hypothesis about the role of specific amino acids in molecular
recognition. Mutations or ligand binding at these positions can
interfere with binding, thus disrupting the process. Thus, identi-
fied pockets of specificity can be used to direct drug design efforts.
Moreover, if a small set of SDRs provides specificity, one can
experimentally swap SDRs in two pathways in order to swap
specificities and re-wire the signaling pathways.
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Chapter 19

Connecting Protein Interaction Data, Mutations, and Disease
Using Bioinformatics

Jake Y. Chen, Eunseog Youn, and Sean D. Mooney

Abstract

Understanding how mutations lead to changes in protein function and/or protein interaction is critical to
understanding the molecular causes of clinical phenotypes. In this method, we present a path toward
integration of protein interaction data and mutation data and then demonstrate the identification of a
subset of proteins and interactions that are important to a particular disease. We then build a statistical
model of disease mutations in this disease-associated subset of proteins, and visualize these results. Using
Alzheimer’s disease (AD) as case implementation, we find that we are able to identify a subset of proteins
involved in AD and discriminate disease-associated mutations from SNPs in these proteins with 83%
accuracy. As the molecular causes of disease become more understood, models such as these will be useful
for identifying candidate variants most likely to be causative.

Key words: Protein interaction, SNP, mutation, bioinformatics, data integration.

1. Introduction

Systems approaches are critical to understanding clinical phenotypes.
One important challenge for further research is building functional
knowledge on how genetic variation affects the function and expres-
sion of proteins (or some other functional unit) in a biological net-
work. Until recently, a systems understanding of the effects of
variation has been an elusive challenge, and it remains a significant
opportunity for research. There are several resources that have begun
to address this issue. Databases such as dbSNP (1), KEGG (2),
UniProt/Swiss-Prot (3) are beginning to include information useful
for understanding the prevalence of variation in proteins, functional
domains, pathways, and systems. Meta-resources are also being
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actively developed for understanding the effects of variation on sys-
tems. SNPs3D (http://www.snps3d.org/), for example, displays
candidate pathways to links with functional predictions of nonsynon-
ymous SNPs (4). The Pharmacogenetics Knowledgebase
(PharmGKB, http://www.pharmgkb.org/) has well-curated path-
ways with links to variation submitted to the resource, and phenotype
data whenever available (5).

The task of linking genetic variation to functional protein
effects in a biological system is complicated by the variety of effects
that genetic variation can impose on a gene or gene product.
Nonsynonymous SNPs can affect protein stability and function,
while synonymous SNPs can effect transcript alternative splicing;
noncoding SNPs can also affect gene transcription (6). Although
there are analytical tools for the prediction of functional nonsy-
nonymous variation, other types of SNPs have been difficult to
quantify. Our current efforts focus on how nonsynonymous muta-
tions affect both protein function and the interplay of these
proteins in the pathway contexts. Recently, researchers have
begun to perform computational studies that address these impor-
tant research questions. In particular, Ye et al. showed that many
disease-associated mutations from Swiss-Prot are likely involved in
disrupting protein interactions (7). They also found that Swiss-
Prot mutations were distributed differently than SNPs using
comparative protein structural models (7). PharmGKB has also
been curating pathways and genotype data associated with phar-
macogenetics (5).

A continuing open research question today is how to relate
genetic mutation data to protein interaction networks, and there-
fore to the molecular causes of disease. Addressing this question
raises several challenges. First, different types of global data sets
must be integrated so that interaction data and mutation data can
be arbitrarily queried, visualized, and analyzed together. Second,
the disease context of the mutations and the proteins within the
system must be revealed and understood. Finally, it would be
useful to have a model for how mutations cause disease within
the specific context of protein interaction sub-networks. However,
there have not been immediate solutions to these challenges,
although significant advancements have been made (4, 7). Further
complicating this is that databases of mutations tend to be highly
biased toward well-characterized proteins of interest, and there-
fore skewing the distributions of mutations compared to natural
occurrence. Similarly, nonsynonymous SNPs may not be neutral
and may alter the function of proteins, or disease-associated muta-
tions may only be in linkage or linkage disequilibrium with the
causative allele (depending on the genetic approach).

We present a method that explores solutions to the challen-
ging questions of connecting genetic mutation data effects in
interaction networks. Our initial case study uses a database of
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human protein interactions and mapped annotated SNPs among
interacting proteins, which are involved in the Alzheimer’s Disease
(AD) process. To this end we built a database consisting of all
related protein interactions, participating protein’s ‘‘AD relevant’’
score, and all annotated mutations and SNPs. We built a model for
disease-causing mutations from a specific set of interacting pro-
teins that are associated with the AD phenotype. Using a model
trained on the most highly ranked AD proteins, we are able to
discriminate phenotypically associated mutations from poly-
morphisms with nearly 83.7% accuracy. Interestingly, the model
was more accurate when trained on the subset of proteins most
likely to be associated with AD, while the full set of proteins
resulted in poorer performance. When we mapped the SNP data
onto interacting proteins, we also observed that while deleterious
SNPs are broadly distributed among interaction hub proteins and
peripheral (non-hub) proteins in the AD sub-network, most
highly ranked AD proteins (subnetwork hubs) contain high ratios
of deleterious SNPs, suggesting a link between the system proper-
ties of protein functions and the disease phenotypes.

We take the following steps toward integration and analysis of
mutations in protein interaction data:

1. Collect a data set of experimentally determined protein inter-
actions, and import the interactions into a relational database.

2. Using phenotypically annotated mutation data and SNPs
derived from several sources, identify nonsynonymous
genetic variation for the proteins identified in Step 1.

3. Identify proteins relevant to the specific phenotype of interest
by identifying proteins highly connected with known disease-
associated proteins.

4. Build a matrix of sequence- and structure-based features for
each mutation in the subset of proteins identified in Step 3.

5. Train a supervised learning algorithm to discriminate disease-
associated mutations from polymorphisms using the matrix
from Step 4.

6. Visualize the model on a protein interaction network.

2. Materials

2.1. Protein Interaction

Data
To integrate the protein interaction data we used the following
steps:

1. We obtain the human protein interaction data from the
Online Predicted Human Interaction Database (OPHID)
(8). OPHID is a comprehensive and integrated repository
of publicly known or predicted human protein interactions,

Protein Interaction and Mutations Data 451



which are derived from curated literature, high-throughput
experiments, or computational inference from homologous
protein interactions in model organisms. Predicted human
interactions are usually confirmed with additional evidence
such as domain co-occurrence, co-expression, and GO
semantic distances (8). We choose OPHID over other
human protein interaction databases due to its high data
coverage compared to the curated HPRD database (24) and
its early availability that preceded some recent major develop-
ment such as the HAPPI database (25).

2. We used the protein identifier mapping table provided at the
ftp site of the UniProt Knowledgebase (3) to perform
mapping between human protein’s Swiss-Prot IDs and their
UniProt IDs for all OPHID proteins.

3. The entire collection of processed OPHID data were subse-
quently loaded into an Oracle 10g relational database system
using PERL program parsers and Oracle DBMS sqlldr data
loading software facility.

4. For each interaction pair, we further assigned a heuristic inter-
action confidence score, based on a simple scoring method
described in (1). The approach can be summarized as the
following. First, we manually determine a confidence score
between 0 and 1 (the higher, the better), which provides an
estimate of data quality reliability. We assign heuristic scores of
0.9, 0.5, and 0.3 to protein interactions obtained from human,
medium-quality non-human mammalian systems, and high-
quality non-mammalian systems, respectively. Then, we per-
form a score combination using the following formula, where
pINT ða; bÞ is the overall confidence score for the interaction
between proteins a and b, and piða; bÞ is the confidence score
for a specific interaction derived from resource i between pro-
teins a and b: pINT ða; bÞ ¼ 1�

Q
i

ð1� piða; bÞÞ
For the case study described here, OPHID was downloaded in

February 2006. This release of OPHID contains more than 47,213
human protein interactions among 10,577 proteins identified by
Swiss-Prot IDs. After the mapping to UniProt, the database con-
tains 46,556 unique protein interactions among 9,959 proteins
identified by UniProt IDs.

2.2. Data Integration We used Oracle 10g as the data integration platform and devel-
oped a coherent relational database to integrate data from protein
interactions, SNPs, mutations and functional predictions, and the
AD-specific disease protein list into relational database tables. The
data integration process requires the use of PERL scripts to parse
data generated from different sources, and SQL scripts to join
different tables together to format the data into final report views.
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We obtained mutation and SNP data from several sources. For
bulk SNP data, dbSNP is the central repository (http://
www.ncbi.nlm.nih.gov/projects/SNP/), and is distributed in
parseable XML format. Non-synonymous SNPs are annotated
with protein accessions and positions. For disease-associated
mutation data, several options are available. First, Swiss-Prot
(http://www.expasy.org/) entries contain mutations in the VAR-
IANT records. Second, OMIM (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=OMIM) contains mutations associated
with disease with natural language phenotype annotations. Other
options include the semi-private HGMD (http://www.hgmd.
org/) and locus-specific databases.

Here we describe our process to extract mutation and SNP
data from Swiss-Prot files:

1. Mutation and SNP lists were determined by downloading
each ID in UniProtKB/Swiss-Prot format using a BioPerl
(http://www.bioperl.org/) script that utilizes the Bio::
DB::SwissProt module.

2. The resulting files were then parsed using a home-grown Python
script, by extracting the feature tags from each protein. Note
that although we used an informal script to parse the Swiss-Prot
entries, many users will likely use Swissknife (http://swisskni-
fe.sourceforge.net/), an object-oriented Perl library to handle
these files.

3. When parsing the feature tags, we only considered VARIANT
features and did not consider mutagens and VAR_SEQ features.
dbSNP entries are annotated with a dbSNP rsid and mutations
are annotated with a phenotype or left unannotated. Some SNPs
contain both a phenotype annotation and an rsid. Swiss-Prot
was chosen because it is generally well annotated and contains
both mutation and SNPs within the same context.

3. Methods

3.1. Identification of

Proteins Associated

with a Specific Disease

or Phenotype

The identification of disease-specific proteins was done in the
following steps:

1. To obtain a list of disease-specific proteins, we performed a
search of the OMIM database, retrieving each OMIM gene
record in which the ‘‘description’’ field contains the term
‘‘Alzheimer’’.

2. These initial proteins were used as ‘‘seeds’’ to expand into an
interaction data set to proteins with high confidence interac-
tions, described in detail in (1).
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3. Using the database built in Section 2.2, all Swiss-Prot SNPs
and mutations were identified in the expanded set of proteins.

For the AD-related case study, 65 OMIM genes or 70 pro-
teins (identified by Swiss-Prot IDs or UniProt IDs) were
retrieved from the initial search on OMIM. These 70 proteins
were used as ‘‘seeds’’ to expand into an interaction data set (AD
interaction sub-network) consisting of 655 expanded proteins as
described in detail in (1). It should be noted that the full set of
interacting proteins contains all possible interactions, not neces-
sarily an interaction important, or even observed, in AD tissues.
For each of 70 AD proteins, mutations from Swiss-Prot were
extracted as described in Section 2. Among the 655 total AD
expanded interacting proteins identified, 240 proteins have been
found to contain 2,941 mutations, which were annotated by the
Swiss-Prot database with information from the dbSNP with var-
ious annotated phenotypes. In Fig. 19.1, we show a histogram
including the number of SNPs and disease mutations by protein.
Annotated mutations ranged from 0 to a maximum of 210 in the
androgen receptor (ANDR_HUMAN). Other proteins highly
populated with mutations include TP53_HUMAN (193
mutations), FA8_HUMAN (185), CO4A5_HUMAN (141),
and FA9_HUMAN (138).
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Fig. 19.1. Distribution of annotated mutations and SNPs by proteins shown to interact with an Alzheimer’s
disease-related protein. Each of the 655 identified proteins in Swiss-Prot had their mutations and SNPs cataloged from
the VARIANT features in the Swiss-Prot flat file. Not surprisingly, few proteins have more than 10 SNPs while many
proteins have large numbers of mutations.
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3.2. SNP Function

Prediction

Initially, methods for SNP function prediction were based on
conservation in multiple sequence alignments derived from
similarity searches against nonredundant sequence databases and
the mutations could be either ranked or scored based on parame-
terization. Parameterization was either performed using unbiased
mutagenesis experiments in LacI, T4 Lysozyme and/or HIV
protease, such as SIFT (9), or using structure/function rules,
such as PolyPhen (10). SIFT is used as a feature here and SIFT-
based predictions can be determined by running the method on
their website (http://blocks.fhcrc.org/sift/SIFT.html). Poly-
Phen was not used here, but can be run from the website
(http://coot.embl.de/PolyPhen/).

Later, more sophisticated approaches were utilized using deci-
sion trees (11) or support vector machines (12, 13). Generally, the
primary predictive features for such methods are derived from
protein sequence, protein sequence conservation, structure, struc-
tural rules; specifically, the most important features are generally
the identities of the wild-type and mutant amino acids, sequence
conservation, and the degree of residue burial in a protein struc-
ture (11). These prediction methods generally require the use of a
statistical modeling package such as R or MATLAB.

3.3. Model to Predict

Mutations Within the

Context of Disease

To describe how we build a support vector machine (SVM) model
for the mutations in a set of proteins, we will walk through the
previously described AD case study. SVMs were chosen because
they have been applied to mutation data previously with good
performance (4, 14–16). The goal of such a model is to discrimi-
nate disease-causing mutations from polymorphisms. It is impor-
tant to understand that the set of proteins in question can be
derived from several sources. For example, they can be a database
of proteins with annotated SNPs or mutations, a family of related
proteins, or functionally connected proteins in a protein interac-
tion network.

To build a model we employ the following steps:

1. Using the previously determined set of proteins associated
with a specific phenotype, the SNPs and mutations associated
with each protein are determined (see Section 2.2).

2. Each of the mutations and SNPs in the set based on protein
interactions is annotated with features based on four different
attributes. They include the p-value score from SIFT (9),
sequence conservation score (based on information theory),
and a window of sequence neighbors and blosum62
substitution score (17). Sequence conservation was evaluated
using a position-specific scoring matrix (PSSM) from the
output of PSI-BLAST (18). PSI-BLAST is performed using
the BLASTPGP (http://www.ncbi.nlm.nih.gov/BLAST/
download.shtml) package from NCBI and is queried against

Protein Interaction and Mutations Data 455



the nonredundant protein database (NR) from GenBank
(ftp://ftp.ncbi.nih.gov/blast/db). Three scores from the out-
put were extracted; a PSSM, a weighted observed percentage,
and information per position score for each residue in the
sequence. For the sequence conservation of adjacent residues,
a window size of 20 using the information per position score
was considered. For N-terminal and C-terminal residues, we
used an average conservation score of the sequence to fill in the
N-terminal (C-terminal) residue scores. For the window of
residue type, we considered window of size 21; 10 residues
on the N-terminal side (left), 10 residues on the C-terminal
side (right), and itself. Our description of the window of
residue type has a similar protocol to those published for
classifying protein phosphorylation sites (19). Other features
are possible, including those based on sequence-based data
mining tools and protein-structure-based approaches; see
Section 4 for more information.

3. Each mutation is labeled (–1: dbSNP, 1: Swiss-Prot) and
positions annotated as being in both are removed, because
their ambiguous annotation prevents them from being accu-
rately classified as neutral or damaging. There are 45 features,
which are (listed by feature index id followed by feature type):
1 SIFT, 2:4 PSSM, weighted, information per position, 5:24
information per position window, 25:44 sequence window,
45 BLOSUM62.

4. For SVM classification (20), we use a linear kernel and default
regularization parameter (C). We employed an SVM for clas-
sification using the SVMlight (21) and its Matlab interface.
Since each feature has a different scale, all examples were
normalized to the [0, 1] interval. The ratio between deleter-
ious and neutral mutations is 13: 1. To overcome this
imbalanced data training, we gave more weight to negative
(neutral) samples. All evaluations were performed using leave-
one-out cross-validation.

To continue the example of AD-related proteins, the 655 AD-
related proteins in the protein interaction subnetwork were deter-
mined by looking at all interactions with the AD proteins which were
extracted from OMIM. Second, we have the subset of the 70 most
highly ranked proteins, based on the previously described analysis.
SIFT was run on all 655 proteins, giving a total 2,893 annotations
with an average SIFT p-value score of 0.118. When separated by
dbSNP, the phenotypically annotated mutations had an average
p-value of 0.095, while the SNPs in this set had a score of 0.290.
Similarly, the subset of 70 important proteins (35 of which actually
contained mutations) had both disease-annotated mutations and
SNPs. The disease-annotated mutations had a SIFT p-value average
of 0.110 and the SNPs had an average p-value of 0.327. Similar
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trends have been observed before, because SNPs are less likely to
affect protein function than the disease-associated mutations. We
then encoded the 367 mutations annotated in the subset of proteins
using the features described above.

As an example, we compare the performance differences
between protein SVM predictions and protein SIFT predictions.
Not surprisingly, the SVM method gives improved performance
over the SIFT method alone, although SIFT remains a highly
valuable feature (Table 19.1). Overall, the model has 83.7% accu-
racy and is more sensitive than SIFT. Interestingly, when the
model is applied to an expanded set of interacting proteins less
likely to be related to AD, the model’s performance declines to a
level similar to SIFT (accuracy of 70.94% versus 71.75%).

3.4. Feature Selection We then used feature selection to find a subset of features for
optimal classification. An important part of feature selection is to
rank features according to their importance for class discrimination.
Feature ranking is based on the weight associated with each feature
in a classifier and can be determined by recursive feature elimination
(RFE). RFE method computes the feature ranking as follows:

1. The SVM is trained and a weight associated with each feature
is computed using all of the features initially.

2. The feature with the smallest magnitude of the weight is
removed. This feature is the least important one. Leaving
this feature out, we retrained the SVM and recomputed all
the weights.

3. Steps 1–2 are iterated until all of the features are exhausted. In
this way, features are recursively eliminated and ranked. The
feature eliminated last is the most important feature. We
implemented the RFE feature ranking method in Matlab.
RFE with an SVM was described in Guyon’s paper on micro-
array data sets (22).

We wanted to evaluate which features were more important
than others for class discrimination. The top ranked features based
on the SVM-RFE method for the AD-related protein set include
SIFT and information per position from PSI-BLAST for the central

Table 19.1
Performance comparison between SVM and SIFT score predictions on the set of 70
Alzheimer’s disease-associated proteins

Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)

SVM prediction 85.5 95.5 69.1 83.7

SIFT prediction 70.8 94.3 66.7 70.3
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and adjacent residues. Based on this feature ranking, we computed
performance using top ranked features (Table 19.2). The highest
performance is achieved using the top 25 or 30 features.

3.5. Data Visualization Due to the large-scale data integration nature of this study, we chose
network data visualization software with the following two features,
(1) ability to directly support relational database queries as input to
the visualization environment; (2) ability to combine network fea-
tures, scores, and data variables created in real time with maximal
flexibility for the final visualization output. Therefore, we chose
ProteoLens (http://bio.informatics.iupui.edu/proteolens, also
see reference 26) over the popular software tools such as Cytoscape
(23). Using ProteoLens, we are writing SQL queries to generate
network data and prepare annotated ‘‘data associations’’ either as
‘‘node associations’’ or ‘‘edge associations.’’ Examples of the ‘‘node
associations’’ are protein target score identified by protein ID and
the protein’s gene deleterious SNP count identified by proteins.
Examples of the ‘‘edge associations’’ are protein interaction pairs
identified by both protein A ID and protein B ID and protein
interaction confidence score identified the same way. The node
associations are mapped to the network node’s display property
such as node size, shape, and color, whereas the edge associations
are mapped to the network edge’s display property such as edge
width, color, and type, all automatically by the ProteoLens software.
The final visualization can be generated as either a PDF file or a
PNG image file, specified by the user.

In Fig. 19.2, we show a visualization of the AD protein
interaction subnetwork, in which protein interaction, SNP anno-
tation, and disease protein curation information is integrated.

Table 19.2
Performance comparison using top k features by SVM prediction

Top k features Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)

5 73.9 98.0 88.1 75.5

10 80.3 97.8 85.7 80.9

15 85.2 97.5 83.3 85.0

20 84.6 97.5 83.3 84.5

25 85.9 97.2 81.0 85.3

30 85.9 97.2 81.0 85.3

35 85.2 96.5 76.2 84.2

40 85.2 95.9 71.4 83.7

45 85.5 95.5 69.1 83.7
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Note that most protein interactions are connected above statistical
chance to form a large connected subnetwork, which underlies the
context of the AD biological process. When we focus our attention
only onto the subnetwork highly relevant proteins with matched
SNP annotations (large nodes with non-default colors as shown in
the figure), we do see a correlation between the protein’s relevance
to the AD process and the percentage of deleterious SNPs for those
proteins. We can also observe other phenotypical effects among
non-AD relevant proteins (seen as peripheral yet red-colored
nodes in the figure), primarily because these proteins, although

Fig. 19.2. Visualization of the Alzheimer’s disease protein interaction subnetwork. Proteins are represented as
nodes and protein interactions are represented as edges between nodes with a line width of 1 (faintly visible in some parts
of the network). The size of the nodes is drawn in proportion to the protein’s subnetwork significance score (approximately
subnetwork protein centrality measure) described in (1). The color of the nodes, when not shown as the default color
(missing SNP information from data integration effort), is on a sliding gray scale of which the color intensity is proportional
to the ratio of deleterious mutations over all mutations recorded for the proteins annotated. The widths and color intensity
of the edges is proportional to the level of confidence (ranging from 0 to 1) for the given protein interaction.
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insignificant in the AD process, play important roles in other non-
AD disease processes (e.g., p53, otc, and btk, which are all periphe-
rical in the AD subnetwork but are implicated in other diseases).

4. Notes

1. Use of other features for the classification of SNPs and muta-
tions. It is important to note that the features described here are
only a subset of the possible features that can be used to classify
mutations. Features based on protein structure information or
comparative modeling information have been used previously
with improved results (11, 12). Features based on phylogenetic
information have also been shown to be useful (12).

2. Choice of a neutral set of mutations to compare with disease. In
this case we chose polymorphisms from Swiss-Prot as a model
of a neutral set of mutations to compare against disease-
associated mutations. A subset of non-synonymous SNPs
are known to be functional, that is, they likely alter the protein
product’s function. A more rigorous approach might be to
use SNPs experimentally determined to be neutral or to use
saturation mutagenesis experiments for comparison (11).
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Chapter 20

Effects of Functional Bias on Supervised Learning
of a Gene Network Model

Insuk Lee and Edward M. Marcotte

Abstract

Gene networks have proven to be an effective approach for modeling cellular systems, capable of capturing
some of the extreme complexity of cells in a formal theoretical framework. Not surprisingly, this complex-
ity, combined with our still-limited amount of experimental data measuring the genes and their interac-
tions, makes the reconstruction of gene networks difficult. One powerful strategy has been to analyze
functional genomics data using supervised learning of network relationships based upon reference exam-
ples from our current knowledge. However, this reliance on the set of reference examples for the supervised
learning can introduce major pitfalls, with misleading reference sets resulting in suboptimal learning. There
are three requirements for an effective reference set: comprehensiveness, reliability, and freedom from bias.
Perhaps not too surprisingly, our current knowledge about gene function is highly biased toward several
specific biological functions, such as protein synthesis. This functional bias in the reference set, especially
combined with the corresponding functional bias in data sets, induces biased learning that can, in turn, lead
to false positive biological discoveries, as we show here for the yeast Saccharomyces cerevisiae. This suggests
that careful use of current knowledge and genomics data is required for successful gene network modeling
using the supervised learning approach. We provide guidance for better use of these data in learning gene
networks.

Key words: Gene network model, supervised learning, classification, functional coupling, functional
bias, reference set, genomics data.

1. Introduction

A major goal for our system-level understanding of a cell or an
organism is the identification of the functions of all genes/proteins
and their organization into pathways. With the classical one-gene-
one-study approach, this goal is certainly daunting, if not
impossible. However, the massive generation of biological data by
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high-throughput techniques developed over the past decade brings
this ambitious goal much closer, and abundant functional genomics
data provide opportunities for modeling global gene/protein net-
works, which may shed light on our understanding of cellular systems.

Supervised machine-learning approaches have recently become
popular in global gene/protein network modeling for various
organisms (1–5). Supervised learning is generally considered a ‘‘clas-
sification’’ task, in which we start with classes predefined by some
criterion (usually given by expert opinion) and attempt to find
additional cases of these from the data. For modeling gene net-
works, the typical approach is not the prediction of genes with a
completely defined set of cellular functions – this strategy is difficult,
not least, because the total set of gene functions is unknown and
because many gene functions overlap. Instead, networks are often
derived by examining two classes of gene pairs, functionally coupled
or not. Note that the network models are intrinsically consistent
with genes’ pleiotropic (multi-functional) natures. Connections
(perhaps weighted) within such networks capture functional rela-
tionships among genes and can therefore be used to discover func-
tions of uncharacterized genes, to define functional modules of
genes, and to describe the organization of genes that contribute
to the physiological state of the cell.

Learning by classification requires reference examples on which
to train, and in this case they would be known, functionally coupled
gene pairs. A set of reference examples is generally based on current
knowledge and expert opinion. Reliable examples of gene functional
coupling can be derived easily from various biological annotation sets
based mostly on manual curation by expert biologists (Table 20.1).
In order to allow effective supervised learning, a reference set must

Table 20.1
Annotation databases for gene functions

GO (gene ontology) biological process
http://www.geneontology.org/ontology/process.ontology
GO is hierarchically organized, with the top-level (level 0) annotation being most general and the

bottom level the most specific. Generally, the middle range of annotation provides a good
compromise between specificity and comprehensiveness.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
ftp://ftp.genome.jp/pub/kegg/pathways/sce/sce_gene_map.tab
KEGG offers a three-level hierarchical annotation of biological pathways. The bottom-level terms are

most useful as functional reference terms, but show a bias toward metabolic pathways.

CYGD (the comprehensive yeast genome database) functional category, hosted by MIPS
ftp://ftpmips.gsf.de/yeast/catalogues/funcat/
CYGD is a reasonably comprehensive and detailed annotation set that is specific for yeast. The top level

contains 11 broad functional categories that are useful for visualization and analysis of general
functional trends.
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clearly be both comprehensive and reliable. However, reference sets
for functional networks have another important requirement, which
is freedom from functional bias. In fact, current biological annota-
tions often display severe bias toward a few specific functions. In this
chapter, we demonstrate how this reference set bias affects the inves-
tigation of functional linkages from diverse genomics data, and we
present examples for the genes of the yeast S. cerevisiae.

2. Methods

2.1. Functional Bias in

Current Functional

Annotations

A number of different databases organize genes according to their
pathways, such as the three listed in Table 20.1. Among these,
gene ontology (GO) annotation has become popular for func-
tional genomics studies due to its hierarchical organization and
its separation of three aspects of gene function—biological pro-
cess, which captures pathway relationships; cellular component,
which describes sub-cellular localization of gene products; and
molecular function, which focuses more on enzymatic and binding
functionalities (6). GO has also consistently improved through
community efforts (7). For example, by March 2005, 4,199
yeast genes (�72% of the total of 5,794 verified protein encoding
genes) were annotated by at least one GO biological process
annotation. Therefore, a functional annotation reference set
based on GO biological processes is highly comprehensive, satisfy-
ing the first requirement for effective supervised learning.

Another requirement for an effective reference set is reliability.
We can control the reliability of GO-derived reference sets both at
the level of their generality and with regard to the evidence support-
ing them. First, we can control the generality of employed—general
annotations such as metabolism (GO:0008152) are typically located
near the top of the GO hierarchy and often provide poor resolution
in the learning of specific cellular functions. By contrast, annotations
near the bottom of the GO hierarchy are highly specific but annotate
only one or a few genes, and thus they lack comprehensiveness. The
middle layers of the gene ontology hierarchy generally provide a
more optimal trade-off between comprehensiveness and reliability
(see Note 1). GO also provides evidence codes (Table 20.2) as
another way of controlling the reliability of the reference set. Anno-
tations by traceable author statement (TAS), inferred from direct
assay (IDA), inferred from mutant phenotype (IMP), inferred from
genetic interaction (IGI), and inferred from physical interaction
(IPI) are generally considered as highly reliable annotations. As of
March, 2005, the GO biological process had 4,199 annotated yeast
genes with a total 11,430 terms, of which 9,093 (�80%) are based
on one of these five types of highly reliable evidence.
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The reference set obtained by considering the above GO annota-
tions, though highly reliable and comprehensive, may still have a sys-
tematic bias toward a few specific functions. This in turn may lead to
biased learning of the given genomics data. We examined the distribu-
tion of GO biological process terms from the middle layers of the
annotation hierarchy (between levels 6 and 10, see Note 1). Although
we expected similar genome coverage among functional terms, we
found a few dominant functional terms used to annotate yeast genes.
From 1,067 selected GO biological process terms, we observed that a
single functional term, protein biosynthesis (GO:0006412), accounts
for more than 4% of total gene annotations, although its expected
coverage is less than 0.1% (100 / 1,067< 0.1) (Fig. 20.1A, filled bars).

In order to evaluate functional coupling between genes, we
derived reference gene pairs that are functionally coupled (positives)
and pairs that are not functionally coupled (negatives) from the
given gene functional annotation set. The simplest way of deriving
a set of positive examples is to pair genes that share at least one
common functional description. A corresponding set of negative
examples can be derived by pairing genes that do not share any
functional description (see Note 2). As a result of this gene pairing,
the functional bias of gene annotation is dramatically amplified in
the reference sets of functionally coupled gene pairs (Fig. 20.1A,
empty bars). This functional bias annotation is not specific to a
particular annotation set. We observe a similar functional bias
toward the ribosome, the core machinery of protein biosynthesis,
in another commonly used gene function annotation set, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (8), which focuses
mainly on metabolic pathway information (Fig. 20.1B).

Table 20.2
Gene ontology evidence codes and their reliability

Code Description Reliability

TAS Traceable Author Statement High

IDA Inferred from Direct Assay High

IMP Inferred from Mutant Phenotype High

IGI Inferred from Genetic Interaction High

IPI Inferred from Physical Interaction High

ISS Inferred from Sequence or Structural Similarity Low

IEP Inferred from Expression Pattern Low

NAS Non-traceable Author Statement Low

IEA Inferred from Electronic Annotation Low
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Fig. 20.1. The distributions of functional terms among annotated genes (filled bars) and
gene pairs (empty bars) by (A) the gene ontology (GO) biological process annotations, and
(B) the Kyoto Encyclopedia of Genes and Genomes (KEGG). The pathways illustrate
functional bias in both major annotation databases. Only a few of the most dominant
terms out of the 1,067 GO biological process terms between levels 6 and 10 and out of
100 KEGG pathway terms at the bottom level are labeled. In both GO biological process
and KEGG, the most dominant functional term is related to protein biosynthesis (the
ribosome being the major component represented), and this single term accounts for 3
and 7% of total gene annotations by GO and KEGG, respectively. This functional bias in
gene annotations has become dramatically amplified by pairing genes for the same
functional terms to provide references of gene pairs functionally coupled. As references
of gene pairs, about 25% of total reference examples are based upon only a single most
dominant functional term in both annotation sets.
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There are two major systematic biases that introduce func-
tional biases into our current knowledge bases. First, there are
differences in the size of cellular functional modules. We will
refer to this as size bias. For example, the protein biosynthesis
functional module consists of a huge translational machine, the
ribosome (composed of 150 � 200 proteins in yeast), as well as
many other co-factors. Thus, this single specific functional module
annotates many more genes than any other. The second bias we
will refer to as a study bias. Biologists have historically studied
genes using a one-gene-one-study approach, which naturally
introduced a bias toward genes that are more important (and
often biologically more essential) or those more readily studied
(for example, genes with an obvious mutation phenotype are easier
to study). Genes involved in protein biosynthesis have been
subject to this study bias. The recent development of various
high-throughput functional genomics analyses with reverse-
genetics approaches solves the problem of study bias, but size
bias is an intrinsic characteristic of cellular systems.

2.2. Effect of Reference

Set Functional Bias on

Supervised Learning

The inevitable functional bias in gene annotations potentially
affects further discovery of gene functions and network organiza-
tion. To demonstrate the effect of a single dominant functional
term (protein biosynthesis, see Fig, 20.1A) of the reference set
based on the GO biological process in learning functional gene
coupling, we compare two different reference sets derived from the
GO biological process annotation set: (1) a biased reference set that
comprises all gene pairs sharing annotation, including the pairs
sharing the function ‘‘protein biosynthesis’’; and (2) an unbiased
reference set based on the same pairs but excluding those sharing
the protein biosynthesis term. The effects on learning for links are
illustrated in Fig. 20.2 with examples from various types of yeast
genome-wide functional genomics data.

We can infer which genes are functionally coupled by the co-
expression patterns across different experimental conditions. The
tendency toward co-expression can be measured by the Pearson
correlation coefficient between any two genes’ expression profile
vectors. For a set of gene pairs with a given range of co-expression
tendencies, we calculate the log-likelihood score (LLS) using Bayesian
statistics, as a measurement of the likelihood of functional coupling
supported by the given data (see Note 3). In Fig. 20.2, log-likelihood
scores are calculated with the 0.632 bootstrapping method (9) to
minimize the over-fitting of models (see Note 4). For the functionally
informative microarray data set, we observe a significant positive
correlation between the tendency toward co-expression and the mea-
sured likelihood of functional coupling between pairs of genes.

For microarray data from yeast cell cycle time courses, log-
likelihood scores are higher with the biased reference set than with
the unbiased one (Fig. 20.2A). For the most significant data range
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(the top 1,000 gene pairs), the log-likelihood score is about 4 (i.e.,
the likelihood is �55-fold higher than random) with the biased
reference set, while it is about 3 (i.e., the likelihood is �20-fold
higher than random) with the unbiased reference set. Thus, there
is an increase of approximately threefold overall, deriving entirely
from a single additional functional term. This observation
becomes extreme as we examine the microarray data collected
from heat-shock-treated cells (Fig. 20.2B). The positive correla-
tion between the co-expression of genes across heat-shock condi-
tions, and the likelihood of functional coupling, is very strong with
the biased reference set, especially when the Pearson correlation
coefficient is higher than 0.8. In the range of Pearson correlation
coefficients from 0.8 to 1, the LLS increases from �1 (i.e., the
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Fig. 20.2. Correlation between data-intrinsic scores that imply gene functional coupling (Pearson correlation coefficient
measuring co-expression tendency or probability score of protein–protein interaction) and log-likelihood score (see Note 3)
that measures the likelihood of gene functional coupling with the given supporting data. Three different data sets—
(A) microarray data with cell cycle time courses, (B) microarray data with various heat-shock conditions, and (C) protein–
protein interaction from affinity complex purification—are evaluated using two different reference sets derived from GO
biological process annotation: (1) the biased set (filled circle), including gene pairs among the most dominant term ‘‘protein
biosynthesis,’’ and (2) the unbiased set (empty circle), excluding reference gene pairs for the term ‘‘protein biosynthesis.’’
Each data point represents a bin of 1,000 gene pairs of the data set, which are sorted by data-intrinsic scores.
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likelihood is approximately threefold higher than random) to � 4.2
(likelihood �66-fold higher than random), achieving a �22-fold
increase in the likelihood of functional coupling for the most co-
expressed genes, apparently implying that this heat-shock microarray
data carries strong information about gene functional couplings.
However, masking the single dominant functional term, protein
biosynthesis, is sufficient to remove most of the trend, showing
only approximately threefold likelihood increase across the same
range of Pearson correlation coefficients (from LLS �1.7, 5.5-fold
higher likelihood than random, to LLS �2.7, 15-fold higher like-
lihood than random).

This over-optimism exhibited by the biased reference set lar-
gely disappears when we consider protein–protein interaction
data. We compared the biased and the unbiased reference sets in
evaluating a high-throughput protein–protein interaction data set
derived from affinity purification of protein complexes followed by
mass spectrometry analysis (10). Using machine-learning algo-
rithms, the raw data set has been simplified to a set of 14,317
protein–protein physical interactions with associated probabilistic
scores (10). In this data set, the biased reference actually provides
very similar likelihood values to the unbiased reference
(Fig. 20.2C). A similar trend is evident in a high-quality data set
of 12,300 interactions derived from published protein physical
and genetic interaction data (and excluding large-scale assay-
derived interaction data) (11). This data set shows a very high
overall quality and relatively little difference in performance
between the unbiased reference set (LLS¼3.85) and the biased
reference set (LLS¼3.55).

2.3. Effect of Genomics

Data Set Functional

Bias on Supervised

Learning

What are the underlying characteristics of data sets sensitive to this
reference set bias? Not surprisingly, in many data sets these appear
to be functional biases that affect their performance in supervised
learning. This trend is evident when measuring the functional bias
as a function of interaction confidence score (the gene retrieval
rate). The gene retrieval rates measured for genes of 11 different
functional groups defined by the Munich Information Center for
Protein Sequences (MIPS) (12) demonstrates a high bias toward
genes involved in protein biosynthesis, which are among the most
highly co-expressed gene pairs in yeast cell-cycle microarray
experiments (Fig. 20.3A). This trend explains the overly optimis-
tic evaluation of cell-cycle micro-array data sets by the biased
reference set. It has been shown that proteins in stable complexes
tend strongly to co-express (13). Therefore, co-expression of
genes is an excellent feature for inferring interactions among pro-
teins of stable complexes such as the ribosome, and, not surpris-
ingly, the most strongly co-expressing genes are highly enriched
for ribosomal protein pairs. This trend is exacerbated through the
use of the biased reference set, which is over-represented for
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ribosomal gene pairs. Thus, the generality of interactions discov-
ered from these data may be suspect when the biased reference set
is used.

The distribution of gene functions in the yeast heat-shock
microarray data set is also interesting. While showing a similar
enrichment of protein biosynthesis genes, this set also shows a
flat gene retrieval rate (Fig. 20.3B)—i.e., the gene retrieval rate
does not significantly increase with an increasing number of co-
expressed gene pairs. This implies that co-expression during yeast
heat shock is restricted to only a small percentage of cellular
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Fig. 20.3. Gene retrieval rate across 11 MIPS functional categories for the top 10,000 scored functional gene pairs in (A)
co-expression during cell cycle time courses, (B) co-expression across various heat-shock conditions, and (C) protein–
protein interactions from affinity complex purifications. The cumulative gene functional coverage for the given data set
was measured based on MIPS’ 11 top-level protein functional categories for every 1,000 gene pairs sorted by data-
intrinsic scores.
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systems. In this case, additional functional couplings are added to
this small set of systems (which include the ribosome and other
protein biosynthesis-related systems) without incorporating addi-
tional genes, leading to an increasingly dense network of func-
tional linkages among this subset of genes. This is evident in the
fact that functional couplings derived from co-expression on the
heat-shock data cover only 9% of the yeast proteome and have a
clustering coefficient (14) of 0.6 for the top 10,000 gene pairs,
implying highly clustered interactions in a relatively few functional
modules. By contrast, the same number of gene pairs derived from
the cell-cycle data set covers about 36% of the proteome and has a
lower clustering coefficient (0.28). The protein–protein interac-
tion data sets show less functional bias (Fig. 20.3C), with large
proteome coverage (58%) and a low clustering coefficient (0.14)
for the number of gene pairs, implying that the information in
these sets is distributed through many functional modules in the
yeast cell.

2.4. Circumventing

Functional Bias in

Reference and Data

Sets

How can we achieve reliable evaluation in the presence of persis-
tent functional bias in the reference and data sets? Approaches for
monitoring over-training, such as cross-validation and bootstrap-
ping, do not solve this problem, as seen in the results of Fig. 20.2,
which were carried out with 0.632 bootstrapping (see Note 4).
One simple approach is to ignore the dominant terms for the
purposes of training and testing. For an unbiased data set, this
masking of a dominant functional term has minimal effects, as we
show with the example of protein–protein interaction data
(Fig. 20.2C and 3C). However, for biased data sets
(Fig. 20.2A, B and 20.3A, B), we observe much lower likelihoods
of functional coupling, implying that the optimistic likelihood
scores were unrealistic and therefore risky to generalize to the
rest of the data. Combined with cross-validation or bootstrapping,
this dominant term masking is a simple but effective way to remove
much of the negative effects of functional bias toward a few domi-
nant functional annotations.

3. Notes

1. Hierarchy in gene ontology. The gene ontology is hierarchically
organized, and references derived from different levels of the
annotation hierarchy may result in quite different evaluations
for identical data sets. This hierarchy is diamond-shaped, char-
acterized by fewer descriptive terms at the top and bottom
levels and by a gradual increase in terms as one moves toward
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the middle layer of the annotation hierarchy. Generally speak-
ing, top-level annotations provide extensive coverage but low
information specificity (resolution), while low-level annota-
tions describe fewer genes but with high specificity. Therefore,
the trade-off between annotation coverage and specificity must
be considered carefully in order to obtain an effective reference
set for evaluating genomics data. Empirically, we find good
performance using GO biological process terms between level
6 and 10 out of the total of 15 levels. The term ‘‘biological
process’’ is considered to be level 0.

2. Imbalance between positive and negative examples in a refer-
ence set of gene functional couplings. Generating positive
(negative) reference examples of functionally coupled gene
pairs by pairing genes sharing (not sharing) any functional
annotation results in a serious imbalance in the sizes of the
two reference sets. We obtain a much larger negative refer-
ence set than positive (e.g., �100-fold larger negative
reference set than positive based on the yeast GO biological
process annotation of March 2005). This much higher fre-
quency of negative examples in a reference set is problematic if
one uses conventional data evaluation methods, which use a
‘‘true positive rate’’ (true positive / predicted as positive) such
as a recall-precision curve (generally an overly pessimistic
evaluation indicated by low precision for a given recall) or
receiver operating characteristic (ROC) curve (generally an
overly optimistic evaluation indicated by a high true positive
rate for a given false positive rate) (15). With the severe size
imbalance between the positive and negative reference sets,
the measurement of the true positive rate is often discoura-
ging in absolute terms; however, as a relative measure among
different data sets, it works well. Gene functional couplings
can be learned using these relative reliability scores, and var-
ious thresholds of scores will generate gene network models
with varying accuracies and differing coverage.

3. Evaluation of gene functional coupling by log likelihood scores.
We can evaluate the reliability of gene functional couplings
supported by the given data using Bayesian statistics. A formal
representation of Bayesian inference of the functional cou-
pling between genes is the log likelihood score (LLS),

LLS ¼ ln
PðI jDÞ=Pð� I jDÞ

PðI Þ=Pð� I Þ

� �
;

where P (I|D) and P (�I|D) are the frequencies of gene func-
tional coupling and its negation observed in the given geno-
mics dataset (D), as measured by reference gene pairs. P (I)
and P (�I) represent the prior expectations (the total frequen-
cies of all positive and negative reference gene pairs,
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respectively). A score of zero indicates coupled gene pairs in
the data being tested are no more likely to be functionally
coupled than random; higher scores indicate a more informa-
tive data set for identifying functional relationships.

4. Evaluation with 0.632 bootstrapping. To avoid over-fitting,
we employed 0.632 bootstrapping (9) for all LLS evaluations.
The 0.632 bootstrapping has been shown to provide a robust
estimate of functional coupling accuracy. It is especially
favored over cross-validation for very small datasets (9).
Data evaluation with bootstrapping is therefore appropriate
even for more poorly annotated genomes. Unlike cross-vali-
dation, which uses multiple tests and training sets by sampling
data without replacement, 0.632 bootstrapping constructs
the training set from data sampled with replacement and the
test set from the non-sampled data. For the sampling, each
instance has a probability of 1–1/n of not being sampled,
resulting in �63.2% of the data being in the training set and
�36.8% in the test set (16). The overall LLS is the weighted
average of results for the two sets with 10 repetitions, equal to
0.632*LLStest + (1–0.632)*LLS train.
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Chapter 21

Comparing Algorithms for Clustering of Expression Data:
How to Assess Gene Clusters

Golan Yona, William Dirks, and Shafquat Rahman

Abstract

Clustering is a popular technique commonly used to search for groups of similarly expressed genes using
mRNA expression data. There are many different clustering algorithms and the application of each one
will usually produce different results. Without additional evaluation, it is difficult to determine which
solutions are better.

In this chapter we discuss methods to assess algorithms for clustering of gene expression data. In
particular, we present a new method that uses two elements: an internal index of validity based on the MDL
principle and an external index of validity that measures the consistency with experimental data. Each one is
used to suggest an effective set of models, but it is only the combination of both that is capable of
pinpointing the best model overall. Our method can be used to compare different clustering algorithms
and pick the one that maximizes the correlation with functional links in gene networks while minimizing
the error rate. We test our methods on several popular clustering algorithms as well as on clustering
algorithms that are specially tailored to deal with noisy data. Finally, we propose methods for assessing the
significance of individual clusters and study the correspondence between gene clusters and biochemical
pathways.

Key words: Microarrays, mRNA expression, clustering, evaluation.

1. Introduction

Since the introduction of microarray technology, expression
data have played an essential role in functional analysis of genes.
Genome-wide experiments produce new data sets that provide a
snapshot into the molecular machinery of the cell and pose new
challenges in genomic research. For example, through differential
analysis expression data can help in functional characterization of
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genes and detection of ‘‘critical’’ genes that are involved in a specific
process or related to a specific disease (1–6). Furthermore, expres-
sion data can hint into the underlying functional links in cellular
gene networks, as it is generally accepted that genes that are simi-
larly expressed under different experimental setups are functionally
related. Co-expression can be explained by similar regulatory ele-
ments but there are other possible reasons. For example, genes
might be expressed similarly because they are part of the same
complex as interacting partners, or they can participate in the same
cellular pathway.

However, individual (differential) or pairwise analysis of genes
(co-expression) does not give the complete picture. Genes work in
concert with each other, correlated and coordinated and groups of
co-expressed genes often correspond to fundamental biological
processes. Hence, there is a strong interest in algorithms that can
detect coordinated groups of genes. Moreover, expression data are
noisy and in many cases unreliable; there are many factors that may
affect the experiment and the measurements, thus obscuring sig-
nals that might indicate relations between genes. Therefore, to
enhance the signal and expose subtle functional links between
genes, most studies of mRNA expression data employ clustering
algorithms, hoping that the coordinated expression profiles of mul-
tiple functionally related genes would be more easily detectable than
a single pair of similarly expressed genes. These groups of similarly
expressed genes are assumed to have related biological functions
and possibly correspond to cellular processes and pathways.

The emergence of expression data triggered many studies
that focused on clustering. However, with the many clustering
algorithms that are available at the disposal of the practitioner in
data mining, it is not clear which one should be used to cluster this
kind of data and which one would produce the most meaningful
results.

In this chapter we discuss methods for assessing clustering
algorithms for microarray data. We review existing methods and
then introduce two criteria to evaluate the quality of the clustering
results. We demonstrate our combined evaluation methodology
by testing several popular clustering algorithms that were previously
applied to the analysis of expression data. We study their effective-
ness in detecting functionally related genes and the correlation with
experimentally verified functional relationships extracted from path-
way data, protein–protein interaction data, sequence data, structure
data, and promoter data. We also explore unsupervised learning
algorithms that are especially designed to deal with noisy data
(such as microarray data). Finally, we describe a method for asses-
sing the significance and correlation of individual clusters with cell-
wide processes and pathways. We start with a brief overview of
cluster analysis and then turn to describe our evaluation metho-
dology in detail.
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2. Methods I –
Cluster Analysis

Cluster analysis is an unsupervised learning technique commonly
used to organize samples into groups (clusters) so that samples
within a cluster are more similar to each other than to samples in
other clusters. There are many papers in the literature describing
different approaches to clustering, some of which date back to the
1960’s. In recent years we have seen a surge of papers describing
clustering algorithms and their application to expression data, in
search of groups of similarly expressed genes. In fact, more than
50 papers were published between 1998 and 2004, describing
different strategies (Note 1). It is beyond the scope of this chapter
to review all the different clustering algorithms. (For a review on
general clustering algorithms see (7, 8). For a review on application
of clustering algorithms to mRNA expression data see (9, 10)).

Here we focus only on several common techniques that are
based on different approaches to clustering. Many of the existing
clustering algorithms are variations of these general approaches,
which we describe in more detail next. The main element of this
paper is the evaluation methodology that we describe in Section 3.
We do not attempt to test all existing clustering algorithms; how-
ever, our method can be applied to test other clustering algorithms
and will be made available as a webserver at biozon.org.

In the following sections, the discussion assumes a hard clus-
tering model (where each point belongs to exactly one cluster),
but it can be easily generalized to the fuzzy clustering model (each
point belongs to all clusters with different probabilities).

2.1. Partitional

Clustering Algorithms:

K-Means

Clustering algorithms can be generally divided into partitional
clustering algorithms and hierarchical clustering algorithms. Parti-
tional clustering algorithms usually select a clustering criterion or
an objective function and set the desired number of clusters k.
Then the objective function is optimized by searching for the best
configuration (the best partition of sample points into clusters).

The popular k-means algorithm belongs to that category (using
the total squared error objective function (Note 2)). An exhaustive
search for the partition that minimizes the total squared error is
impractical and the algorithm employs an iterative hill-climbing
procedure to optimize the criterion function, as follows:

l Select an initial partition into k clusters.

l Loop:
1. Compute the center of each cluster as the average of all

samples assigned to it.

2. Assign each sample to the closest cluster (the one whose
center is closest). This will result in a new partition.

3. If cluster memberships change, go to Loop; otherwise stop.
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For squared error function, the optimal set of representatives is
the cluster centers, and this scheme ensures that the global distor-
tion decreases or remains unchanged with every iteration. However,
a major problem with this algorithm and other similar variations is
that they are very likely to become trapped in a local minimum. Also,
their output may vary a great deal, depending on the starting point.
The objective function may also significantly affect the output and
algorithms that use this scheme with a different function can pro-
duce completely different results. Obviously, there is no single best
objective function for obtaining a partition. Each criterion imposes
certain structure on the data, but the true clusters are not necessarily
recovered. This is especially true when the real number of clusters
k is unknown, and one has to chose it arbitrarily.

2.2. Hierarchical

Clustering Algorithms

Hierarchical clustering schemes can minimize the sensitivity to
different initial parameters. In general, hierarchical clustering algo-
rithms operate by obtaining a sequence of nested groupings. How-
ever, there are many clustering algorithms that apply hierarchical
schemes, which do not necessarily result in nested groupings, such
as the LBG algorithm (11) or deterministic annealing (12).

Perhaps the most popular hierarchical clustering algorithm is
pairwise clustering. Pairwise clustering algorithms are of great
interest when the data are given as a proximity matrix (pairwise
similarities/dissimilarities). However, they are not confined to
proximity data, and obviously can be applied to vector data as
well (simply by first calculating the distances between the vectors).
Pairwise clustering algorithms are often called graph-based clus-
tering algorithms. In terms of graph theory the sample set is repre-
sented as a weighted undirected graph G(V, E), where V is the set of
vertices (one for each sample point) and E is the set of edges (one
between each pair of nodes). The weight of an edge w(i, j) is a
function of the similarity/dissimilarity between the nodes i and j. As
described below, the steps of a pairwise clustering algorithm are
equivalent to operations on the graph (e.g., deleting/adding edges)
and the resulting clusters are equivalent to sets of nodes in the
graph.

Almost all pairwise clustering algorithms share the same basic
hierarchical scheme, which partitions the data into nested group-
ings using an agglomerative approach (algorithms that use divisive
procedures are more computationally intensive and are less com-
mon). Given n samples with pairwise dissimilarities w (i, j) (1 � i,
j � n), the basic agglomerative clustering is as follows:

Denote by k the number of clusters, and let k0 be the desired
number of clusters.

l Let k ¼ n and initiate the clusters Ci ¼ {i} i ¼ 1, . . ., n

l Loop:
– If k � k0, stop.

– Find the nearest (most similar) pair of distinct clusters, say
Ci and Cj.
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– Merge Ci and Cj and decrement k by one.

– Go to loop.
Letting k0 ¼ 1 terminates the process when all samples are

classified to one cluster. But usually a threshold is set and the
process terminates at the level where the distance between the
nearest clusters exceeds the threshold or when the desired number
of clusters was reached. At any level the distance between the
nearest clusters can provide the dissimilarity value for this level.

There are different ways to measure the distance between clus-
ters. Each method can result in an algorithm with different pro-
perties. For example, the single linkage algorithm (also called the
nearest neighbor algorithm) uses the minimal distance between
members of the clusters

dminðCi;Cj Þ ¼ min i2Ci j2Cj
fwði; jÞg

The complete linkage algorithm uses the maximal distance

dmaxðCi;Cj Þ ¼ max i2Ci j2Cj
fwði; jÞg

And the average linkage uses the average distance between
clusters

daveðCi;Cj Þ ¼
1

jCijjCj j
X

i2Ci j2Cj

wði; jÞ

2.3. Spectral Clustering

Algorithms

Spectral algorithms consider clustering as a graph partitioning
problem over the undirected graph G(V, E). A clustering C ¼
{C1, C2,. . . Ck} is a partitioning of V into nonempty mutually
disjoint subsets C1, C2...Ck where k � n.

There are several variations of spectral clustering algorithms.
For example, the minimal cut clustering algorithm (13) uses the
notion of cuts in graphs and seeks partitions into subgraphs such
that the maximum cut across subgroups is minimized. A cut (A, B)
in graph G(V, E) is a partition of V into two disjointed sets of
vertices A and B such that V ¼ A

S
B. The capacity of a cut is the

sum of the weights of all edges that cross that cut, i.e.,

cutðA;BÞ ¼
X

i2A j2B

wði; jÞ

where w(i, j) here denotes the similarity of i and j. The capacity of
the cut can be used as a measure of similarity between these two
sets. Note that there may be more than one possible cut between
two given vertices. The minimal cut is the one which has the
minimal capacity, and the bi-partitioning strategy that is adopted
by the minimal cut algorithm is to split the graph along minimal
cuts.

A variant of the minimal cut algorithm is the minimal normal-
ized cut algorithm. This algorithm addresses one of the problems
with the minimal cut algorithm, namely the minimal cut measure,
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which is prone to create partitions with small sets of isolated nodes
as subgraphs. To avoid this bias, the normalized cut algorithm
(14) normalizes the capacity of the cut (A, B) by the total associa-
tion of the set A (which is the sum of weights incident on A) and
the total association of B. This disassociation measure is called the
normalized cut:

N cutðA;BÞ ¼ cutðA;BÞ
assocðA;VÞ þ

cutðA;BÞ
assocðB;VÞ

where

assocðA;VÞ ¼
X

i2A k2V
wði; kÞ

The algorithm looks for partitions with small Ncut value and
the graph is partitioned recursively so as to minimize the normalized
cut criterion at each level until Ncut exceeds a predefined threshold.

2.4. Algorithms for

Clustering of Noisy

Data

Expression data are very noisy and in some cases unreliable, which
might greatly affect clustering algorithms that are based purely on
the pairwise distances between expression profiles. In this section
we describe two clustering algorithms that are designed to work
effectively with noisy data. The first algorithm (strict clustering)
attempts to improve the clustering by maintaining a certain level of
confidence about all pairwise relationships in a cluster. The second
(iterative clustering) diverges from the original representation of
genes as expression profiles and gains its power by employing a
dynamic representation that samples the complete space of exp-
ression profiles to determine the whereabouts of each individual
expression profile.

2.4.1. Strict Clustering In strict clustering, clusters are constrained to be strongly con-
nected. A threshold is chosen first and for every cluster we require
that the average similarity of a node to every other node in that
cluster is more significant than the threshold chosen. This proce-
dure generates clusters of very high quality in the sense that we
have high confidence in the cluster membership of each individual
gene. The algorithm can be viewed as a heuristic approximation to
the max-clique problem, where the resulting clusters are in essence
pseudo-cliques (pseudo, as the average similarity of each member
with all other members is above the threshold, as opposed to all the
individual pairwise similarities).

Strict clustering is implemented by first considering the node
with the maximal number of neighbors and grouping it and all
its neighbors into one candidate cluster. The node with the worst
average within-cluster similarity is then considered for elimination.
If its average similarity is below the significance threshold, then the
node is thrown out. The process is continued until all nodes satisfy
the above condition. Other nodes are considered for inclusion if
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their average similarity score and the average cluster similarity
score exceed the threshold, adding the maximally similar node at a
time. This procedure is repeated with the remaining nodes until all
nodes are exhausted. The clustering procedure ends when every
node is in a cluster (possibly a singleton).

2.4.2. Iterative Clustering The iterative clustering method we tested is an hierarchical algo-
rithm based on iterative modification of data representation (15).
The algorithm begins with the proximity matrix of the pairwise
similarities. After preprocessing (see Section 4.4), the clustering
procedure precedes in two steps. In the first step each row is
normalized so its Euclidean norm is one (Note 3). Next, a new
estimate of the distances between genes is calculated from the
proximity matrix. Specifically, the distance between genes i and j
is estimated by the distance between rows i and j of our proximity
matrix (Note 4). This procedure is repeated until the matrix con-
verges to a binary matrix containing only zeros and some positive
constants. In most cases this final matrix can be permuted to a block
diagonal matrix with two blocks. If this is the case, the two blocks
are considered as a split of the data into two clusters. If the final
matrix converges to more than two blocks, one of the blocks is
chosen arbitrarily to be one of the clusters and the remaining genes
are classified to the other cluster. This process is repeated with each
one of the two clusters generated. A cross-validation protocol is
employed (15) to assess the stability and the prominence of the split
and splitting is stopped when the sets disagree (see Section 4.5).

3. Methods II –
Assessment of
Clusters

Clustering algorithms can be very effective in discovering patterns
in unlabeled data. However, when applied simple-mindedly, they
can lead to false conclusions. Clearly, the application of any clus-
tering algorithm will result in some partitioning of the data into
groups, and the choice of the clustering algorithm may greatly
affect the outcome. Moreover, clustering algorithms are likely to
become trapped in a local minimum and their output may vary
a great deal, depending on the starting point. Most importantly,
determining the ‘‘correct’’ number of clusters (classes) within the
data set is considered one of the most difficult problems in unsu-
pervised learning, and one usually presets this number arbitrarily,
or selects it based on hierarchical cluster analysis. However, in the
absence of a natural criterion by which to stop the process of
splitting or merging data points, usually an external user-specified
parameter is used (e.g., when the distance between clusters exceeds
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a certain threshold). Consequently, the clustering (the ‘‘recovered
structure’’) does not necessarily fit the ‘‘real’’ structure of the data,
and its validity is questionable.

Naturally, with such a large variety of clustering algorithms
to choose from and the explicit dependency on the parameters’
values, one could ask which method is the best and whether the
results produced with one algorithm are more meaningful than the
other. This problem is not unique to microarray data analysis, but
rather is common to any learning task that is involved with cluster-
ing and the issue has occupied the machine-learning community for
many years now, and many different strategies have been proposed.

In general, there is no natural definition according to which the
quality and validity of the clustering can be assessed, and external or
relative parameters are used to adjust the number of clusters and
assess the cluster structure. There is no single approach that is
generally perceived as universally acceptable and many indices of
validity have been proposed in the literature (see (7) for a discus-
sion). In general, there are four main types of validation: (i) External
validation compares the recovered structure to an a priori structure
and tries to quantify the match between the two. (ii) An internal
validation test seeks to determine if the structure is intrinsically
appropriate for the data. This may be done, for example, by measur-
ing the compactness and isolation of clusters. A related approach is
the minimum description length (MDL) criterion (16) where the
total clustering cost takes into account the distortion as well as the
model’s complexity (which is a function of the number of para-
meters needed to describe the model). (iii) A relative test compares
two different structures (e.g., clustering structures for k¼4 clusters
and for k¼5 clusters) and measures their relative merit. (iv) A cross-
validation test checks the parameters of the clusters against inde-
pendent validation data. Statistical tests are applied to verify that
the ‘‘match’’ between the parameters of the two sets is statistically
significant. Cross-validation can prevent overfitting of the model to
the training data and the statistical tests can also provide a useful
estimate of the generalization error.

Several studies proposed and applied external indices to com-
pare and evaluate clusterings of gene expression data. For example,
Bolshakova et al. (17) propose an external index that assesses
cluster validity based on similarity scores extracted from the
Gene Ontology (GO) (18). Another approach is described in (19).
This approach also incorporates GO annotations when clustering
genes using expression data. To estimate the quality of the clusters
the authors applied the Davies & Bouldin index, which is defined
as the ratio of within-cluster scatter to between-cluster separation,
summed over all clusters. The authors in (20) used statistical natu-
ral language processing techniques to utilize information about
gene function in the published literature and assess the biologi-
cal significance of clusters. Their method, neighbor divergence,
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assesses whether the genes within a group are functionally similar by
computing the similarity between the word vector representations
of the corresponding paper abstracts. Another knowledge-driven
method is described in (21). The authors represent each gene as a
vector of biological attributes (e.g., membership in functional classes
derived from GO annotations) and project the vectors onto a one-
dimensional space such that the cluster separation is maximized
(measured by the ratio of between-clusters and within-clusters var-
iance). The clustering is then scored by computing the p-value of the
observed variance in the projected vectors for each cluster.

A few other studies used internal indices to assess gene clus-
ters. For example, a software package that tests clustering solutions
using multiple indices that measure cluster separation is described in
(22). The authors in (23) propose cluster validity measures based on
subspace projection methods. The original gene expression data are
projected into lower dimensional subspaces using the Johnson-
Lindenstrauss method, which approximately preserves distances
between examples, and the stability of the clusters is estimated by
comparing them with the clusters discovered in randomly pro-
jected lower dimensional subspaces. Another internal method is
explored in (24), where the statistical significance of each cluster is
computed by comparing its density to the local background. The
validity of a cluster is based on the probability of it having essentially
the same distribution as the neighboring points. A low probability
indicates a higher-quality cluster. Yet another method is intro-
duced in (25), where the authors assess the clustering using mea-
sures of cluster reproducibility.

Other studies used cross-validation techniques and related re-
sampling methods. For example, the method for validating clus-
ters in (26) is based on cross-validation. The paper applies a
clustering algorithm to the data from all but one experimental
condition. The left-out condition is used to assess the predictive
power of clusters by measuring the variation in the left-out condi-
tion and comparing it to the variation observed in random clusters
(with lower values anticipated for ‘‘meaningful clusters’’). In (27)
the stability of individual clusters was assessed with scores that
were computed using subsampling techniques. Another related
method is described in (28), using re-sampling methods based
on bagging to assess clustering procedures. Bagging is an ensem-
ble method in which multiple bootstrap learning sets are generated
by sampling with repetitions. A model is generated (learned) for
each set and the final prediction is made by combining the predic-
tions of the individual models. The authors apply a clustering
algorithm to each set and the solutions are combined by voting.
The cluster votes are used to assess the confidence of cluster
assignments. Finally, in (29) the authors propose a statistical re-
sampling method to assess the reliability of gene clusters identi-
fied with hierarchical clustering algorithms. A tree is generated for
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each resampled data set and a confidence value is computed for
each node in the original clustering tree. Clusters occurring in
majority of the resampled trees were deemed more reliable.

While these methods can be effective in detecting ‘‘good’’
structures, each one is sought with its own problems. For example,
to determine if a specific external index for the clustering structure
is ‘‘unusual’’, or surprising, one must obtain (by theory or simula-
tion) the baseline distribution of the index for random data. A
clustering is considered valid if the index is unusually high, as
measured with respect to the corresponding baseline distribution.
However, establishing the baseline distribution requires purely
random data that match the characteristics of the real data, or
extensive statistical sampling. In addition, external tests can be
applied only when a prior structure is known. Internal indices
also require estimating the background distribution. In addition,
in order to determine if the clustering structure is surprising, it
should be compared to the best clustering of random data. Practi-
cally, these requirements complicate the application of internal
validation tests. Relative indices are usually a derivative of internal
indices and they suffer from the same problems. The MDL criter-
ion requires a parametric model, which is not always explicitly
defined (for example, with graph-based clustering). Its depen-
dency on the external parameters can result in over-sensitivity to
perturbations in the data or in the parameters. As with the MDL
criterion, cross-validation also requires a certain parametric model,
which limits its applicability. It also requires relatively large data set
for training and validation. Most importantly, no index is guaran-
teed to work under all scenarios, and even if a specific individual
index performs well on some data sets it might not perform well on
others.

3.1. Our Approach –

The Double Index

Assessment

Our goal is to determine whether a structure is meaningful and
cannot reasonably be assumed either to have occurred by chance or
to be an artifact of the clustering algorithm. As pointed out in the
previous section, no single index provides a global solution and
therefore we suggest a combined approach that uses two criteria to
assess the quality of different clustering models. The first is based
on internal index of validity, specifically the complexity of the
model and its ability to explain new instances. The second is
based on external index of validity, specifically the correlation with
the experimental data. We corroborate the evidence as provided by
the two measures to select the best clustering.

3.2. Internal Index of

Validity – The Bayesian

Approach

We consider each possible clustering (partition) of the data as a
unique model, denoted by h. Posed in probabilistic terms, the
problem of selecting the best model (best clustering) can be phrased
as a problem of maximizing the posterior probability of the model
given the data, i.e.,
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Pðh=DÞ ¼ PðhÞPðD=hÞ
PðDÞ

The optimal hypothesis h* is the one that maximizes P(h/D)
(minimizes —P(h/D)) or equivalently

h� ¼ arg min
h
½�PðhÞPðD=hÞ� ¼ arg min

h
½�log2PðhÞ � log2PðD=hÞ�

Note that this Bayesian approach resembles the minimum
description length principle. The description length of a given
model (hypothesis) and data is defined as the description of the
model plus the description of the data given the model. This heu-
ristic calls for selecting models that minimize the overall description
length, thus compromising between complex and overly specific
models and simple models that are too general and fail to pro-
vide reliable and accurate description of the data. By the Shannon
theorem — log2 P(x) is related to the shortest description of
a string x and therefore the first term can be considered as the
model description length, while the second term log2 P(D/h) is
the likelihood of the data given the model and can be considered
as the description of the data given the model (this is a measure of
the uncertainty that is left in the data, given the model).

The second term is simply the minus log-likelihood of the data
given the model

log2PðD=hÞ ¼ log2

Yn

i¼1

pðxi=hÞ ¼
Xn

i¼1

log2pðxi=hÞ

In our hard clustering model, each sample is classified to a
single cluster Ci, whose prototype is estimated as the average of all
samples that are classified to that cluster. The prototype is assumed
to be corrupted by some normally distributed noise, with mean
zero and standard deviation that can be estimated from the data.
Thus, each cluster is parametrized by a d-dimensional vector of
means and standard deviations (each one corresponds to a differ-
ent experiment, e.g., a different time step). The probability of an
individual sample to belong to cluster Ci is given by the product of
the d normal distributions characterized by the individual means
and standard deviations at each time step

pðx=CiÞ ¼ pððx1; x2; . . . ; xdÞ=CiÞ

¼ pðx1=mi1; si1Þpðx2=mi2; s22Þ . . . pðxd=mid ; sidÞ

where each pðxj=mij ; sij Þ is a one-dimensional normal distribution
( j being the experiment index). This equation can be easily gen-
eralized to the soft clustering case, where each gene has a nonzero
probability to belong to each one of the clusters.

The first term – log2 P(h) is the approximated model descrip-
tion length. It has been suggested (see Bayesian Information Cri-
terion (30)) that the model complexity can be approximated using
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0.5 log n bits per parameter. However, this ignores the uncertainty
we have about the exact value of each parameter (that can vary
between parameters). Here we estimate the term – log2 P(h) by
calculating how many bits are needed to specify (localize) the
coordinates of the prototypes (prototype means), taking into
account this uncertainty. We make a distinction between single-
tons and non-singleton clusters. For singleton clusters we use 0.5
log n bits per parameter (one per dimension) while for non-sin-
gleton clusters the resolution depends on the uncertainty in the
value of each parameter. Estimating the uncertainty is done as
follows: Since the standard deviations within clusters are not expli-
citly used in the clustering algorithm, we can assume that each
cluster in our model is characterized by only d parameters (the
prototype means), and the standard deviations can help in deter-
mining the exact whereabouts of each one. Since each parameter
(the mean) is estimated as a sum of i.i.d. random variables drawn
from an arbitrary probability distribution with mean, m and vari-

ance s2 (estimated from the data) as in y ¼ 1
n S

n
i¼1Xi, then by the

central limit theorem we know that as n!1 then y! m with
standard deviation sy ¼ sffiffiffi

n
p : This standard deviation (in bits) is a

measure for the uncertainty in the value of the estimator. The
overall uncertainty is a sum over the uncertainties of all parameters
for all clusters.

3.3. External Index of

Validity – The Relation

Graph

While the internal validity index described above can help in dis-
cerning better models, it does not necessarily produce clusterings
that best describe the experimental data. Moreover, as this princi-
ple is a heuristic, it can only guide the designer by pointing to more
effective models; however, usually the designer is left with several
models, all seem to describe the data equally well (see Section 5).

To reduce this set to a single model, we re-evaluate the clus-
tering results and select the most significant one given the experi-
mental data using the relation graph described in Section 4.2.
Specifically, we count the number of true edges within each cluster
and estimate the probability to obtain this partition of edges
amongst clusters by chance. In other words, the significance of
the clustering is determined by how much this partition deviates
from the partition one would expect to get by assigning edges to
clusters and between clusters at random.

Formally, we are given a cluster set C¼C1, C2, . . ., Ck with n1,
n2,. . ., nk genes and e1, e2, . . ., ek edges, which partitions the total
set of true edges such that ti edges fall in cluster i (1 � i � k). In
addition, we have ecross edges across clusters, of which tcross are true.
The probability to obtain this partition by chance is

Pðt1; t2; . . . ; tk; tcross=CÞ ¼
T

t1t2 . . . tktcross

� �
pt1

1 pt2

2 . . . ptk

k ptcross
cross
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where E ¼ Siei þ ecross is the total number of edges, T ¼ Siti þ tcross

is the total number of true edges, and pi ¼ ei /E (we refer to set {pi}
as the random type, and to set {ti} as the sample type).

This model of the edge distribution may seem odd at first since
one is used to thinking about partitioning the set of genes and not
the set of edges. One can imagine choosing an edge at random is
the same action as choosing two genes at random. This must result
in either the two genes landing in the same cluster or that these
genes lie in different clusters. The multinomial distribution is a
model of this edge picking process.

However, this probability in itself is not enough to ascertain
the significance of the overall partition of genes into clusters.
To assess the significance one needs to know how probable it
is to get partitions that are less likely by chance than the one
in question (in other words, one needs to know the weight of
the tail of the distribution). Alternatively, one can use a con-
centration of measure result such as standard deviation, when
known, to determine significance. Given a significance mea-
sure, one can use it as an external validation index and pick the
clustering with the minimal total random probability (maximum
significance).

A common significance measure for the multinomial distribu-
tion is the following statistic

Q ¼
X

i

ðti � TpiÞ2

Tpi
þ ðtcross � TpcrossÞ2

Tpcross

This statistic has an approximate chi-square distribution with
k degrees of freedom. However, as many clusters are fairly small,
the underlying statistical assumptions are violated and the chi-
square approximation does not hold. Instead, we use an algo-
rithm that was recently introduced in (31) for efficient exact
computations of p-values for the multinomial distribution using
the likelihood ratio statistics. Given two probability distributions
P1, P2 and a type T ¼ {ti}, the likelihood ratio of the type is
defined as

� 2� log
PðT =P1Þ
PðT =P2Þ

In our case P2 is defined based on the empirical sample type,
and P1 is the random type. High positive ratio indicates that T is
more similar to the observed type than to the random type, and
when considering the two hypotheses it is less likely to emerge
from the random type. We implemented this algorithm to com-
pute the probability that a type sampled according to the random
type will obtain a higher likelihood ratio than that of the observed
type.
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4. Methods III –
Experiments

4.1. Data The main entities of our study are genes, their expression profiles and
sets of gene relationships that are believed to be the underlying reason
for co-expression. Our model system is the yeast genome that was
selected because of the myriad of information which is available about
genes, interactions and cellular processes. In our experiments we used
the well-known yeast time-series data set (1); however, our tests can
be applied in the same way to clusterings that are obtained from other
data sets. The time-series data set of (1) measures the expression of
genes at different time points of the cell cycle. The data set contains
measurements for four cell cycles, and in our analysis each ORF is
represented by concatenating the measurements from all four cell-
cycles together, for a total of 73 measurements.

4.2. The Reference Set

(For External Validation

Index)

When evaluating the clustering results using the external index
of validity (see Section 3.3), we need a data set of experimentally
verified relationships. Four possible gene relationships are consid-
ered in this work: protein–protein interactions, pathway member-
ship, promoter co-regulation, and sequence homology. Each of
the four relationships can be thought of in terms of a graph. In this
graph each node represents a gene and an edge exists between the
nodes if the genes are functionally linked. These subgraphs are
compiled together into a single graph (called the relation graph)
in which two nodes are connected if a known relationship exists
between the two corresponding genes. Table 21.1 lists the num-
ber of genes and edges in each data set. For more details see (32).

Table 21.1
The relation graph. Number of genes and edges (true
relationships) in each data set. The sum of the number of
edges in the four categories does not equal the total number
of edges because two genes may have multiple types of
edges between them, but this relationship is counted only
once in the total set

Relation type #genes #edges

Interaction 3592 5339

Sequence 3092 19074

Promoter 213 2439

Pathway 642 15789

Total 5079 41902
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4.3. Similarity

Measures

To cluster genes based on expression data, one has to choose first a
similarity or distance function for expression profiles. The choice
of the similarity function can greatly affect the clustering results
and therefore it has to be chosen carefully.

The two most popular measures used in studies of mRNA
expression data are the Euclidean metric and the Pearson correla-
tion. For two expression vectors V and U of dimension d, we
denote by Dist (V, U) the normalized Euclidean metric

DistðV;UÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d

Xd

i¼1

ðVi �UiÞ

vuut

and by Corr (V, U) we denote the Pearson correlation of the two
vectors

CorrðV;UÞ ¼ 1

d

Xd

i¼1

ðVi �5V4ÞðUi �5U4Þ
sV sU

Due to missing data the dimension of each vector (expression
profile) can vary. Instead of using extrapolation methods, we
decided to use only the available data; to avoid errors one might
introduce by extrapolation. When comparing a pair of vectors, the
dimension d is defined as the number of features both vectors have
in common.

In a previous study (32) we tested different similarity
measures between expression profiles (including the Euclidean
metric and Pearson correlation) and compared their effective-
ness in terms of their ability to detect functional links between
genes, such as protein–protein interactions, pathway member-
ship, promoter co-regulation, and sequence homology. Of all
measures that we tested, the z-score-based measure which com-
bines the Euclidean metric and the Pearson correlation was one
of the most effective ones (referred to as EucPear). Formally,
the two distance measures are converted to z-scores based on
background distributions that are generated by permuting one
of the vectors and re-computing the distance between the per-
muted vectors. This method provides reliable measure of signifi-
cance as it adjusts to the ‘‘compositions’’ of the vectors
compared. The z-scores are then summed to determine the
final similarity score. Since higher correlation scores are assigned
positive z-scores and smaller Euclidean distances are assigned
negative z-scores, the final score is defined as

EucPearðV;UÞ ¼ Z½CorrðV;UÞ� � Z½DistðV;UÞ�

with higher scores indicating stronger similarity.
It should be noted that the most effective measure we analyzed

in (32) is the new mass–distance measure. However, for the sake of
simplicity we used the more standard measures in this study.
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4.4. Pre-Processing

Similarity Data

When applying each of the clustering algorithms to the expression
data sets, some preprocessing is necessary. Expression data are very
noisy and incomplete. In our analysis genes for which expression
data were not available were removed altogether (a total of 593
genes in the time-series data of (1)). Even after excluding these, it
might not be possible to compute the similarity score between all
remaining genes, for example, when the expression profiles asso-
ciated with genes i and j are over non-overlapping subsets of experi-
ments. To recover missing values we considered intermediate genes.
Specifically, a missing value at position i, j is computed as the
maximum similarity over all possible intermedia genes

wði; jÞ ¼ max
k

wði; kÞ þ wðk; jÞ
2

When applied to the time-series data set, the procedure recov-
ered 7262 positive similarity scores. With spectral clustering, after
recovering the missing scores all negative scores were set to zero,
since spectral algorithms assume a non-negative proximity matrices.
By setting negative scores to zero some information is being dis-
regarded; however, negative similarity scores indicate that the two
genes have very different expression profiles and therefore can be
simply considered as non-similar (i.e., zero similarity score).

4.5. Algorithms In total we tested six clustering algorithms, all were implemented
in-house. We tested three conventional clustering methods: the k-
means algorithm and two hierarchical clustering algorithms (single-
linkage and average-linkage). We also tested the normalized-cut
spectral clustering algorithm and two noise-tolerant algorithms:
strict clustering and iterative clustering. All experiments were done
using the EucPear proximity matrix, excluding the k-means algo-
rithm that used the Euclidean metric (Note 5).

The data set contains many genes with expression profiles that
are unique and are not similar to any other gene, and therefore the
clustering solutions contain many singletons. To reduce the impact
of these singletons on the evaluation, we first ran strict clustering
and collect all genes that are members of non-singleton clusters (a
total of 3775 genes). We then ran all other clustering algorithms
only on this subset of 3775 genes.

5. Results

There are two types of comparisons when assessing clustering
algorithms. One could compare the performance of the same
algorithm with different sets of parameters (parameter optimiza-
tion). For example, the cross-validation threshold in the iterative
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clustering, or the Ncut parameter in spectral clustering, or the
number of clusters with k-means and hierarchical clustering. The
second type of comparison would take the best clustering obtained
with each method and compare them to each other, to find the
best clustering overall (best clustering). In discussing the results we
focus mostly on the first type.

5.1. Parameter

Optimization

5.1.1. Strict and Iterative

Clustering

With strict clustering there is one parameter – the threshold (for
the average similarity) below which a sample point is removed
from a cluster. The threshold was chosen based on an analysis of
the distribution of EucPear distances (see (33)) and set to 7.5. The
iterative clustering algorithm was run at different cross-validations
levels, starting from 0.98 (the percentage of points on which the
two validation sets agree). The splitting was terminated when the
validation score fell below 0.6 or when the size of the cluster fell
below 4, and all splits were stored for further evaluation.

In Fig. 21.1a we plot the description length of the different
clustering solutions we produced with the iterative clustering
algorithm, using thresholds in the range of 0.6 and 0.98. As the
graph indicates, the description length decreases as the threshold
decreases (note the major decrease around 0.83) until it reaches a
plateau around 0.75. Without any further information one might
suggest 0.75 as the optimal threshold, were the plateau starts.
However, there is no clear reason to prefer 0.75 over 0.6, for
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Fig. 21.1. Strict and iterative clustering: (a) Model selection based on the posterior probability/MDL principle. We tested all
clustering solutions that we produced with the strict clustering algorithm and the iterative algorithm (using a variable
threshold). For each solution we computed the overall description length (the sum of the description length of the model
and the data given the model). This is proportional to the posterior probability of the model (see text). As the graph
indicates, all models with thresholds ranging from 0.6 to 0.75 can be considered good models, as well as the model
generated with the strict clustering algorithm (denoted by ‘‘*’’). (b) Model selection based on p-value. For each model we
compute the significance (p-value) of the sample type (the observed distribution of true edges), given the clustering model
(see text). Both clustering techniques perform well and the resulting clusters are strongly correlated with the experimental
data sets (strict clustering is denoted by a ‘‘*’’). Of all models, those that correspond to thresholds of 0.83 (with 66 clusters)
and 0.69 (213 clusters) are the most significant ones. However, corroborating the evidence from the MDL computations,
we conclude that the best model is obtained at threshold of 0.69.
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example, based on the MDL principle alone, and each one of
these clusterings is a viable model. However, the clustering
structure changes quite drastically, ranging from 158 clusters
(at threshold 0.75) to 319 clusters (at threshold 0.6), as is depicted
in Fig. 21.2.

The second criterion helps to reduce this set of models to a
single best one. We compute the p-value for each one of the
clustering solutions and compare them based on their significance
(their p-value). The results are given in Fig. 21.1b. Note that the
most significant clusterings are those produced with thresholds
0.83 and 0.69. The first corresponds to a major decrease in the
MDL (see Fig. 21.1a); however, it is the second one that obtains
the better score when considering both the MDL principle and the
p-value.

5.1.2. Spectral Clustering With the normalized-cut spectral clustering algorithm, the original
graph was partitioned recursively until all clusters contained at
most five nodes. One can stop the splitting at any point before
reaching this threshold on the cluster size. Since the Ncut value
increases as the splitting progresses, is it possible to set a threshold
on the Ncut value and halt when the Ncut value exceeds this
threshold. We produced partitions for Ncut threshold values ran-
ging between 0.5 and 1.4 (in steps of 0.05).

We scored all solutions using both the MDL measure and the
p-value measure. Our evaluation suggests that the model obtained
with Ncut threshold of 0.9 is a much better model than the other
ones (Fig. 21.3). This model has 93 clusters. It should be no-
ted that even slight modifications in the value of the threshold
change the number of clusters drastically (see Fig. 21.4), and to
find the best model the experiment has to be repeated with finer
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Fig. 21.2. Number of clusters as a function of the cross-validation threshold. Note that
there are no singletons in this data set.
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increments in the parameter value. We did not repeat the experi-
ment, but the graphs clearly indicate that the two measures we
propose can pinpoint the best model.

5.1.3. Hierarchical

Clustering

With hierarchical clustering the algorithm outputs a tree of nested
clusters. Each level of the tree corresponds to a different grouping
and it is necessary to assess the clustering at each level. For the
single linkage algorithm we examined all clusterings between levels
1000 and 3750, in steps of 50 (to save computation time, the
ranges were determined dynamically as results were accumulating;
clusterings outside these ranges were far from optimal). The main
problem with the single-linkage algorithm is the large number of
singletons (see Fig. 21.5a). Of the 1,000 clusters at level 1,000
only 52 are non-singletons and at 3,750 clusters, only 14 are non-
singletons. The MDL index is not very effective in this case, as
it is dominated by the large number of singletons. However, the
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Fig. 21.3. Spectral clustering: Model selection based on (a) the MDL principle and (b) the p-value measures.
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p-value measure suggests that the clustering at 3,300 is relatively
better than other models (Fig. 21.6b). However, it is still domi-
nated by singletons and only 96 clusters are non-singletons.

For the average-linkage algorithm we assessed the clusterings
with the number of clusters (level) ranging from 10 to 500, in steps
of 10. Note that there are much fewer singletons (Fig. 21.5b) and
the evaluation suggests that the best model is obtained with
about 220 clusters (Fig. 21.7). We did not attempt to find the
best possible clustering, just to demonstrate the usefulness of
our tool. However, the analysis can be easily repeated at a finer
granularity to determine the best clustering.

5.1.4. k-Means With the k-means clustering algorithm one must decide on a
number of clusters a priori. We did the clusterings for different
values of k ranging between 10 and 500, in steps of 10. We used
the original raw expression data set and distances were computed
using the Euclidean metric. As expected, the number of singletons
increases as k increases (Fig. 21.9), but not as much as with single-
linkage clustering.
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Note that the p-value graph fluctuates substantially (Fig. 21.9b),
more than with other algorithms. This is because the k-means
algorithm starts from a different random configuration for every
k, while other algorithms gradually refine the clustering at a given
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level to obtain the clustering at the next level. Hence, clusterings
obtained for close values of k can be quite different. Running the
algorithm repeatedly with different starting points and picking the
best model, or employing a hierarchical scheme as in (11), can
improve the stability of the algorithm.

Despite the noisy results the graphs clearly indicate some trends.
The MDL graph suggests a range of models (between 100 and
200), but the p-value graph indicates that the clustering generated
with k ¼ 180 is more significant than others (Fig. 21.8). Another
good clustering is obtained at k ¼ 120.

5.2. Best Clustering Determining the best clustering requires extensive tests of many
clustering algorithms with multiple configurations. The tests we
ran in the previous section were by no means exhaustive. Our goal
was to demonstrate that we can compare different configurations
and clustering algorithms and pick the better models. Actually
finding the best clustering would require running these algorithms
with many more configurations before we can reach clear conclu-
sions. Furthermore, with iterative clustering, spectral clustering
and hierarchical clustering the optimal clustering is likely to be
composed of clusters at varying thresholds. However, this means
an exponentially large set of possible clusterings to test, and to
make this problem tractable we reduced the set to those with a
uniform threshold. Nevertheless, with the results we got we can
already reach some conclusions regarding the effectiveness of the
different algorithms and the quality of their results, when applied
to the yeast cell cycle expression data set.

Using the two indices discussed above we compare the best
clustering we obtained with each algorithm. According to the
MDL index the k-means algorithm seems to perform very well
(Fig. 21.10a). However, this is misleading, as the k-means algorithm
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uses the Euclidean metric and explicitly minimizes the squared
error, which is directly related to the likelihood component of the
MDL measure (see Section 3.2). The spectral algorithm and the
average-linkage algorithm produce models that are comparable
in terms of the MDL, and the iterative algorithm performs as well.
The single-linkage algorithm performs poorly compared to all other
algorithms.

The p-value index suggests that the best clustering is obtai-
ned with the k-means algorithm (Fig. 21.10b), followed by the
average-linkage algorithm. The iterative algorithm comes third fol-
lowed by the somewhat disappointing results of the spectral cluster-
ing algorithm. The single-linkage algorithm is far behind, its so-so
p-value affected by the many singletons.

5.3. Assessment of

Individual Clusters

Clearly, with any clustering solution not all clusters are equally
significant. One can compare the clusters across different algorithms
and focus on the clusters that are more stable (detected with sig-
nificant overlap with multiple algorithms). However, this requires
running multiple clustering algorithms on the same data set. A more
practical approach is described next.

In this section we focus on the solution obtained with the
iterative clustering algorithm. Our best clustering model with this
algorithm is the one produced at a cross-validation threshold of
0.69 (see Section 2.4). This clustering consists of 213 clusters with
the number of genes per cluster ranging from 5 to 141. We were
interested in those clusters that are most strongly correlated with
the experimental data.

We used a p-value measure similar to the p-value we described
in Section 3.3. One can compute the p-value of individual clusters
and pick the most significant ones. Given a cluster i with ni genes
and ei edges, of which ti edges are experimentally verified edges,
and ei,cross cross edges of which ti,cross are experimentally verified,
we define the probability of the type

PðiÞ ¼
T

titi;cross

� �
pti

i p
ti;cross

i;crossð1� pi � pi;crossÞT�ti�ti;cross

and its likelihood ratio. We then compute the probability that a
type sampled according to the random type will have higher like-
lihood ratio.

In Fig. 21.11 we plot the significance of individual clusters.
We examined the annotations for genes in the clusters with the top
p-values (Table 21.2). While one cannot assign a singular function
to each cluster, we observe the themes of these clusters. For
example, the second most significant cluster contains mostly dehy-
drogenases, while the third most significant cluster contains genes
that are involved in DNA repair, mitosis, and meiosis. The fourth
contains many ribosomal genes as well as translation initiation
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factors and tRNA synthetases, and the fifth contains mitochondrial
genes. The collective expression profiles for the five most signifi-
cant clusters are shown in Fig. 21.12.

5.4. Association of

Clusters with Cellular

Pathways

Our results in the previous section indicate that almost all clusters
are indeed strongly correlated with the experimental data and are
the consequence of true functional links between genes. As we
have shown in (32, 33), many of the pairwise similarities that are
detected based on expression data are between proteins that parti-
cipate in the same pathway.

It is interesting to analyze the mapping between pathways and
clusters. Specifically, we were interested in finding if specific path-
ways can be mapped to a single or a few clusters. If a non-random
mapping exists, then the corresponding clusters can help in refining
the pathway structure as they might suggest activation and inhibi-
tion between the component proteins (for example, if the consensus
profiles of clusters are correlated when a time shift is introduced).

To assess the significance of a mapping between a pathway and
clusters, we analyze the distribution of the pathway proteins among
the clusters and compare the distribution to the distribution one
would obtain if the genes were to be placed into the clusters at
random. This random process has a multinomial distribution where
the probability pi to fall into a cluster Ci is estimated by the number
of all pathway proteins that are classified to C i divided by the total
number of pathway proteins. Given a pathway with ni proteins in
cluster i (1 � i � k), the probability of the mapping is

Pðn1;n2; . . . ;nkÞ ¼
N

n1n2 . . . nk

� �
pn1

1 pn2
2 � � � p

nk

k

where N ¼ Sini is the total number of proteins in the pathway.
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To determine the significance of a pathway distribution among
the clusters, we can again compute the p-value as in Section 3.3.
The five most significant mappings are listed in Table 21.3. A
similar analysis of gene distribution can also be done for the homol-
ogy clusters.

To make our discussion more concrete, we examined two
significant pathways and the cluster profiles that correspond to the
largest groupings of genes from these pathways. First, we considered
the aminoacyl-tRNA biosynthesis pathway (p-value of 1.06e�42).
Interestingly, the amino acid synthetases are clustered into four
major clusters, each with a unique expression profile. In other
words, different amino acids are synthesized at different

Table 21.2
Most significant clusters. A summary of the significance, size, and type of genes
in each cluster

Cluster
number P-value Number of genes Cluster summary

201 6.51e�294 44 Large diverse cluster, cytochrome c oxidase subunits

ATP synthase subunits, mitochondrial proteins

66 6.72e�166 14 Dehydrogenases

152 2.42e�147 88 DNA replication, DNA repair, mitosis, meiosis

119 1.50e�143 141 Translation-related proteins, ribosomal proteins

tRNA synthetases, translation initiation factors

193 2.20e�140 113 Mitochondrial proteins

192 3.43e�136 116 Large diverse cluster, transferases, hydrolases

120 3.13e�129 15 Diverse cluster, lysases, transferases, ligases

206 4.04e�123 19 Hydrolases

139 3.17e�117 8 Mitosis

129 3.36e�117 9 tRNA synthetases

153 1.99e�116 50 Ribosomal proteins, helicases

202 6.01e�111 5 Diverse cluster with oxidoreductases

56 2.40e�100 31 Diverse cluster, hydrolases, oxidoreductases

Mitochondrial proteins

115 6.94e�99 21 RNA processing, growth regulation

63 1.68e�95 8 Oxidoreductases, Fe-containing proteins
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frequencies and in different parts (times) of the cell cycle. It is
unclear why amino acid production is implemented this way, and
this phenomena requires further study.

We also examine the oxidative phosphorylation pathway. This
pathway is composed of five major complexes. While some genes
from the clusters intermingle between the complexes, there is
some separation of the different complexes into different clusters,
suggesting again that their production is being coordinated. This
analysis of the distribution of pathway genes among the different
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Fig. 21.12. Clusters of expression profiles. The collective expression profiles for the five most significant clusters are
shown. Note the very distinctive expression profile of each cluster.
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clusters could be performed with more rigor for more complicated
pathways. This may aid in the understanding of known biochemi-
cal pathways and the discovery of new ones.

6. Conclusions

Similarly expressed gene pairs can suggest functional relationships
between genes. The degree or extent of the similarity under dif-
ferent conditions will determine the co-dependency of gene pairs.
However, it is the coordinated nature of the cell regulation mechan-
ism that differentiates expression analysis from protein sequence or
structure analysis. The coordinated pattern of expression hints at
more global processes, the nature of which cannot be determined
based on individual gene pairs.

In search for groups of genes that are similarly expressed, many
studies employed clustering algorithms to analyze expression data
over the past decade. However, different algorithms produce differ-
ent results, and it is hard to tell which solutions are more reliable.
Moreover, microarray data are noisy, and it is hard to discern real
signals from random fluctuations and coincidental regularities.

The goal of our study is to develop means for assessing the
results of clustering algorithms that were applied to microarray
expression data. We suggest two indices that when combined can
help to pick the best model of many suggested models. The two
indices assess two different aspects of the clustering results. The
internal validation is based on the MDL principle while the exter-
nal validation is using the experimentally verified data sets to assess
the quality of the clustering results. The external measure directly

Table 21.3
Pathways that are strongly correlated with
clusters. The P-value indicates the signifi-
cance of the mapping of pathway proteins
into clusters

Pathway P-value

Purine metabolism 6.2e�75

Oxidative phosphorylation 1.8e�64

Pyrimidine metabolism 3.3e�58

Glycolysis/Gluconeogenesis 1.2e�45

Starch and surcrose metabolism 1.2e�45
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assesses the correlation of the clusters with the underlying struc-
ture of functional links, while the internal measure addresses issues
such as model complexity and generalization. It is the combination
of the two measures that leads to a selection of a better model
overall. We test them on several clustering algorithms, including
clustering algorithms that are especially effective in the presence of
noise, as is the case for expression arrays. This objective assessment
of the results can be used to assess other clustering algorithms or to
compare different solutions that are generated by the same algo-
rithm. Our benchmark can also be used to evaluate clustering
algorithms using other expression data sets.

The conclusions are clearly data set dependent. Here we tested
the algorithms on the yeast time-series data set. Spectral clustering
produces interesting clusterings but it is very sensitive to the Ncut
parameter value, and to obtain the right model one has to repeat-
edly apply this algorithm with different threshold values. k-means
is fast and is more controllable (as far as the number of clusters),
but is very susceptible to the initial starting point (this can be
handled by applying a hierarchical version of k-means). Further-
more, it inherently uses the Euclidean metric, which has been
shown to perform poorly on expression data compared to other
metrics. Nevertheless, it produces very good results. Hierarchical
clustering algorithms such as average-linkage and single-linkage
are deterministic and as such always produce the same results when
applied to the same data set. However, they can be sensitive to
noise and outliers in the data set itself and not all variations per-
form equally well. For example, single-linkage generates many sin-
gletons. Since it is unclear a priori what is the typical shape of the
clusters in the data set, it is recommended to test different variants
(for spherical clusters average linkage will perform better, while for
elongated clusters single-linkage will perform better). Moreover,
to determine the right model one has to keep checkpoints of all the
intermedia clusterings (not necessarily produced with standard
implementations of pairwise clusterings).

Noise-tolerant algorithms, such as iterative clustering, provide
an appealing alternative. We discuss two clustering algorithms that
were especially optimized to deal with noisy data. The iterative
clustering algorithm has a major advantage that makes it most
appealing in our case; it is highly robust. By repeatedly estimat-
ing distance profiles, the geometry of the gene space is being re-
evaluated and fluctuations are being averaged out. One way of
explaining the success of this method is the fact that n

2

� �
constraints

(the set of distances with resect to the complete set of genes) are
being considered when evaluating the distances between pairs of
genes. Thus, even when the direct distance between genes i and j
is ‘‘corrupted’’, the distance profiles of these genes with respect to
all other genes constrain the relative position of genes i and j in the
gene space so that their true distance can be measured indirectly.
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These distance profiles themselves can be noisy as well (assuming
random noise) and yet induce reliable distances, even for small
references sets as in demonstrated in (15).

Finally, we tested the premise that clusters are correlated with
cellular pathways. Our results confirm that a significant correla-
tion exists between co-expressed gene clusters and some cellular
pathways.

Despite the relative success with clustering algorithms, one
should keep in mind that conclusions based on expression data
should be made with caution. Expression data are not only noisy
because of technical reasons but also does not necessarily provide
us with a true snapshot of the cell machinery, and there are many
factors that affect protein abundance levels which are not reflected
in mRNA expression data (35). Moreover, correlations between
expression profiles might prevail only for a limited time along the
cell cycle or for a subset of experimental conditions, thus suggest-
ing that a local comparison mode might be more effective than a
global mode in some cases. Indeed, several studies focused on local
comparisons of subsets of expression profiles (32, 36). Neverthe-
less, there is substantial information in these arrays and when
exploited carefully, one can derive meaningful conclusions with
high confidence.

7. Notes

1. Absurdly, in the first few years to the introduction of micro-
array technology, papers on new clustering algorithms appeared
in a pace that exceeded by far the number of expression data sets
that were available for analysis.

2. The squared error function estimates the error for each sam-
ple point by measuring the squared Euclidean distance from
the sample point to the centroid of the closest cluster (this can
be perceived as the loss in information that is incurred by
using the centroid to represent the sample point). The total
error is the sum over all sample points.

3. Other normalizations can be applied but without any appar-
ent significant impact (15).

4. The choice of the metric used to compare the rows can vary.
Here, we employed the Euclidean metric.

5. This algorithm inherently assumes that the sample points
reside in Euclidean space and non-trivial modifications (with
possible impact on the convergence properties) are necessary
to tune it to other spaces.
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Chapter 22

The Bioverse API and Web Application

Michal Guerquin, Jason McDermott, Zach Frazier, and Ram Samudrala

Abstract

The Bioverse is a framework for creating, warehousing and presenting biological information based on
hierarchical levels of organisation. The framework is guided by a deeper philosophy of desiring to represent
all relationships between all components of biological systems towards the goal of a wholistic picture of
organismal biology. Data from various sources are combined into a single repository and a uniform
interface is exposed to access it. The power of the approach of the Bioverse is that, due to its inclusive
nature, patterns emerge from the acquired data and new predictions are made. The implementation of this
repository (beginning with acquisition of source data, processing in a pipeline, and concluding with
storage in a relational database) and interfaces to the data contained in it, from a programmatic application
interface to a user friendly web application, are discussed.

Key words: Bioverse, framework, systems biology, proteomics, interaction, protein structure,
functional annotation, prediction, visualization, server, programming interface, data warehouse.

1. Introduction

The Bioverse project evolved over many years, with the initial idea of
a wholistic systems approach to catalogue, predict and present bio-
logical information remaining at the heart of the effort. The biologi-
cal information in the Bioverse is presently specific to the field of
‘proteomics’; these include the protein amino acid sequences, known
and predicted structures, known and predicted functions and rela-
tionships to other proteins such as functional associations in the case
of complexes or metabolic pathways and homology.

The Bioverse implementation consists of a pipeline in which this
information is transformed and relationships are established, a data-
base where it is organised in an efficient manner (see Chapter 23),
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an Application Programming Interface (API) that allows specific
queries to be issued against the database and a web application that
utilises the API to present the data in a browser to Internet users.

In this chapter, we discuss the highly modular Bioverse frame-
work at a conceptual level, detail the implementation of its API
and web application components and provide example uses of the
framework. We first discuss the data organisation and sources. We
then describe the usage of the Bioverse Web Application that is a
primary front end to these data. We conclude with an overview of
the API and examples of implementing useful programs that use
the Bioverse framework.

2. Audience

The Bioverse framework is designed with three audiences in mind:
our collaborators who require organism specific information to solve
the biological research problems they are working on; bioinformatics
experts who are performing large-scale systems analyses of our data;
and end users who are seeking detailed information about a particular
protein or a small set of proteins. Our collaborators work closely with
us and include the Pacific Northwest National Laboratory in Rich-
land, Washington; the National Center for Genetic Engineering and
Biotechnology, Thailand (BIOTEC); and the Beijing Genomics
Institute who are using our framework for whole genome annotation
and comparison (1, 2). Communication with these collaborators
occurs through the web site and also by exchange of raw data, so
they are the ones likely to obtain the most appropriate results for
solving a specific biological problem. The bioinformatics users expect
our data to be accessible in a consistent manner and exportable into a
format easily transformed into their existing system(s), to the extent
that the Bioverse API is developed, they have access to all our data.
The end users expect input and output to be simple, easily compre-
hensible, and to offer rapid insights for specific genes or proteins of
interest. Satisfying end users’ expectations is a daunting task, since
there are many communities with different, ambiguous, and some-
times conflicting desires. In the following sections, we detail how our
framework is designed to be valuable to all these user communities.

3. Bioverse Data

3.1. Organisation Representation of biological systems requires striking a balance
between the level of detail and abstraction to solve an intended
biological problem. An overly abstract representation will hide the
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essential differences between systems, while an overly detailed
representation will narrow the scope of the answer to a biological
question. Ontologies offer one way of representing relationships
between detailed components as concepts in the system. They are
therefore one resource to use when presenting related data.

The Bioverse is our first step towards representing the details
and organisation of entire biological systems in silico. The Bioverse
presently operates on the level of proteins. We organise and
describe them in the following ways:

l Individual molecules. These are proteins detected in the
sequences of many genomes and characterised in public
databases.

l Molecule attributes. Each molecule is uniquely identified by
its amino acid sequence. A molecule is assigned one or more
names, one or more functional annotations and one or more
structure definitions. The latter two may be experimentally
determined or predicted in silico. These attributes are in turn
described by various meta-data and can be related through
organisation methods like the gene ontology (GO) (3).

l Molecule relationships. Relationships between molecules
include explicit physical protein–protein interactions, implicit
relations such as those present in regulatory complexes and
evolutionary relationships based on sequence similarity. Such
relations are rich with information when studied in terms of
graph theoretic algorithms.

l Collections of molecules. The molecules, or proteins, are
associated with an organism they are expressed in.
While the molecules are grouped into sets or collections in

organisms, and organisms in turn can be grouped into taxonomic
hierarchies, a ‘systems biology’ perspective encourages thinking
that liberally relates many components to one another. This orga-
nisation arises from the structure of hierarchies and results in a
network of connected components. The components in the Bio-
verse are currently proteins and some nucleotide sequences but the
representational framework is extensible to include DNA, RNA,
and biologically important small molecules and ions, and their
relationships with each other. The benefits of an inclusive data
warehouse become more pronounced as the amount of interre-
lated data grows. For example, structural and functional genomics
projects rely upon the statistical significance of structural and
functional feature co-occurrence in large data sets.

3.2. Sources Studies of individual organisms, or systems in organisms, are being
conducted in parallel all around the world. Costly experiments
conclude with information about the observed functions or
structures of individual proteins or small sets of related proteins.
These dispersed pieces of data are meticulously collected into
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organism-specific databases such as Saccharomyces Genome Data-
base (SGD) (4), WormBase(5), FlyBase(6) and Human Protein
Reference Database (HPRD) (7). Specific systems-level informa-
tion is generated in a similar fashion, some focusing on global
protein properties like functional annotations, others on catalytic
or indirect interactions, and yet others on physical interactions.
Here we describe the origins of protein properties, like their
names, functional annotations, structures, and interactions as
they are catalogued by the Bioverse.

By convention, protein molecules are assigned names. Biolo-
gists seeking information about a named molecule can find it in the
Bioverse if the protein database where that name occurs has been
integrated. The NCBI Gene Identifiers are an example of such
names that become searchable name attributes in the Bioverse.
There is, of course, the inherent challenge of having multiple
naming systems and conventions. Settling on one system simplifies
the design but limits the usefulness to users unfamiliar with that
system, while adopting many naming systems introduces an excess
of data that appears as noise to an uninitiated observer.

Functional annotations are human-readable labels assigned to
characterise the behaviour of a protein. Such labels can refer to classes
of proteins that are being studied. The landscape of possible func-
tions can be organised into a hierarchy, as demonstrated by GO (3).
We use GO for protein functional classification both from predictive
methods (such as InterPro (8)) and from manually assigned func-
tional annotations from source databases (such as SGD).

Molecule structures, if known, are obtained from RCSB Protein
Data Bank (PDB) (9). Classifications of these structures are published
by the Structural Classification of Proteins (SCOP) (10–13) and
Superfamily (14, 15) projects, both of which are inherited by the
Bioverse. Alternatively, protein structures can be predicted. A predic-
tion of the secondary structure (a positional description indicating
sheets, helices and coils) can be obtained by using a program like
PSIPRED (16). The three-dimensional tertiary structure can be pre-
dicted through various comparative and de novo methods (17–20).

Experimentally observed protein interactions are catalogued
in databases like Biomolecular Interaction Network Database
(BIND) (21), Human Protein Reference Database (HPRD) (7),
Munich Information Center for Protein Sequences (MIPS) (22)
and Database of Interacting Proteins (DIP) (23), which we use
extensively. Sequence similarity computations are performed with
BLAST against all molecules in the Bioverse.

These known and computable attributes of molecules form
the basis of our predictions. The Interolog method (24) is an
example of combining sequence similarity information with
BIND data to predict novel interactions. Similar methods are
applied to function prediction. The specifics of these methods
determine our certainty of these predictions and a confidence
value is derived accordingly (25).
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3.3. Creation and

Presentation

The initial data in the Bioverse originates from various sources.
After being gathered, it is normalised and collated using a ‘pipe-
line’. The results are stored in a relational database, and a program-
ming interface allows queries to be issued. The Bioverse Web
Application utilises this interface and provides a user-friendly inter-
face to the data (Fig. 22.1).

3.4. Pipeline The pipeline distributes data processing across many nodes in a
computer cluster (26). These data are organised into a uniform
format in preparation for loading into a centralised database, and
the execution of algorithms to summarise the data and build

Fig. 22.1. The Bioverse infrastructure described in terms of components and interfaces. External sources are processed in
a pipeline and results stored in a database. This database is accessible to the web application server that makes its
contents available to the world.
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relationships. For example, an all-versus-all profile based PSI-
BLAST (27) search is executed across all molecule sequences;
PSIPRED (16) is used for secondary structure prediction and
HMMER (28) is used to assign proteins to functional families.
Novel functional annotations are predicted based on known anno-
tations and the topology of molecule similarity and interaction
networks. The pipeline concludes by depositing data into a cen-
tralised database (Table 22.1).

Table 22.1
The Bioverse holds individual and relationship information for many molecules or
proteins. For 54 organisms (486,520 molecules) we require five TB of distributed
storage space, two months of dedicated work by 160 CPUs to process and one
week to write to a centralised relational database and create indexes on relevant
tables. The names, sequences and functional annotations of all molecules are
searchable in the Bioverse Web Application and the interaction networks are
browsable with Integrator(42)

Organism Molecules Interaction edges

Agrobacterium tumefaciens (A348 hypothetical) 5,368 5,190

Agrobacterium tumefaciens (C58 Cereon) 5,290 5,067

Agrobacterium tumefaciens (C58 UW) 5,396 4,934

Arabidopsis thaliana 27,833 88,211

Bacillus anthracis (Ames) 5,309 1,965

Bacillus subtilis 4,105 2,556

Bordetella pertussis 3,248 2,690

Brucella melitensis 3,188 2,161

Brucella suis 3,256 2,195

Caenorhabditis elegans 20,936 973,608

Campylobacter jejuni 1,634 1,506

Canis familiaris 16,817 900,459

Chlamydia trachomatis 894 357

Clostridium perfringens 2,722 1,191

Drosophila melanogaster 16,475 5,582,634

Encephalitozoon cuniculi 1,908 6,079

Escherichia coli 4,208 13,196

(continued)
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Table 22.1 (continued)

Organism Molecules Interaction edges

Halobacterium sp (NRC-1) 2,425 682

Helicobacter pylori (26695) 1,562 9,523

Homo sapiens 26,741 9,362,672

Listeria monocytogenes 2,844 1,588

Magnaporthe grisea 11,042 83,055

Methanococcus jannaschii 1,785 500

Methanococcus maripaludis (C58 UW) 1,722 453

Mus musculus 26,181 10,427,816

Mus musculus (BGI) 12,412 16,135,715

Mycobacterium bovis 3,911 1,812

Mycobacterium tuberculosis (CDC1551) 4,178 1,767

Neisseria meningitidis (mc58) 2,020 1,114

Oryza sativa (indica BGI 9311) 57,135 13,867,984

Oryza sativa (japonica KOME cDNAs) 25,875 699,232

Oryza sativa (japonica Syngenta) 60,017 1,277,025

Pan troglodytes 21,685 3,478,283

Plasmodium falciparum 5,252 29,776

Pseudomonas aeruginosa 5,555 4,977

Pyrococcus abyssi 1,896 64

Pyrococcus furiosus 2,053 834

Rattus norvegicus 22,642 11,810,162

Rhodopseudomonas palustris 4,806 4,556

Rickettsia conorii 1,374 886

Rickettsia prowazekii 834 801

Saccharomyces cerevisiae 5,801 467,989

Salmonella typhimurium 4,532 4,795

Shewanella oneidensis (2a) 4,300 2,908

Shigella flexneri (2a) 4,080 3,983

Staphylococcus aureus (mw2) 2,632 1,385

Thermotoga maritima 1,845 1,031

(continued)
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3.5. Protinfo The Protinfo suite of servers(29), available at http://protinfo.comp-
bio.washington.edu, comprises several computational techniques for
protein structure and function prediction developed by the Samu-
drala group (29–41). The results of these techniques, as they are
applied to all the proteins in the Bioverse, are integrated into the
pipeline.

4. Database

The Bioverse stores information in a relational database. Relation-
ships are stored in a space-efficient way to avoid redundancy. In
practice, however, we have found the database in a ‘‘Write Once,
Read Many’’ pattern of access, so organisational optimisations for
purposes of query efficiency are implemented. The nature of this is
in the form of a data warehouse. This is discussed in greater detail
in Chapter 23.

5. Web Application

A traditional web page represents some specialised information
with links to other related pages. The intent of a web application,
however, is different. Rather than offering small bits of data that
are loosely hyperlinked, we cohesively present a large amount of
semantically relevant biological information.

Table 22.1 (continued)

Organism Molecules Interaction edges

Vibrio cholerae 3,788 3,249

Vibrio parahaemolyticus 4,821 3,673

Vibrio vulnificus (CMCP6) 4,484 3,925

Yersinia pestis 3,898 4,216

Yersinia pestis (BGI 91001) 4,143 4,448

Yersinia pestis (BGI CO92) 3,708 4,026

Yersinia pestis (BGI KIM) 3,954 4,082

Total 486,520 75,304,986
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The Bioverse Web Application, available at http://
bioverse.compbio.washington.edu, is implemented as a single
web page. This HTML document is manipulated through
JavaScript code executed by the web browser. Interface events,
such as button clicks or form submissions, trigger JavaScript
functions. These functions may issue calls to the Bioverse API
(Section 6) to retrieve relevant data and visualise it on the
page.

For example, we consider the single molecule view of the
Bioverse Web Application (Fig. 22.2). The intent of this view is
to emphasise the relationship between all information known
about a single protein, presented relative to the amino acid
sequence of the molecule. For each molecule, this wealth of infor-
mation is initially presented in a compact form and organised into
sections. To expand these sections and see more detailed

Fig. 22.2. Single molecule view in the Bioverse. The molecule’s sequence, structure and function information is shown in
three sections. Statistics about sequence composition, as well as amino acid conservation, are expanded. Other sections
may be expanded to reveal molecule relationships and evidence supporting predicted functional annotations.
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information, buttons can be clicked on the page. Such clicks
initiate requests to the server for that information and the page is
modified in place by populating the relevant sections only. This
reduces the overhead of retrieving increasing quantities of data as
more sections are expanded, which occurs in a more traditional
web page model.

The traditional meaning of a web page is no longer useful
when describing the visible content of a web application. The
web browser becomes a platform for executing application logic
and rendering content onto an initially empty canvas. Shaping
the contents of the page in a piecemeal fashion is a dynamic
process and results in tight integration between all the data that
can be displayed, and the operations that can be performed
on it.

The initial page is empty and contains an onload function call
attached to the HTML body element. This function’s job is to
recover information about which tabs were open from the last
session (if any) and to re-open them.

The Bioverse Web Application composes its interface by ren-
dering small sections of content from a pool of predefined HTML
templates (Fig. 22.3). These are application elements such as the
list of organisms, the search form, the search results list, molecule
sequence information, and others. The content of these templates
is highly specific to their use and templates will often contain
placeholders for other templates.

Fig. 22.3. A link on the page (a) has an onclick property. When clicked, the browser calls the show_organism function (b).
This creates a new tab on the page (c) with content derived from a template (d). Note the use of the template syntax to
build the link in (a).
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In this paradigm of a dynamic web application, the meaning
of a ‘‘web page’’ is different. It is no longer possible to accurately
represent the state of the web application with a single address.
This is resolved by storing a limited subset of state information
on the server and recovering it when the web application is
loaded. This allows for a browser to follow the traditional
model of navigating away from or towards the Bioverse Web
Application while relying on the interface initialisation methods
in JavaScript to rebuild the application state most recently cre-
ated by the user.

There are some shortcuts for affecting the state by requesting
certain URLs, specifically the referencing of organisms and mole-
cules. For example, the request for the path /about will append the
‘About’ tab to the set of available tabs in the web application.
Other such shortcut URLs are /about/credits, /help, and /pre-
ferences. Similarly, visiting /oryza-sativa/123 will add molecule
number 123 of Oryza sativa (rice) to the set of open tabs.

5.1. Using the Web

Application

The hierarchical organisation of most of the data in the Bioverse
lends itself well to a ‘drill down’ presentation where one chooses an
organism, then a molecule in the organism and finally the attri-
butes of the molecule to inspect. However, the number of proteins
in each organism makes this impractical for the end user. It is
therefore necessary to introduce a filtering mechanism, like a
search, to focus on a smaller subset of proteins. For example,
from a systems perspective, it makes sense to select molecules
based on a protein relationship criteria. Searching the data with a
free-form user query was inspired by the success of web search
engines. The idea is to present the user with a means of writing an
expressive description of molecules of interest in a defined syntax
and focusing on only those molecules.

The search query is a whitespace separated list of tokens.
The tokens may be terms (like binding site, CCR5,
GO:000451, MQMRSRMVRLLMML) that can match the
name, functional annotation or sequence of a molecule. To
restrict which meta-data field of a molecule is searched, the
term may be preceded with a meta-data qualifier like name:,
function: or sequence:. If a term is not preceded with such a
qualifier, then its qualifier is inferred. For example, ABCC-
CEFH cannot match an amino acid sequence because it con-
tains the letter B, which is not part of the amino acid alphabet.
Similarly, dna binding cannot match a molecule name because
names cannot contain spaces.

In addition, a token may be preceded with a sign (plus, tilde,
or minus character) to indicate the rule (must, may or must not,
respectively) for matching molecules (Fig. 22.4). A term without
a sign indicates that it must occur in the annotation of a molecule.
Some example queries are: dna �binding, +kinase -atp, ‘binding
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site’ –function:iron �rna. This query syntax is sufficiently expres-
sive to allow for quite sophisticated searches to take place. The web
interface provides an explanation (Fig. 22.5).

Molecules matching these criteria are listed in order of rele-
vance. Relevance is computed by inspecting the confidence value
of matching functional annotations and listing molecules with
high matching confidence before those with a low matching con-
fidence. Name or sequence matches do not contribute directly to
this relevance measure, except to affect the ordering such that
molecules with matching functional annotations appear after
those matching the name or sequence terms (Fig. 22.6).

Fig. 22.6. Molecules matching a search query.

Fig. 22.5. Explanation of a search query. Note that due to ambiguity, the term ‘‘rna’’ may be either a name or a functional
annotation.

Plus, minus and tilde symbols may precede a term:

+term means that the term must
occur

~term means that the term may occur
–term means that the term must not

occur

Fig. 22.4. Symbols precede a term to indicate the term’s role in the molecule matching
algorithm.
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Other means of presenting results are being implemented,
which involve the algorithmic classification of matching molecules
into groups or categories by inspecting shared properties and
relationships. This would narrow the focus interactively to a
more refined set of molecules, which can be especially useful for
exploring result sets that encompass hundreds or thousands of
molecules. Superimposing such result sets onto protein interaction
networks and visualising these with tools such as Integrator (42)
can aid in comprehending the structure of the data.

6. Application
Programming
Interface (API)

The Application Programming Interface (API) is the glue between
the data in the database and an application designed to use it. The
programming interface is in the form of an Internet service. A
programmer with an Internet connection can issue queries using
the API and retrieve Bioverse data. In this section we discuss the
general idea of the API and devote the next section to describing
the API usage.

6.1. The Role of the

Bioverse API

Data-intensive web services traditionally create a database and set
up a web site to present its contents. To prune the interesting data,
a query form exists for a person to fill out, submit to the server and
have the results presented. This is ideal for an individual user with
questions that can be asked in a predictable way, or for a quick
overview of the data in the database.

From the perspective of developing a web site, such a form is
actually interfaced to a library of internal server routines that are
customised to retrieve the data from the database. These routines
are invisible but accessible indirectly through the web form men-
tioned earlier. We have exposed our library of these internal rou-
tines to the world in the form of the Bioverse API.

Applications have already been written to utilise the data in our
repository (see Section 6.5). To emphasise the importance we
place upon the API, the most prominent application to utilise it
is the Bioverse Web Application itself.

6.2. The Role of the

Client

An application that utilises the Bioverse API is considered to be the
‘client’ of the Bioverse server. The API provides data in a raw but
structured format. It is not immediately meaningful for a user, so
the application programmer must transform this raw data into a
useful form. For example, the amino acid sequence of a protein
should have its positions enumerated for visualisation. This is
implemented in the Bioverse Web Application by drawing a ruler

The Bioverse API and Web Application 523



above the sequence with positions numbered periodically. Simi-
larly, the confidence of functional annotations (25) is a real num-
ber between 0 and 1 and can be visualised with coloured images
(Figs. 22.7a and b).

A notable use of the API by a client application is for the
visualisation of relationship networks. The Bioverse API presents
fragments of such networks in the form of parent–child relationship
lists. It is the role of the client application, such as Integrator (42), to
visualise such a list in the form of a graph and accumulate network
fragments to ‘grow’ the graph during exploration (Figs. 22.8
and 22.9).

a

b

Fig. 22.7. (a and b) Sequence position ruler and confidence bars generated by the client.

Fig. 22.8. The Bioverse Integrator (42) showing a small network of related proteins. The lower interface elements allow the
inclusion or exclusion of nodes from the network based on criteria and the adjustment of visual properties like node
colours and sizes.
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6.3. API Usage The Bioverse Application Programming Interface is a lan-
guage-agnostic interface to the data and methods implemen-
ted in the Bioverse. It allows a programmer to query the
Bioverse in many ways. Its capacity is sufficient to allow some-
one to recreate the Bioverse Web Application in the form of a
desktop application.

At the time of writing, there are more than two dozen
functions, or methods, publicly available. Because the API is
updated periodically, the online documentation should be refer-
enced for the latest information. The examples in the following
section are valid at the time of writing, but the API may have
changed since then. However, the general idea of accessing the
API remains the same. (See Section 6.6 regarding historical
changes to the API.)

Fig. 22.9. BellaVista (44), a standalone biological information viewer written in Python, visualises proteins, protein
properties and protein relationships as nodes in a graph, node attributes and edges between nodes. This flexible
application can present information loaded from local files or obtained via the Bioverse API. This includes manual and
predicted annotations, protein identifiers, protein similarity relationships (incorporating sources such as the PDB) and
Interolog relationships. This screenshot shows a network of protein relationships from Rhodopseudomonas palustris
overlaid with experimentally obtained proteomics data. Protein abundance levels under different organism growth
conditions are integrated into this view from a local file and represented as shades and sizes of nodes. The inset window
shows a heat map of members of a putative protein complex under six growth conditions. A pop-up box dynamically lists
Bioverse annotations of the selected protein retrieved via the Bioverse API.
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All methods are available for use by a programmer, but some
are intended for use by the Bioverse Web Application and return
data that are specific to the way the web application expects it,
making them less useful in the general case. Labels, such as general
or webapp, assigned to methods in the API documentation hint at
the intended usage.

There are presently two ways of accessing the API. One way is
via the standardised XML-RPC protocol and the other is via a
customised JSON interface.

6.3.1. XML-RPC The XML-RPC protocol (43) hides the complexity of encoding
method requests and decoding method responses into and from
XML. The result is that a natural syntax can be used to interface
with the server. Applications which utilise the XML-RPC protocol
include BellaVista (44) and the new Integrator code base (42).
The API usage examples (Section 6.5) utilise the XML-RPC
interface.

6.3.2. JSON JavaScript Object Notation (JSON) (45) allows encoding of the
same data structures that XML-RPC can encode: numbers,
strings, lists, and associative arrays. Unlike XML-RPC, JSON is
native to JavaScript and, incidentally, to Python. This convenient
confluence makes it a useful dialect of communication between the
Bioverse server and the Bioverse Web Application implemented in
JavaScript.

The JSON interface is an in-house solution that addresses
the problem of the Bioverse Web Application needing to access
the same methods as are exposed by the XML-RPC interface. The
solution is to encode the request into an HTTP GET query. The
server responds to this query with a data structure encoded in
the JSON format. That format can be natively and efficiently inter-
preted by JavaScript.

Incidentally, due to the simplicity of the encoding syntax, it is
feasible for a programmer to inspect a JSON response to explore
the API or prepare for application implementation. The online
API documentation provides example method requests that return
JSON data for this purpose (Section 6.4).

6.4. API Documentation The API documentation for each method is formatted for the
programmer in a convenient way (Fig. 22.10). The three sections
of this documentation describe the method’s operation and pro-
vide usage examples. The examples for the ‘Web’ section are URLs
that return JSON-formatted data. These URLs can be clicked in a
browser (to see the JSON-formatted data), embedded into a web
application (such as the Bioverse Web Application) or used any-
where the JSON format is convenient. The ‘XML-RPC’ example
code is implemented in Python and serves to illustrate the basic
idea of calling the method.
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6.5. API Usage

Examples

Here we provide and explain usage examples currently on the web
site. Care should be taken to ensure that the latest API documen-
tation is being referenced. Current examples of using the API are
present online at http://bioverse.compbio.washington.edu/api.

In the Python programming environment, accessing the API
is trivial. Python will be used throughout this section to illustrate
API principles. For example, Program 1 shows how to retrieve a
list of all organisms catalogued by the Bioverse.

import xmlrpclib
B = xmlrpclib.ServerProxy("http://bioverse.
compbio.washington.edu/api/xmlrpc/")

print B.organism()

Program 1 Listing all organisms catalogued by the Bioverse.

6.5.1. Molecules Annotated

by a Single Function

A molecule is annotated by one or more functions. Each function
is described by a function identifier (function_id) and a text label.
For example, ribulose-phosphate binding barrel is a description of
InterPro entry 11060 and is given the Bioverse function identifier
of 153787. Program 2 illustrates how we can find all molecules
annotated with this function in the organism Homo sapiens.

Fig. 22.10. Documentation for the molecule_by_name API method.
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(a)
mols = B.molecule_by_function({"organism_id":35,
"function_id":153787})

(b)
[{"bioverse_id": 64,
"function_confidence": 0.0,
"function_desc_1": "RibP_bind_barrel",
"function_desc_2": "Ribulose-phosphate binding

barrel",
"function_id": 153787,
"function_name": "IPR011060",
"organism_id": 35},

{"bioverse_id": 413,
"function_confidence": 0.25673899999999999,
"function_desc_1": "RibP_bind_barrel",
"function_desc_2": "Ribulose-phosphate binding

barrel",
"function_id": 153787,
"function_name": "IPR011060",
"organism_id": 35},

...
]

Program 2 (a) Retrieving molecules in the organism Homo sapiens (identified by the
organism identifier organism_id 35), which are annotated with function identifier
153787 (ribulose-phosphate binding barrel). (b) Partial list of resulting dictionaries
stored in the variable mols.

The Bioverse function identified by function_id 153787 might
have been found earlier with the function_search method, which finds
functions that have a description containing a search string. In antici-
pation of the two-step process of obtaining matching function iden-
tifiers and molecules that are annotated with those identifiers, the
molecule_by_function method can accept a text string as an argument
(like function_search), match it against function descriptions and
return molecules that are annotated by those functions (Program 3).

mols = B.molecule_by_function(
{"organism_id":35,
"function_text":"Ribulose-phosphate binding
barrel"})

Program 3 Alternative version of code in Program 2.

It is important to keep in mind that ribulose-phosphate bind-
ing barrel is just a text string with which a simple text search is
performed. This means that a search for ribulose will match all
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functions containing this string like ribulose-phosphate 3-epimer-
ase, L-ribulose-phosphate 4-epimerase activity, bifunctional ribu-
lose 5-phosphate reductase/CDP-ribitol pyrophosphorylase and,
by connection, many more molecules. The string ribulose-phos-
phate binding barrel was chosen to match only one function in the
above example query.

6.5.2. Molecules Annotated

by Multiple Functions

In this example we are interested in finding all molecules in Drosophila
melanogaster (fruit fly), which are annotated by functions containing
kinase or phosphate in their descriptions. The function_text search
argument of molecule_by_function will be inadequate because of the
simple text containment search it performs; it does not accept Boolean
expressions. We must instead accumulate a list of functional annotations
that match the description kinase or phosphate separately (Program 4).

an = []
an += B.function_search({"q":"kinase"})
an += B.function_search({"q":"phosphate"})

Program 4 Accumulate functional annotations that contain kinase and phosphate in
their description.

Because each function has a unique function_id integer asso-
ciated with it, which we will need later, we can extract this unique
list using standard Python techniques (Program 5).

function_ids = list(set([a["function_id"] for a
in an]))

Program 5 Get unique list of function identifiers.

To retrieve a list of molecules matching any of these functions,
we will use the molecule_by_function method, but now provide it
with a list of function identifiers instead of a single value (Program
6). Given this set of molecules, we can print out their various
properties (Program 7).

mols=B.molecule_by_function({"organism_id":7,
"function_id":function_ids,
"limit":0})

Program 6 Get all molecules matching functional annotations (as identified in the list
function_ids) in Drosophila melanogaster, organism 7.

More sophisticated searches can be performed by the method
molecule_search, and additional molecule information can be
extracted with methods such as molecule_function and molecule_
interaction, which are documented online.

for m in mols:
items = [ m["bioverse_id"],

round(m["function_confidence"],2), #
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confidence to 2 decimal places
m["function_name"], # function name like
GO:12345

m["function_desc_1"], # function
description 1

m["function_desc_2"] # function
description 2 (if available)

]
print "\t".join([str(x) for x in items])

Program 7 Display identifiers (bioverse_id) of each molecule in the list mols, and a
confidence, a name and two descriptions for each function annotation separated by tabs.

6.6. Versioning of the

API Methods

Over time, changes to the API are expected. To keep histor-
ical perspective, a list of changes is documented at http://
bioverse.compbio.washington.edu/api/versions and old ver-
sions of the API remain accessible as long as possible and
necessary. This allows for work on an updated version to be
underway while maintaining continuity in application
behavior.

7. Comparison to
Other Similar
Projects

The goal of our efforts is a common shared dream among all
biologists: to understand how the genome of an organism
characterises the development and behaviour of the organism.
From a bioinformatics viewpoint, the goal is to organise all the
world’s biological information to provide semantic meaning
through complex models that ultimately model all relationships
that occur in life, from atomic level interactions to organismal
ones. To this end, several groups have created resources to
accomplish goals similar to those outlined here. Some examples
include Ensembl (46), Biozon (47), BIND (21), MIPS (22),
GRID (48), DIP (23), KEGG (49), 3D-Genomics (50), Inter-
Pro (8), PEDANT (51, 52), STRING (53), and Predictome
(54). A variety of methods also exist for protein structure,
function, and interaction prediction (see web server issues of
Nucleic Acids Research), which can be applied in a large-scale
manner to whole proteomes, but in many cases that has not
been done or the resulting data are not made available over
the web.

In general, annotation databases can be grouped into two
categories: those that are both sequence- and structure-oriented
and those that are only sequence-oriented. The latter databases
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can process larger amounts of data since the amount of struc-
tural data is limited, and structural calculations may be time-
consuming. Pathway and other network-type databases, such as
Predictome (54), are mostly sequence-oriented. Not all data-
bases are comprehensive, i.e. they do not seek to mine data
from all completely sequenced genomes simultaneously, or they
limit themselves to proteins that are well characterised. Many of
the interaction databases are limited to experimentally derived
data or manual annotations (21, 23, 48). The databases and
software differ in terms of ease-of-use and access to data; some
provide bare tables and lists of information whereas others
provide some form of abstraction (such as depictions of net-
works and cellular systems). Few provide programming inter-
faces, though this trend is changing. There are software-only
projects such as Cytoscape (55), which provides a reasonable
user interface, but the data for analysis must be explicitly pro-
vided to the program instead of referring to a centrally main-
tained and frequently updated database. Still others that provide
predicted interaction information (56) are limited to only a few
organisms or do not perform novel structural and functional
annotation of the interacting proteins (54).

Compared to these projects, the strength of the Bioverse
is primarily in our background of developing three-dimen-
sional protein structure and function modelling tools for the
past 14 years (17–20, 29–41), which augment the integration
of existing data with novel predictions. However, in perspec-
tive, all the current and future projects yield complementary
information to the scientific community, and it is the synergy
of these efforts that is most valuable to the bench biologist
seeking to solve a particular domain-specific research
problem.

8. Bioverse
Technology

All core components of the Bioverse are written in the
Python(57) programming language running on the Linux oper-
ating system. The data warehouse is implemented upon the
PostgreSQL(58) relational database that resides on a RAID
storage array and presently occupies 1.3 terabytes. The web
server daemon utilises various free software packages such as
CherryPy(59) and HTML Templates(60). The web application
is written in-house with limited support from external libraries.
JavaScript templates (61) are used for in-browser content
rendering.
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Chapter 23

Computational Representation of Biological Systems

Zach Frazier, Jason McDermott, Michal Guerquin, and Ram Samudrala

Abstract

Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers.
Exploring the complex issues of data validation, integration, and representation, we present a systematic
approach for the management and analysis of large biological data sets based on data warehouses. Our system
has been implemented in the Bioverse, a framework combining diverse protein information from a variety of
knowledge areas such as molecular interactions, pathway localization, protein structure, and protein
function.

Key words: Bioverse, data integration, molecular interactions, protein structure, protein function,
data warehouse, database, bioinformatics.

1. Introduction

As high-throughput and other large data sets are generated, the
ability of researchers to organize and analyze these data will deter-
mine the science that can be accomplished. Successful integration
of diverse data sources provides novel insight into biological pro-
cesses. For example, the combination of data sets has been used to
discover novel protein–protein interactions in the galactose utili-
zation pathways of yeast (1, 2). In the Bioverse, the application
described here, proteins have been annotated with functional
descriptions by combining the existing and predicted interaction
networks and the existing functional annotations (3).

Integrating biological resources pose many problems for
researchers. Resources are designed and developed with a specific
user community in mind and, with this specialization, have devel-
oped a particular data focus, storage format, and query interface.
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Developing tools to utilize these resources demands both an
investment of time and often specific knowledge of the resource.
Objects of interest have different identifiers in different contexts,
complicating accurate integration. Independent projects collect
different information for similar data sets, and may use different
standards of measurement. The query interfaces provided for the
resource may be restrictive, not allowing for novel uses. For exam-
ple, using web sites for blast queries to find similar proteins is
reasonable for a handful of interesting proteins, but for a large
data set it is easier to perform the queries against a local database.

The focus of many biological databases is necessarily narrow,
either focused exclusively on single organisms, such as Wormbase
(4), databases of structures (5, 6), or pathways (7). Manually
integrating the results from many data sources may be feasible
for focused questions or small studies, but is time-consuming for
large data sets. Several projects have attempted to solve this pro-
blem, acting as an intermediary between databases, thereby solving
the problem of integration; however, since these often work
through the interfaces provided, the throughput of this approach
is limited. Services such as BioMoby (8), REMORA (9), and the
Bioinformatics Resource Manager (10) successfully integrate a
variety of data sources and bioinformatics tools. These are excel-
lent resources for small queries across many different databases.

For larger projects, we instead integrate the entire resource.
We begin with the raw data provided by the resource maintainers,
and develop our own storage system integrated with other data
sources based on data warehousing principles.

Data warehouses are an approach to data integration and
management, which is used for a variety of problem domains. In
addition to maintaining a highly flexible storage system for data,
data warehouses allow for the expression of complex relationships
and ease the construction and execution of complex queries.

The solutions developed in the Bioverse (11) integrate a wide
variety of biological data sources, allowing for exploration and pre-
diction of functional, structural, and sequence-based data analysis.

2. Data
Warehouses

Data warehouses organize data for analysis and data mining appli-
cations. Although they are built on relational database technology,
data warehouses differ from traditional online transaction proces-
sing (OLTP) databases. Instead, they are designed to support
online analytical processing (OLAP). OLTP systems typically sup-
port many concurrent users inserting, deleting, and modifying
small amounts of data. OLAP systems provide management and
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processing of multidimensional data for analysis. The structure
and organization of the data models are different for each applica-
tion type. Data warehouses are built on an OLAP model. An
excellent review of data warehouses is Kimball (12).

2.1. Relational

Databases

At the center of the data management system is the relational
database. Relational algebra was introduced by Codd (13). A
large software industry based on his work quickly appeared, and
a query language based on relational algebra, Structured Query
Language(SQL), has become the standard for most commercial
relational databases.

For our purposes, a database is a collection of tables, indexes,
relations, and functions. The tables are collections of objects with
identical attributes. The attributes are represented as the columns of
the tables, and the objects are stored as the rows of the table. Data
indexing and custom database functions optimize the access pat-
terns. Interactions with the system are based on transactions, which
guarantee the data integrity in the face of unexpected system or
process failures. Transactions represent a fundamental atomic action
in the database. In the event of an error a transaction is aborted and
all changes can be rolled back to assure data consistency.

2.2. Dimensional

Models

As specializations of relational databases, the distinguishing fea-
ture of a data warehouses is the organization of the data. Tradi-
tional OLAP database design methodology focuses on normalized
tables. Normalization provides logical separation of data, moving
all redundant data to tables, which are referenced as foreign keys.
Since the activity in these databases consists of many small transac-
tions, normalization localizes the effects of changes on the data-
base. This design goal is relaxed for data warehouses that have
different requirements. Normalization is sacrificed for expressive
and efficient queries across large data sets.

Query writing for the dimensional model is straightforward.
Queries can easily be constructed, since the relationships between
tables are simple and designed for flexibility. Queries against the
central fact table will use filters on the linked dimension tables to
narrow the focus of the query.

Using a data warehouse provides several benefits. The
approach makes the information accessible to more general queries
than traditional data schemas, and it is flexible with changes and
updates to the underlying data model having minimal impact on
the data model organization. New data types can be added without
disturbing the existing table structure, and new dimensions can be
added to a fact with minimal disruption.

2.2.1. Facts Facts are the data points of the system. They are the generated or
computed measurements that are the focus of the representation,
and are defined in terms of the measurement conditions and
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parameters. Each fact type is stored in a corresponding ‘‘Fact
Table’’. Fact tables are large, many containing millions of rows.
Several columns of the fact table will be foreign keys, describing in
detail ‘‘dimensions’’ of the facts. Other columns will be numeric or
categorical data, the ‘‘measures’’ of the fact. The redundancy of
storing most of the data in a large central table, with a handful of
satellite tables, allows for flexibility at the cost of some redundancy.
As an example of a fact table, consider the molecule_sequence
table of Fig. 23.2.

2.2.2. Dimensions Dimensions represent the complex attributes of the facts. These
columns of the fact table are pointers to other tables or foreign
keys. These are the features of facts that themselves have many
features, which would be useful query filters. The features are
stored in ‘‘dimension tables’’ that describe a particular feature of
the fact in detail. These tables rarely change, and encapsulate a
small set of specific data.

2.2.3. Measures Measures are the parameters that make up the facts. These are
discrete values and are usually numeric and additive. Being additive
allows for summary queries on the fact table. Simpler then dimen-
sions, these do not have associated attributes. These are simple
columns of the fact table.

2.2.4. Star Schemas This organization yields a ‘‘star schema’’ with the fact table at
the center, surrounded by many dimension tables. These struc-
tures are the goal of data warehouse design. While not highly
normalized like many database designs, the star schema allows
for complex queries to be made over fact tables efficiently.
Filters on the associated dimension tables and measures provide
a flexible constraint-based search system, which can adapt to a
wide variety of questions, allowing researchers to identify
and isolate relevant facts of interest. In some cases the star
schema may have a depth of more than a single table. These
snowflake schemas, although sometimes necessary, should be
avoided, as they make query writing complicated and can impact
performance.

A data warehouse will contain several fact tables, which may
share dimensions. Each fact table and the associated dimensions
are considered a distinct ‘‘data mart’’. Generally, the data ware-
house will consist of several independent data marts, which
have an independent focus, but which share a few dimension
tables.

There are many efforts to standardize data representation
in systems biology. Systems Biology Markup Language
(SBML) (14) is a data exchange format designed for pathway
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and network models. Another particularly successful example is
the PSI-MI (15) format for interaction data sets. In the cases
where a well-defined data specification exists, it is easier to
design the database tables with the given specification as a
guide. While this method may not provide a true warehouse
design, it is a step toward the goal of integration and effi-
ciency. The staging data of the Bioverse, for example, closely
mirrors in structure the PSI-MI format.

3. Data Warehouse
Construction

Development of the data warehouse from source data to com-
pleted database is an integrated process which includes both the
development of a data model and the development of the tools
required to load large quantities of data.

3.1. Model Design

3.1.1. Facts and Granularity

The first decision to be made in model design is the focus of the
fact tables. Collecting and storing data at the wrong resolution will
impact the ability of the warehouse to answer research questions. If
highly specific data are collected, it may be impossible to construct
queries on relevant aggregates. On the other hand, queries will not
be able to filter well if the fact tables or the dimension tables are too
general.

3.1.2. Dimensions The characteristics of the fact table are stored in the dimension
tables. The choice of columns in the dimension tables deter-
mines the queries that are supported. Verbosity and redundancy
are acceptable since support for rich analysis is the goal.
Although storage space is a consideration for large databases,
the dimension tables even without normalization will not repre-
sent a major storage problem. Typically, the fact tables that are
relatively compact will have orders of magnitudes more rows
than dimension tables.

3.2. Extracting,

Transforming, and

Loading

The migration of data from its native source format into a ware-
house is commonly referred to as the Extraction, Transformation,
and Loading step (ETL). Data can be extracted from other data-
bases or text files.

The design and implementation of ETL tools is one of the
most time-consuming aspects of data warehouse development.
Complex rules and transformations must be applied and errors
must be dealt with intelligently. Many of these steps take place in
a staging area of the warehouse. Fig. 23.1.
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3.2.1. Extraction Programs process the source data, extracting the relevant informa-
tion and filtering data that will not be used or have already been
loaded. The data will be moved to either text files or to a separate
area of the database, depending on the transformation steps
necessary.

3.2.2. Transformation Transformations cover many different facets of data manage-
ment and are often the most complex part of the ETL process.
A variety of operations are carried out in the transformation
step. Validation and verification ensure that the data are well
formed and adhere to any range or value constraints and that, if
attributes are referenced, new attributes of the data can be
computed based on the existing data. Data can be grouped
and merged or split to provide for data at a more appropriate
scale. Lookups can be made against a database to fill in a variety
of columns such as foreign key values, or unique ids generated
by the database.

Fig. 23.1. The ETL process. (1) Data sources such as downloaded versions of projects, and the results of bioinformatics
tools that have been run against local data sets. (2) All of these data are extracted from their original storage formats and
parsed. (3) The data are transformed. Additional fields are calculated, lookups to the database are made, and data sets are
validated against existing data. (4) The data are loaded in the data warehouse. (5) The data exist in a set of data marts,
which are accessed from a range of applications and analytical tools.
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3.2.3. Loading Finally, when all of the data are prepared, they are loaded into the
data warehouse. This step is optimized for speed. Lookups in the
database are avoided, having been accomplished in the transfor-
mation step.

3.2.4. Metadata It is important to keep track every piece of data during processing.
In the Bioverse we track a number of features of data including its
source, what transformations have been carried out, any errors or
warnings encountered, time required to process, and more. This
metadata provides important information that helps with data
management. In our case this is stored in the database where all
the ETL tools responsible for data processing can log activity in
relation to the data sets they operate on.

4. Bioverse Model
Design

The Bioverse includes a variety of information types as well as
sources. Interaction data, functional annotations, structure classi-
fication, and sequence similarity data types are present. Each type
of data requires unique tools for ETL as well as distinct storage in
the staging area and the warehouse. Here we will look at a handful
of tables and discuss the design choices that were made.

4.1. Sequence Data Sequence data is stored in the molecule_sequence table
(Fig. 23.2), which contains information about the type of the
sequence as well as dimensions about the source of the sequence.

Fig. 23.2. A portion of the molecule_sequence data mart. The molecule sequence table
is the central fact. There are three-dimension tables shown, taxon,
molecule_type, and alphabet. Each of these has many interesting features,
which can be used to limit searches on the molecule_sequence table. Addition-
ally, the molecule_sequence table includes several measures, such as seq_len
shown as the last visible column.
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A number of indices are also created on the columns of the
sequence data and the associated dimensions to accommodate
fast queries of features. The MD5 hash of the sequence is stored
for fast exact matches, along with a hash of the first 10 and the
reverse of the last 10 residues in the case of proteins for fast
matching of the start and end of sequences.

4.2. Taxonomy Data: A

Hierarchy Example

Hierarchical data occurs throughout the Bioverse. Representation
of these structures is particularly difficult in relational databases.
The choice of representation scheme depends on the relevant
queries. The most straightforward storage solution is to store all
parent–child relationships of the hierarchy. This is efficient in
storage space, but only allows for a narrow range of queries
about table structure. Different table structures are more useful
for queries about depth and relationships between entities in the
hierarchy. Here we present an approach for storing hierarchical
data in the database, which is based on the topological closure of
the paths in the hierarchy. This storage mechanism, which is
relatively large and expensive to compute, provides a fast mechan-
ism for a wide variety of hierarchical queries. This approach is
described in Chapter 5.6 of Kimball (12). Several dimensions in
the Bioverse are structured in hierarchies including the Gene
Ontology (16), SCOP (17), and the NCBI taxonomy database
(18). In each case we use this technique to increase the potential
filters on these dimensions.

The taxonomy data provided by the NCBI is used by many
different data marts in the Bioverse. As a dimension it needs to be
filtered in several ways. A simple list of taxon entries is stored in the
taxon table in Table 23.1. To provide for more complex queries
about relative positions, we calculate the topological closure of the
taxonomy tree. This closure is a collection of all paths in the tree. We
record the ancestor and child node, as well as the distance between
them, and other information about their place in the tree. An exam-
ple topological closure calculation is given in Fig. 23.3. Depending
on the query, a fact table can refer to either the original table or the
table holding the topological closure. Since the topological closure
table has an additional reference to the original table, certain filters
will go through two tables, a use of a snowflake schema.

When representing the topological closure, additional col-
umns are necessary whether or not this path is the shortest path,
the number of paths between these nodes, and the number of
shortest paths between the nodes. While this information is redun-
dant for the taxonomy example where every node only has a single
parent, in the event of more complex topologies, these columns
are useful for filtering as well. As an example the Gene Ontology
hierarchy allows for many parents, making it a directed acyclic
graph (DAG) rather than a tree.
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Table 23.1
The basic taxon table. No hierarchical information is present.
This is a simple dimension table describing taxonomy
entries. Columns such as division_id,
genetic_code_id, and mito_genetic_code_id
refer to other tables built on data provided by the taxonomy
database. The various ranks such as kingdom, phylum, and
family are stored for each entry to allow for queries about
subtree position. To enable some tree queries, relevant
information such as is_leaf is in the taxon table. This
table can be used to search for nodes at a known rank depth,
or which has a certain ancestor. Relative queries are not
available from this table

Taxon table

Column Description

Taxon_id Primary Key

parent_taxon_id Reference to the parent node.

rank NCBI rank, genus, species, etc.

division_id NCBI division

genetic_code_id Codon table

mito_genetic_code Codon table of mitochondria

embl_code EMBL 2 letter code.

is_leaf If this is a leaf node

is_root If this is the top of the tree

distance_to_root Number of elements to the root

distance_to_leaf . . .

kingdom

phylum

... . . .

genus

species

scientific_name Common name

other_names A hash of other names
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In addition to hierarchies, graphs and networks are common
structures in biological systems including protein–protein interac-
tion networks (19–22), biochemical pathways (23), and others.
However, the techniques outlined for trees and directed acyclic
graphs are no longer appropriate for graphs.

Answering any more than very basic graph queries is hard
in relational databases. One approach is to use a specialized
application, which is designed for graph and network repre-
sentation and queries. In the Bioverse database we have imple-
mented such an application at the interface between the
database and the application. It supports a simple breadth
first search, as well as searches for graph motifs. While this
makes certain tasks simple, specialized applications will not
alleviate all problems. Finding the shortest path between two
nodes is an expensive operation that may be better done out-
side of the database. The Bioverse does not have a pressing
need for these types of expensive queries, so they have not yet
been implemented.

4.3. Functional Data:

Affinity Grouping

Example

Combining or comparing data from different rows of the same
table is expensive in relational databases. This is one reason why
the choice of granularity is so important for the fact tables. As
previously discussed if the chosen resolution is too fine, queries
will require comparing rows. In some cases, there is no alter-
native because the queries are at many scales. One approach for
storing data at different resolutions is affinity grouping, which
enables the analysis of individual records as well as certain
groups of records.

In the Bioverse, we have both functional annotations from
trusted sources and predicted functional annotations.

Taxon table

Column Description

taxon_id
parent_taxon_id
rank
kingdom
...
genus
species
genetic_code
....

Primary key
Pointer to parent of this node
‘kingdom’, ‘genus’, ‘species’, etc...
Kingdom of this node
...
Genus of this node
Species of this node
Codon table of node
...

Molecule type table

Column Description
molecule_type_id
....

Primary key
...

Molecule sequence table

Column Description
molecule_id
taxon_id
molecule_type_id
alphabet_id
seq_length
...

Primary key

...

Alphabet table

Column Description
alphabet_id
description
....

Primary key
Summary of the entry
...

Fig. 23.3. An example of the topological closure data stored for a tree. All paths in the original tree are enumerated in the
topological closure.
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A simple table for the GO annotations stored in the
Bioverse is shown in Table 23.2. While this table provides
information on protein annotations, it is a limited view of the
data. Since each protein annotation is a unique fact, it is not
easy to see which annotations are related or which are the
most specific annotations in the DAG of GO features. To
provide access to this data we have calculated a second table
that gives information about which combinations of GO anno-
tations are seen together. An added benefit to calculating a
priori this data is having access to summary statistics when
making queries of the affinity-grouped tables. It is desirable to
have information on frequencies, which can be used to esti-
mate the statistical significance of an observation. This affinity-
grouping table is shown in Table 23.3.

4.3.1. Audit Dimensions Data that are unrelated to the science of the measurements, but
remains relevant, can be annotated in audit dimensions. These
tables record events that are significant, interesting, or possible
errors. An audit dimension can provide an overview of the fact
table or relevant meta data about the measurement. For computed
values an audit dimension may be used to record the version
information of software or runtime parameters used to generate
the fact.

For numeric columns audit dimensions may be used to
mark data that are missing, provide meanings or justifications
for missing data, or to identify interesting data. A flag that
marks all data which is more than two standard deviations
away from the mean allows the identification of problematic
or interesting data cases.

Table 23.2
A simple record of GO annotations

GO annotation table

Column Description

taxon_id Foreign Key to the Taxon table

molecule_id The identifier of the molecule

go_id Foreign Key to the Gene Ontology table

confidence Confidence assigned to the annotation
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5. Bioverse
Extraction,
Transformation,
and Loading For the Bioverse we have developed in-house data-processing

tools, which move the data through a pipeline architecture, pro-
cessing and running algorithms at each stage.

5.1. ETL Discussion There are a few guiding principles that influence the design of our
tools:

1. Process data in large blocks. Since frequent disk access is
expensive, the data are read and processed in blocks that fit
into memory.

2. Filter early and often. We filter data as quickly as possible.
After opening a block of data, the first steps that are taken are
to eliminate any data that are not of interest, in order to
minimize later workloads.

Table 23.3
The pair_count column gives the total number of times
these two annotations are seen together, and the
go_1_count and go_2_count give how often
annotation occurs independently. This summary table is
very useful for exploring annotation pairs and other
relationships. The is_related column stores whether
one annotation of the two is an ancestor of the other in the
DAG, in which case the relationship represents the
frequency of different parts of the subtree of that node

GO and GO affinity grouping table

Column Description

taxon_id Foreign Key to the Taxon table

go_id_1 Foreign Key to the Gene Ontology table

go_id_2 Foreign Key to the Gene Ontology table

pair_count number of co-occurrences of go_id_1 and go_id_2 in
molecules

go_1_count occurrences of go_id_1 in organism

go_2_count occurrences of go_id_2 in organism

is_related Whether one of the go identifiers is a parent of the other

distance The distance between the entries in the GO tree
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3. Expect failures and corrupted, ambiguous, and inconsistent
data. All of the operations performed on the data are
recorded. Any corrupted, ambiguous, and inconsistent data
that are encountered will need to be dealt with robustly.

4. Log and audit every block, and store all bad data in a way that
allows for restarting for failed blocks.

The ETL tool when constructed allows for short programs to
be written, which will perform on disk translation of the down-
loaded and generated data. This data should leave in a state that is
amenable to being uploaded to the database.

5.2. Bioverse

Extraction

Bioverse data is extracted from a wide variety of data formats.
For each data format a parser is available, which will produce all
data in the file without any attempt at filtering or validation.
Parsers catch formatting errors quite often, and log the failure
of the data read to the database. Additionally any data that was
expected or is optional that was not present is marked as a
failure or a missing value.

5.3. Bioverse

Transformation

The data generated from the extraction stage are transformed to
prepare it for the Bioverse staging area. Blast hits against databases
are checked to make sure that the matching molecule is actually in
the database we have loaded. Many types of data will have unique
values generated so they can be identified unambiguously later.
Errors encountered at this stage are recorded in the database, and
the data at fault is not processed further. If the offending program
is restarted, it will not duplicate data, since everything takes place
in a single database transaction and the failure aborts the
transaction.

5.4. Bioverse Loading The loader code works with large chunks of data, each of which
is associated with a block of records. These data are copied into
the database. In the event of failure, all of the records in the
block are marked as failed in the database, and none are loaded.
Again, this consistency ensures that the operation can be
repeated when the problems with the data have been resolved,
or the underlying data have been regenerated, and there will be
no duplication of data.

6. Conclusion

We have addressed the complex problem of creating a database
and representation to store a wide variety of biological information.
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We expect that, in conjunction with the Pipeline, API, and web
application, the database model we have created will be useful to
help generate hypotheses and solve problems for biological
research.

In addition to introducing the basic data warehousing con-
cepts, we have provided a general strategy for the management and
integration of biological data. Specific examples demonstrate how
the Bioverse is constructed and how large volumes of data are
loaded, stored, and analyzed within the data warehouse.
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Chapter 24

Biological Network Inference and Analysis Using SEBINI
and CABIN

Ronald Taylor and Mudita Singhal

Abstract

Attaining a detailed understanding of the various biological networks in an organism lies at the core of
the emerging discipline of systems biology. A precise description of the relationships formed between
genes, mRNA molecules, and proteins is a necessary step toward a complete description of the
dynamic behavior of an organism at the cellular level, and toward intelligent, efficient, and directed
modification of an organism. The importance of understanding such regulatory, signaling, and
interaction networks has fueled the development of numerous in silico inference algorithms, as well
as new experimental techniques and a growing collection of public databases. The Software Environ-
ment for BIological Network Inference (SEBINI) has been created to provide an interactive environ-
ment for the deployment, evaluation, and improvement of algorithms used to reconstruct the
structure of biological regulatory and interaction networks. SEBINI can be used to analyze high-
throughput gene expression, protein abundance, or protein activation data via a suite of state-of-the-
art network inference algorithms. It also allows algorithm developers to compare and train network
inference methods on artificial networks and simulated gene expression perturbation data. SEBINI can
therefore be used by software developers wishing to evaluate, refine, or combine inference techniques,
as well as by bioinformaticians analyzing experimental data. Networks inferred from the SEBINI
software platform can be further analyzed using the Collective Analysis of Biological Interaction
Networks (CABIN) tool, which is an exploratory data analysis software that enables integration and
analysis of protein–protein interaction and gene-to-gene regulatory evidence obtained from multiple
sources. The collection of edges in a public database, along with the confidence held in each edge (if
available), can be fed into CABIN as one ‘‘evidence network,’’ using the Cytoscape SIF file format.
Using CABIN, one may increase the confidence in individual edges in a network inferred by an
algorithm in SEBINI, as well as extend such a network by combining it with species-specific or
generic information, e.g., known protein–protein interactions or target genes identified for known
transcription factors. Thus, the combined SEBINI–CABIN toolkit aids in the more accurate recon-
struction of biological networks, with less effort, in less time.

A demonstration web site for SEBINI can be accessed from https://www.emsl.pnl.gov/SEBINI/
RootServlet. Source code and PostgreSQL database schema are available under open source license.
Contact: ronald.taylor@pnl.gov. For commercial use, some algorithms included in SEBINI require licen-
sing from the original developers. CABIN can be downloaded from http://www.sysbio.org/datare-
sources/cabin.stm. Contact: mudita.singhal@pnl.gov.

Jason McDermott et al. (eds.), Computational Systems Biology, vol. 541
ª Humana Press, a part of Springer Science+Business Media, LLC 2009
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Key words: Network inference, transcriptional regulatory networks, signal transduction networks,
protein–protein interaction networks, and exploratory data analysis.

1. Introduction

Reconstruction of regulatory and signaling networks is a critical
task in systems biology (1–9). The ‘‘Software Environment for
BIological Network Inference’’ (SEBINI) (10) and the ‘‘Collec-
tive Analysis of Biological Networks’’ (CABIN) (11) analysis fra-
meworks, developed at the U.S. Department of Energy’s Pacific
Northwest National Laboratory, aid in the reconstruction of the
structure of such mRNA and protein networks.

High-throughput molecular biology experiments are now
producing mRNA expression data in quantities large enough for
researchers to attempt to reconstruct the structure of gene tran-
scription networks based primarily on state correlation measure-
ments (12–58). In its simplest form, such inference from state
correlation could run as follows: if the expression level (state) of
gene A is always high across a (large) set of experiments when the
mRNA expression level of gene B is low, and low when the level of
gene B is high, then we could conclude that there is strong
evidence that gene A directly regulates gene B, i.e., there is a
regulatory edge directed from A to B, and that gene A represses
gene B. Of course, such inference is rarely so simple (59). In the
absence of other information, we could conclude with equal prob-
ability that gene B represses gene A. Determination of the causal
direction is an important subtask in the determination of regula-
tory network structure. With the possibility of multiple regulators
affecting a target gene and each source gene affecting a large
number of targets, as well as imperfect experimental data, compu-
tational scientists, drawing on knowledge from several fields
(information theory – e.g., mutual information (60, 61), classical
statistics – e.g., Pearson product-moment correlation coefficient
(62), probabilistic graphical models – e.g., Bayesian network struc-
ture learning (63–68), data mining – e.g., association rule mining
(69)) have built very sophisticated inference algorithms to detect
regulatory edges from even partial correlations in state.

Large-scale protein activation and protein abundance mea-
surements are soon to follow in the steps of mRNA microarray
experiments, allowing similar inference based on state correlation
for protein signaling networks and regulatory networks.. Further,
metabolite networks can be inferred by algorithms that use
correlations in large-scale measurements of metabolite levels
(D. Wishart, personal communication, 2006) Thus, while recon-
struction of metabolic pathways and networks will not be
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discussed in this chapter, the algorithms in SEBINI may have value
in that research area as well. Protein–protein interaction networks
are also starting to be inferred from high-throughput data, such as
from sets of mass spectrometry bait-prey experiments (70). Infer-
ence of protein interactions from bait-prey data sets is not based on
state correlation in the same sense that correlation is used in the
analysis of microarray experiments to infer transcriptional regula-
tory edges. But evidence from a set of mass spectrometry experi-
ments can be tied to the set of proteins, uploaded into the SEBINI
platform, and passed to an algorithm, the Bayesian Estimator of
Protein–Protein Association Probabilities (BEPro) (71–73),
which determines the degree of association between the bait and
prey proteins based on a Bayesian analysis across the entire set of
experiments, and thus determines which baits and prey truly inter-
act, eliminating false positives. In this manner we may construct a
set of interaction edges that can be stored as a protein–protein
interaction network which fits comfortably within the SEBINI
framework.

In a graphical representation of a transcriptional regulatory
network, the genes are the nodes and the edges between the nodes
are directed. A set of microarray runs measuring mRNA expression
is used as the input data set to the inference algorithm that infers
the set of regulatory edges. A protein–protein interaction (PPI)
network has proteins as nodes with undirected edges (showing
interaction, but no cause-and-effect). For example, a set of bait-
prey experiments, as mentioned above, could be used as input to
an appropriate analysis algorithm. Signal transduction networks
also have proteins as nodes, but the edges are directed, to show
causal influence on target protein activation state. The input to an
algorithm inferring a signal transduction network would be a set of
experiments measuring protein activation and inactivation (e.g.,
phosphorylation / dephosphorylation) across a set of proteins
being scanned for involvement in the signaling network.

SEBINI provides an open source software platform that allows
the use of many inference algorithms on many types of data sets.
Experimental data in several formats can be uploaded into SEBINI
for analysis by the algorithms incorporated into SEBINI’s toolkit.
Also, artificial data sets of different types can be created dynami-
cally within SEBINI and used to test a growing collection of
inference algorithms. Thus, the SEBINI interactive environment
helps researchers (1) easily apply state-of-the-art algorithms to
infer a network from experimentally generated high-throughput
data and (2) evaluate and refine new algorithms for the inference of
biological regulatory and signaling network structure using com-
mon data sets.

SEBINI is a framework whose database can store networks of
many types, and any algorithm that works on pieces of evidence
attached to nodes in a potential network, or on evidence attached
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to the set of nodes as a whole, can be fitted into the SEBINI
platform. The majority of algorithms in SEBINI are directed
toward searching for networks of causal influence, where the
state of one node affects the state of another node; the best-
known example of such being transcriptional regulatory networks
derived from microarray experiments that measure mRNA levels.
However, the BEPro algorithm described above has also been
added into SEBINI to look at evidence from protein bait-prey
experiments. Such evidence allows BEPro to infer interactions
(but not regulatory influence) between the bait and the prey
proteins, and thereby derive from the experimental results a single
protein–protein interaction network. In summary, the SEBINI
platform is useful not only in inferring the topology of any network
where the change in state of one node can affect the state of other
nodes (regulatory networks) but also, more generally, in inferring
the topology of any (interaction) network where the evidence for
the existence of edges can be uploaded and stored in SEBINI’s
central database, where the uploaded data are tied to a network
object for later use by an appropriate algorithm.

Focusing on the analysis of microarray experiments, we can
note that clustering or some form of statistical classification has
typically been employed to organize the high-throughput mRNA
expression values derived from microarray experiments (38, 74–78).
The question then arises: how can the clustering or classification
results be connected to the underlying biology? Such results can be
useful for pattern classification, for example, to classify subtypes of
cancer or to predict differential responses to a drug (pharmacoge-
nomics). But to understand the relationships between the genes,
i.e., to more precisely define the influence of each gene on the
others, the scientist usually attempts to reconstruct the transcrip-
tional regulatory network. This can be done by using background
literature or information in public databases, combined with the
clustering results. It can also be done by the application of an
algorithm, often based on a probabilistic graphical model or on
an information-theoretic metric, to try to infer the regulatory net-
work from the raw, high-throughput data. This is where the algo-
rithms in SEBINI come into play.

What does the graph of such an inferred regulatory network
give you? The structure of a transcriptional regulatory network can
be described as a ‘‘wiring diagram,’’ a directed graph whose edges
show regulatory influences. Such a diagram describes all the direct
and indirect influences on the expression of a gene, and shows
what (the product of) a gene can affect (5, 79). Ideally, one would
like to have not just such a diagram but also the set of equations
governing the behavior (state) of all the nodes of such a network
over time. This would allow predictions to be made of the precise
temporal behavior of all the (dependent) variables in the system.
However, the diagram itself is an extremely important starting
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point for network analysis. It constrains the possibilities and shows
what can affect different aspects of the system. It is the blueprint –
the starting point for later investigations for dynamic behavior.
Also, the identification of the regulatory connections, or edges, in
a network in and of itself answers important questions, and pro-
vides a guide to several areas of research. Some examples for
transcriptional regulatory networks follow.

1.1. Gene Function

Identification

Suppose gene A is known to be involved in a signal transduction or
metabolic pathway and gene B, through the network regulatory
edge diagram, is seen to directly influence gene A. Then the
researcher can assign gene B a possible role – some involvement
in that pathway. Also, gene B becomes a candidate for targeted
experiments to study the pathway. (Conversely, if gene A is seen to
be the direct source of a regulatory influence on a previously
unsuspected gene C, then gene C also becomes a possibility for
inclusion into the pathway.)

1.2. Identification of

Upstream and

Downstream Genes

The network diagram shows what genes lie upstream and down-
stream of each other, in terms of any possible regulatory effect. For
any gene represented in the network, all possible sources of reg-
ulatory influence on that gene from other genes in the network,
both direct and indirect, are explicit in the diagram. Conversely,
the direct or indirect affect of a given gene can be found by tracing
all possible downstream paths from the gene. Hence, when the
transcriptional level of a gene is experimentally altered, the
researcher will know how far the effect of such a change may
propagate through the biological network under study, and
where the effect may be strongest or weakest, based on the length
of the path from the altered gene to the downstream gene and on
the number of other direct and indirect influences on the
downstream gene.

1.3. Target

Identification

A researcher might want to modulate a cellular subsystem, such as
a signaling transduction pathway, with minimal effect on the other
subsystems in the cell. Knowledge of global transcriptional regu-
latory network provides guidance to the researcher in the selection
of genes whose alteration of expression will have the least influ-
ence, direct or indirect, on genes lying outside of the pathway.

1.4. Elimination of

Irrelevant Genes:

Pruning the Putative

Network

If there is prior belief that a subset of genes is possibly involved
with each other, the availability of the network diagram will allow
some genes to be eliminated from consideration. If a gene G
cannot directly influence at least one other gene in the set and
gene G is not a target of any regulatory connection from any other
gene in the set, then gene G can be dropped from membership in
the proposed subsystem.
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1.5. Speed of Response The network diagram allows calculation of the average path length
between nodes in the full network or in any subgraph. The length
may give some indication of the relative speed of a subnetwork in
its reaction to a change in the cellular environment.

1.6. Identification of

Control Genes

The network diagram allows answering questions such as: Are
there master control genes in the network? Are there genes that
serve as dominant sources of regulatory connections and, thus, act
as ‘‘hubs’’ for regulating many other genes? If so, research can be
focused on those genes whose state will directly control or affect
the state of much of the network.

The inferred networks obtained from SEBINI can be validated in
the CABIN software package (11), that is, interactions or regula-
tory connections can be verified by combining evidence from public
databases such as the Database of Interacting Proteins (DIP)
(80–82) and the Biomolecular Interaction Database (BIND) (83);
and from computational methods such as phylogenetic profiling,
Rosetta Stone, gene neighborhood, homology information (55,
84). Such verification, of course, increases our confidence in a
given edge. Networks can also be annotated or extended (edges
added) within CABIN. CABIN has been developed as a plug-in to
Cytoscape (85), which is an open source network visualization and
analysis tool. CABIN is invoked from SEBINI from a button on a
web page that launches Cytoscape via Java Web Start, with the
appropriate inferred network from SEBINI’s database automati-
cally passed in for visualization and further analysis within Cytos-
cape and CABIN. Once the Cytoscape window comes up, CABIN
can then be selected from the plug-in menu.

CABIN facilitates integrating the evidence of interaction data
from multiple sources by the use of interactive visual interfaces.
Multiple coordinated views within CABIN foster exploratory data
analysis, allowing weighting and filtering of data sources (via slider
controls and other easy-to-use controls) to create a final combined
network. Use of CABIN permits high-quality human judgment on
the integration of complex data sets having different levels of
certainty, with limited investment of the user’s time.

2. Software
Architecture

SEBINI uses a standard three-tier architecture: (1) a web-based
client user interface, (2) an application logic middle tier consisting
of a suite of Java servlets, and (3) a relational database storing the
data required by the middle tier. Inferred networks, as well as the
raw data, processed data (processing may mean binning of
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microarray data, or peptide-to-protein collapse for mass spec bait-
prey data), and algorithm parameter selections used to generate
the networks are permanently stored in the database for visualiza-
tion, topological and statistical analysis, and for later export in a
human-readable or program-specific format. Inference algorithms
and discretization (binning) or other data-processing algorithms
can be any sort of executable program; a Java handler class is added
for each new algorithm to handle communication between the
invocation web page, the database, and the algorithm. Security is
implemented on a project basis, with one owner and possibly
multiple users per project. Upon password-protected login to
the SEBINI web site, the user is assigned a 32 digit hex digit
JSessionID, which is checked before display of every web page.

Major design issues included (1) the interface for user naviga-
tion among possibly huge data sets, allowing easy drill down from
a network set to a specific network to a specific node or edge; and
(2) producing an efficient, understandable mapping from the
inferred networks and inferred edges back to the corresponding
original expression or abundance data. Note that we have one-to-
many relationships from a raw uploaded data set to a processed
data set, as well as a one-to-many relationship between a processed
data set and the inferred network and inferred edges created by the
selected inference algorithm, operating on the selected processed
data set. Records for each of these data types are permanently
stored and connected to the appropriate records of the other
data types. Note that the processed data sets are permanently
stored, in addition to the raw data sets and the inferred networks.
This is important for efficiency (reuse of processed data in another
inference run), transparency, and verification of results. Other
design decisions: all Java inter-servlet communication is routed
through a CentralControl servlet, for a clear flow of control and
monitoring choke point.

Each inference algorithm and each (pre)processing algorithm
(preprocessing in the sense that the data are being prepared for
input into an inference algorithm) is invoked in a separate Java
thread that performs job posting to the database, thus allowing
dynamic monitoring of job progress by the user. Jobs are timed to
the millisecond, allowing comparison between algorithms of rela-
tive speed versus relative power. While an algorithm is running,
any web page listing for that newly created processed data set or
inferred network will say ‘‘under construction,’’ with the processed
data set or inferred network only becomes available upon comple-
tion of the algorithm run. At any time, the user may check on the
progress of a run by bringing up the job page for the processed
data set or inferred network and reading the job postings that have
been stored so far in the database by the processing program or by
the Java wrapper around the selected inference algorithm. The
computational and RAM memory requirements for any given
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inference run will vary dramatically based on the number of nodes
involved, the algorithm used and how efficiently it was written, the
parameter settings used for a particular algorithm, and the number
of data points (gene expression, protein abundance, or protein
activation values) uploaded for each node. The time required
may be a few seconds on desktop computer for a mutual informa-
tion-based algorithm on a network of 20 nodes, given 100 gene
expression values for each node, from 100 microarray experiments.
Or, if we use a Bayesian network type of algorithm on a set of 1000
nodes using data from several hundred array experiments, the user
may set the parameters so that algorithm will run for days, in order
to return a high-quality inferred network.

Each node and each edge in an inferred network can be viewed
on its own web page. Each edge carries with it the raw and
processed state values for its two nodes across the entire set of
experiments. These values can be viewed by the user, or later
output with the inferred network topology, for use in fitting the
equations used for dynamic modeling to the experimental data.
Each inferred network can be viewed as a table of nodes and edges,
or visualized as a graph within Cytoscape and further analyzed or
annotated with CABIN. The edges of an inferred network can also
be exported in Cytoscape SIF file format.

The user may delete an entire project, an uploaded (raw) data
set, a processed data set, or an inferred network. Everything pre-
viously created downstream of a deleted set is also deleted. For
example, all inferred networks created from a given processed data
set are deleted, if the processed data set itself is deleted.

To support response speed in handling potentially huge data sets,
and thus potentially some very large tables in the PostgreSQL central
database, retrieval of records is almost always based on the primary
key of the relevant table. Secondary indices are sometimes used, but
even those are kept to a minimum, since each index added has to be
updated when new data is uploaded into the system, thus possibly
slowing response on the web site. Search and retrieval on unindexed
fields is extremely rare and, when done, confined to tables that will
stay relatively small over time. Most importantly, each project is given
its own separate PostgreSQL database. Thus, a user may at any time
start a new project, with a duplicate set of empty tables, and continue
from there. All (old) projects remain fully accessible, but the new
project allows the user to begin completely anew.

SEBINI was initially implemented on a Dell desktop running
Red Hat Linux, using Java ver. 1.5, PostgreSQL ver. 7.4 (86), and
Apache Tomcat 4.1 (87). Communication between the Java pro-
grams and the PostgreSQL database is done via JDBC. The Jar-
karta Commons file upload and IO Java libraries are used (http://
jarkarta.apache.org/commons). SEBINI has also been installed
on a Windows 2003 computer and on a Mac running Mac OS X
ver. 10.4.8. Machine-specific parameters are stored in an easily
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changed text file read by use of the Java util.Properties class. Math-
works’ MATLAB (88) is required for some of the inference algo-
rithms, while R (89) is required for others. Note that although the
user interface is web-based, SEBINI can run completely self-con-
tained (with CABIN), without any Internet connection, by setting
the host machine to ‘‘localhost’’ in the properties text file. A block
diagram of the system is shown in Fig. 24.1.

Like SEBINI, CABIN is written in Java. It makes use of pub-
licly available Java libraries such as Colt (http://dsd.lbl.gov/
�hoschek/colt), JFreeChart (http://www.jfree.org/jfreechart),
jMatrixView (http://jmatrixview.sourceforge.net), and BiSlider
(https://bislider.dev.java.net) to provide rich visualization and
an effective user interface. Once imported into CABIN, evidence
networks are stored in a matrix model that keeps a list of the
networks and their interactions. This model, provided by the
high-performance Colt library, is backed by an optimized two-
dimensional sparse matrix, which contains the confidence values of
each interaction (row) of each network (column). These data
values are visualized in multiple views as scatter plots (JFreeChart),
as a heat map matrix representation (jMatrixView), and as Cytos-
cape networks. Each view references the matrix model and
observes any changes in the model, allowing the views to update
themselves when networks are imported, removed, or updated.
Additionally, a view selection controller serves as an intermediary

SEBINI 
Central relational

database (PostgreSQL)

Input Module
High-throughput
experimental data

Dynamic data extraction via Java JDBC library
(e.g., from PNNL’s mass spec PRISM database)

Builder Module
Simulated high-throughput

expression data for 
artificial networks

User interface – web site
operated by Java servlets

Topological statistics, network
annotation, post-inference processing;
scoring & error analysis (on artificial 

data sets)

CABIN
Graph visualization and analysis 

of inferred 
networks via Cytoscape

& CABIN

Mutual information-based and Bayesian network structure learning algorithms provided for learning regulatory networks; 
BEPro algorithm for learning protein-protein interaction networks from bait-prey-prey-

experiment mass spec data sets. Inferred networks permanently stored back into database.

Text files 
(flat files)

Human-readable reports on
inferred networks

Machine-readable network structure files
for dynamic modeling programs

SEBINI 
Central relational

database (PostgreSQL)

-

’

-throughput

–

-

Collection of network inference algorithms. User selects algorithm and data set, runs algorithm to infer a network (a set of edges). 
Mutual information-

-

-

Fig. 24.1. A block diagram of the SEBINI–CABIN system.
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that notifies each registered view of any data selection events. Data
values can be manipulated further using the histogram range slider
interface facilitated by BiSlider and JFreeChart libraries.

3. Capabilities

The capabilities provided within SEBINI include:
1. Data Import – Upload of several types of experimental data

for input into selected processing and network inference
algorithms.

2. Network Inference – There are several choices of inference
methods. Currently, SEBINI has algorithms from classical
statistics (e.g., Pearson correlation), static and dynamic Baye-
sian network structure learning algorithms (e.g., the BANJO
toolkit at Duke University (90, 91)), and information theory
(mutual information-based; e.g., basic no-frills mutual infor-
mation (60), the ARACNE algorithm at Columbia University
(92–95), and the CLR algorithm at Boston University (96,
97)). Also, The Bayesian Estimator of Protein-Protein Asso-
ciation Probabilities (BEPro) algorithm (70–72) has been
added for inference of protein–protein interaction networks
from bait-prey experiments.

3. Network Storage and Analysis – Inference networks can be
permanently stored and further analyzed. For each network,
the user can view a summary page; a topological characteris-
tics and statistics page; a graph visualization using Cytoscape
(85), invoked via Java Web Start; summary pages for each
node and edge showing the raw (uploaded) and processed
node states; and job pages that record how the processing and
inference tasks proceeded.

4. Algorithm Comparison – Direct comparison of network
inference methods on common synthetic or experimental data
sets.

5. Experimental Planning Tool – Using simulated data sets,
SEBINI can report, using different inference methods, on what
can be reconstructed of the topology (regulatory connections) of
a network from the inference results on such an artificial data set
of a given size. Thus, SEBINI may be useful in making a rough
estimate of the number of experiments (data points) required.

6. Network Export – Output of inferred network structures as
input to other tools such as CABIN or to tools such as the
Systems Biology Workbench (98) (e.g., for dynamical mod-
eling), and export of human-readable reports on the net-
works, with various topological characteristics noted.
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The functionalities provided within CABIN for visual analysis of
multiple interaction networks include:

7. Network Import – Each evidence network (e.g., a network
of protein–protein interactions from the BIND database) can
be imported into CABIN using the Cytoscape SIF file format.
In its simplest form the first and third columns in the SIF file
represent proteins and the middle column represents the
value for the interaction. The evidence networks can be
assigned a reliability score, or weight, based on the confidence
in the evidence source. CABIN has provisions to assign cus-
tom values to missing evidences for interactions. This missing
value can be set to a value between 0 and 1, to the median
value for that evidence network, or we can ignore that evi-
dence source for the interaction.

8. Exploratory Analysis – Once loaded, the CABIN environ-
ment provides interactive visual interfaces to carry out
exploratory analysis of the networks as shown in Fig. 24.2.
The Weighted Scaling View window pane displays a point

Fig. 24.2. Use of the CABIN software to validate experimental interactions for Rhodopseudomonas palustris obtained using
tandem affinity purification technique bait-prey experiments.
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for each interaction in any of the evidence networks, with
the value for that interaction represented by the average of
the weighted sums of confidence values in all the networks.
The Cytoscape Network View window pane provides a net-
work/graph visualization of the networks loaded into
CABIN. The Matrix/Table View provides a heat map
representation of confidence values of all sources for each
interaction, along with the options to sort interactions
based on their values. A Scatter Plot Matrix view is also
provided, which shows the scatter plots of interactions in
all evidence networks with respect to the others. This view
facilitates estimating the weight assignment for determining
the confidence in the predictions for that source. The four
views are coordinated with respect to each other, so selec-
tions made in one view are reflected as selections in the
other two views.

9. Construction of Network Subsets – Filters can be added
to select an edge confidence (edge score) cutoff for the
edges in an evidence network. If the value for an edge falls
below the given cutoff, the edge is omitted from display
and any further use. The selection of the filter cutoff value
is performed by an easy-to-use slider control while viewing
a histogram graph that shows the distribution of the edge
values in each network. Edges displayed can also be
restricted based on an OR relation or an AND relation
amongst the networks; e.g., we may restrict the combined
network displayed (and possibly exported later) to those
edges that appear in the inferred network passed in from
SEBINI and that also appear in either the evidence net-
work from BIND or the evidence network from DIP
(SEBINI AND (BIND OR DIP)). Once the filters are set
and the update button is clicked, the views are updated
based on interactions (edges) that pass the filters. The
filtered set of edges can be saved as a new network within
CABIN and assigned a confidence of its own.

10. Find/Search Functionality – CABIN has regular expression
based find/search functionality, which allows the user to look
for a specific interaction or select all interactions involving a
particular molecule of interest.

11. Export – At any stage of the analysis process, the selected
interactions can be saved to a local file for later use.

Additionally, to support algorithm developers, SEBINI also
allows:

12. Artificial Data Sets – Topologies (99), perturbations, and
node input function definitions can be dynamically created
and stored. Boolean value expression sets are currently
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created. The more sophisticated Java-based SynTreN net-
work generator software is in the process of being added as
an additional SEBINI module (100).

13. Step-wise Refinement of Inference Methods – Scoring
measures (recall, precision, F-measure) are used to measure
performance against the simulated networks with known
structure. Thus, supervised training of an inference algorithm
is possible on a set of known (simulated) data sets.

14. Well-defined Expansion – Addition of each new inference
algorithm, (pre) processing technique, import uploader or
export method is coded as a new Java module which fits easily
into the already existing framework.

15. Scoring Distributions – As a guide for the interpretation of
the scores produced by an inference technique, SEBINI can
produce scoring distributions for a given inference method
against known networks. Such distributions can then be used
to determine appropriate cutoff scores for determination of the
existence of a regulatory influence (an edge) to a target gene.

4. Analysis Flow
of Control

In this section, we walk through the steps one would use in
performing an analysis in SEBINI on experimental data, and in
using SEBINI to evaluate an inference algorithm on a synthetic
data set. We will then examine the experimental analysis of a
protein bait-prey experiment set more closely using both SEBINI
and CABIN, as representative test case.

The flow of control on the SEBINI web site for the analysis of
experimental data goes as follows:

1) Log into SEBINI. If you have not used the SEBINI site
before, you are directed to a registration page to enter your
chosen user name and password. Once that is done, you may
log in and create a project.

2) Select a project, or create a new project. Typically, a user will
log in and select one of the projects to which he or she has
access – a list of such is presented on a web page. All work is
done within a context of a project, and a project must be
selected before doing anything else. All data sets, all nodes, all
edges, all networks belong to a particular project and can be
accessed from that project only.

3) Create a network container for the data set you are uploading,
for the experimental network you are trying to reconstruct.
This is a simple task – one enters a name, a short optional
description, and selects an uploader method for future use.
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4) Upload the experimental mRNA expression or protein abun-
dance data file. Using the uploader method chosen in the
previous step, a web page is presented, which allows the user
to upload a file or files from his/her local computer. After a
file path is selected in a Browse box and the user clicks on
‘‘submit’’, the data set in this file is parsed, according to the
upload method selected, and permanently stored in the
database.

5) Select a processing or binning algorithm and run it on the
data. The uploaded raw data set can be processed or binned in
many ways. For example, for a set of microarray experiments,
each gene expression value could be binned (discretized) into
two-state Boolean values (on/off), based on a cutoff value set
at the halfway point of the min and max of the value range
across the set of (already normalized) expression values,
across the set of experiments. That is a simple example. Dis-
cretization can be done in very complex ways, and the results
one obtains for the inferred network can depend strongly
upon your binning technique. For data sets being used as
input into inference algorithms that do not require binning
or other processing (or for data sets that were already binned
before being uploaded into SEBINI), the ‘‘pass-through’’
menu option can be used. This option will create a processed
data set that is a duplicate of the raw data set. In any case, a
processed data set must be created, because only a processed
data set is allowed as input into an inference algorithm.

6) Select an inference algorithm, select the values to use for its
parameters, and infer a network. This step can be considered
the ‘‘heart’’ of SEBINI, since it is where we actually infer a
network and store it back into the database. Using a set of
web pages, the user selects a processed data set, selects the
inference algorithm to employ on that data set, enters values
into fields for all the parameters that the algorithm needs
(usually, default values are given on-screen), and then clicks
on a ‘‘submit’’ button that launches the algorithm, via its Java
wrapper program, in a separate Java thread. When the algo-
rithm finishes, the Java wrapper will parse the algorithm’s
output and store the inferred edges in the database as the
newly inferred network. The edge scores and any other useful
information produced by that particular algorithm will also
be stored, attached to the inferred edges, or to the parent
inferred network record. The inferred network record is the
‘‘parent’’ of its child nodes and edge records, and contains
pointers – unique ids – to them. Likewise, the node and edge
records have a field containing the unique id of the parent
network record. Thus the user can move from a web page
showing a given edge to a page showing information about
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the parent inferred network by clicking on a button that
invokes very fast recall of the network record from the Post-
gresSQL inferred-network table, based on that unique pri-
mary key value – and vice versa.

7) View the resulting inferred network in tabular format, and view
details on individual nodes and edges. A web page table is
produced, which lists the nodes; and for each node, the
edges in which it participates, one edge per row. (Each edge
thus appears twice in the table.) The edge scores are given,
along with clickable links to pages that give details on the node
(the gene or protein), on the edge, and on the node at the
other end of the edge. Two versions of the table are displayed,
depending upon whether the inferred edges are directed or
undirected. Fig. 24.3 shows a part of such a table for an
undirected protein–protein interaction network found in the
bacterium Rhodopseudomonas palustris (R. palustris). Also
available is a table that simply lists the inferred edges, one
row per edge, with the two nodes involved and the edge
score. The pages that give full descriptions on the nodes may
contain background sequence level information on that gene
or protein, if such information has been uploaded into
SEBINI. Such a page may also contain clickable links to public
databases. For example, we may retrieve the appropriate page
from the NCBI Entrez web site for that gene or protein in a
new window. As mentioned above, the details page for an edge
will show the raw and processed node states (expression levels)
for the two nodes involved, across the set of experiments in the

Fig. 24.3. The start of a SEBINI table showing the nodes and undirected edges for an inferred protein–protein interaction
network for the bacterium Rhodopseudomonas palustris.
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data set. These web pages may be printed out as human-read-
able, permanent reports. Also, some basic topological statistics
are reported out for each inferred network – average degree,
minimum and maximum degree (undirected networks), mini-
mum and maximum in-degree (directed), minimum and max-
imum out-degree (directed). Topological calculations are
being expanded to include the full node in-degree and out-
degree distributions, average clustering coefficient, and possi-
bly other characteristics (graph diameter, characteristic path
length, scale free exponent) important for structural analysis
(41, 79, 101–103).

8) Export the inferred network, if so desired. The user can
generate and store a text file for the inferred network in
Cytoscape SIF format on the local client computer. Also, a
text file with edges and associated node state values can be
produced and passed to dynamic modeling tools.

9) Visualize the inferred network using Cytoscape. A set of
Cytoscape files are automatically generated for each inferred
network and stored in the directory structure for a project, for
that given inferred network. In addition to the primary
Cytoscape SIF file, with a listing of the edges and their scores,
a large number of Cytoscape node and edge attribute files are
generated, to allow the user to annotate the network graph
displayed in Cytoscape. The user can invoke Cytoscape to
display an inferred network via a button click from a web page
listing that network. Cytoscape appears on the client compu-
ter via Java Web Start, with the inferred network automati-
cally loaded.

10) Further analyze the inferred network in CABIN. From the
Cytoscape plug-in menu, the user can invoke CABIN, which
will then allow the user to bring in other public data sets of
known edges (interactions) and compare those networks to
the inferred network found in SEBINI. Or the user can then
employ those data sources to extend the inferred network by
various combinations of weighting and filtering. Once an
extended or combined network has been created in CABIN,
the user may place it back into the SEBINI database for
permanent storage as a new inferred network.

The SEBINI flow of control for the analysis of algorithms
operating on synthetic data sets is quite similar to the task
sequence described above for the analysis of experimental data
sets. One logs into the SEBINI web site and selects a project in
the same manner. However, instead of creating an experimental
network container and uploading an experimental data set into it,
the user goes to a different set of web pages and creates a synthetic
network container. The user then selects methods to build a

566 Taylor and Singhal



network topology and a set of corresponding artificial expression
data sets for that topology. Once that is done, the flow of control is
the same as before – we create a processed data set from the raw
(artificial) data set, select an inference algorithm to use, enter
values for the algorithm parameters, and run the algorithm on
the processed data set. The inferred network can then be viewed
in tabular format, as before, or visualized as a graph in Cytoscape.
The difference here is that the user can also bring up a web page to
view precision, recall, and F-measure statistics that measure how
well the inference algorithm performed against the ‘‘gold stan-
dard’’, the known artificial network, in terms of the number of
correct and incorrect edges found.

At PNNL, algorithms in SEBINI have been used to analyze
mRNA microarray and proteomics data coming from the EMSL
Grand Challenge in Membrane Biology project (http://
mbgc.emsl.pnl.gov/) focused on the study of nitrogen fixation
and photosynthesis in the bacterium Cyanothece. However, per-
haps a more interesting case study is the use of SEBINI–CABIN in
the U.S. Department of Energy’s Genomics:GTL Center for
Molecular and Cellular Systems (CMCS) project, which is a joint
Oak Ridge National Laboratory (ORNL) / PNNL multi-year
collaboration to determine protein complexes and interaction net-
works in bacteria via mass spectrometry protein bait-prey experi-
ments (http://mippi.ornl.gov/). SEBINI and CABIN now form
the backbone of the exploratory analysis pipeline for this project.
Evidence for potentially interacting prey proteins is uploaded into
SEBINI for each bait experiment. Such evidence comes from the
peptides that preliminary analysis via the well-known SEQUEST
peptide mass spectra analysis algorithm has assigned to a particular
protein. Once such a data set has been uploaded, a processing
algorithm is invoked, which ‘‘collapses’’ the data set from possibly
multiple pieces of peptide evidence for each protein in each experi-
ment down to a single numeric value for each protein in each
experiment. This collapse can be done in many ways, based on
the parameters selected. The simplest means is to simply count the
number of peptides that SEQUEST reported as evidence for a
protein in a given experiment.

Note that while ORNL data sets are uploaded as text files, the
PNNL bait-prey experiment data sets are extracted on-the-fly from
an Oracle database. Thus, an uploader program that will dynami-
cally retrieve records (e.g., a set of microarray runs) from a remote
database, based on user-selected criteria, can easily be added to the
set of SEBINI upload options.

Once the processed data set is created, the user selects the
BEPro algorithm mentioned above to infer the set of protein–
protein interactions. Such a resulting network is shown in
Fig. 24.4. We can invoke Cytoscape and CABIN for further
analysis of this inferred network.
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Figure 24.2 show the use of CABIN to validate experimental
interactions for R. palustris obtained using the tandem affinity
purification technique mass spectrometry experiments at ORNL.
For the set of proteins in these interactions, we obtained evidence
networks using the phylogenetic profile, gene cluster, gene neigh-
borhood, and Rosetta stone methods of the Prolinks database
(84). In addition, we obtained evidence networks using protein
information from the interolog and regulog methods from the
Bioverse (55, 104). The interolog method predicts an interaction
between two proteins if they are both homologs of two proteins
known to interact. Known protein interactions are gathered from
the databases of experimentally determined protein–protein inter-
actions (e.g., BIND (83), DIP(80–82)) and PSI-BLAST (105) is
used to determine similarity between this set and all proteins in a
target organism. Regulogs are regulatory interactions inferred by
homology. A regulog is predicted by determining the similarity to
a known transcription factor (TF) and the TF’s target protein.
Finally, the nucleotide similarity in the upstream transcriptional
promoter regions is determined and used to filter the regulog
predictions: if there are similar promoter sequences, then a regulog
is predicted.

Fig. 24.4. The protein–protein interaction network shown here was inferred using the BEPro algorithm, operating on
a set of 854 bait-prey experiments for the bacterium Rhodopseudomonas palustris. We see a part of the network
graph in the Cytoscape window, along with information on the proteins (nodes) appearing in the Cytoscape attribute
browser.
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In all, seven interaction networks are assigned a weight based
on the confidence in the evidence source and imported into
CABIN in this example. As can be seen from Fig. 24.2, the scatter
plots show the correlation of the different interaction networks
with respect to each other. We can clearly see the good agreement
of the interolog predictions with the experimental interactions
(points along the diagonal) and the low overlap of the regulog
predictions with the other networks (points along the axis). This
can be attributed to the fact that protein–protein interactions
(and/or interologs) are not expected to overlap with regulatory
interactions (and/or regulogs) since the types of interactions are
very different. Regulatory interactions act through an intermediate
(the promoter region) so the TF and TF target do not need to
physically make contact. Only in (probably rare) cases where the
protein produced from the TF gene target binds to its TF generally
to inhibit its activity (an auto-regulatory loop) would you see both
a protein–protein and regulatory interaction between the same
pair of proteins.

Figure 24.2 show the exploratory analysis process in which we
select the interactions (shown in black) that have high evidence in
the pulldown experiments as well as the interolog predictions.
These interactions are automatically selected in all the other
views, showing their corresponding values in those views.
Although the different views of the data give a deeper understand-
ing of the multi-source data, the interpretation of an interaction
network with more than a few hundred edges becomes difficult in
a traditional network/graph like view. The use of filters helps in
sub-setting the data by changing the cutoff for the evidence net-
works dynamically. As shown in Figure 24.2 the interactions are
filtered based on a value greater than 0.2 for the experimental
observations. We can see a clear separation of the interactions
based on the combined confidence from all the evidence sources
in the Weighted Scaling View. Using the functionalities within
CABIN, further exploratory data analysis can be carried out to
validate the experimental interactions and, on conclusion of the
analysis process, the high-confidence interactions can be saved in a
local file or back into SEBINI.

5. Summary

The SEBINI–CABIN system offers an open source software plat-
form for biological network inference and analysis. In addition to
the large collection of inference algorithms the system makes
available, permanent storage of the inferred networks in the
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network-centric database allows for (1) post-processing and further
inference and annotation via CABIN, and (2) further annotation
and topological analysis within SEBINI (e.g., topology-based edge
additions to existing core subnet using less stringent cutoffs).

We will continue to add to the capabilities of SEBINI and
CABIN: additional inference and processing algorithms, better
methods of generating artificial data sets, additional import/
export techniques, and additional statistical algorithms for com-
bining evidence from multiple sources. With new algorithms in
this field being published on a regular basis, there remain a large
number of promising inference algorithms (e.g., (106–112)) to
add into SEBINI’s toolkit. (An extensive list of relevant articles,
current through mid-2006, many of which discuss new algo-
rithms, can be found in (113)). Also, we are exploring refining or
combining algorithms already present in SEBINI for improved
results, using the SEBINI–CABIN system ourselves to explore
improvement of the algorithms; quickly adding, testing, and com-
paring variants. Further, we will use our platform to develop
expertise on how much data is needed, what are the appropriate
parameter settings and cutoffs for each algorithm, what are the
weaknesses of a given method compared to others on a common
data set, what background information on a genome is most useful
to supplement the primary gene expression data for a given algo-
rithm, and so on.

We realize that adding general and genome-specific annota-
tion from the public databases, and using such annotation as
possible constraints on the edges that are inferred, is extremely
important. (For example, if a gene’s product is a protein that is
known to be located in the membrane, that knowledge consider-
ably lessens the probability that any inferred transcriptional regu-
latory edge coming out of that gene is correct.) Hence we will also
be working to add to SEBINI’s capabilities in this area.

It has not escaped our attention that a SEBINI-CABIN site
adopted by a large community would provide a network-centric
database whose edge records would constitute a resource excep-
tionally well-suited for investigating edge motifs in signaling, reg-
ulatory, and interaction networks (1, 114–116).

‘‘Network biology is only in its infancy’’ (3). We do not yet
know what inference algorithm(s) will perform best for what data
sets. Theoretical guidance is lacking. But SEBINI–CABIN posi-
tions us to empirically test new algorithms, and easily modify or
combine algorithms, while providing biologists much easier access
to a growing collection of state-of-the-art algorithms. Moreover,
as the high-throughput data sets continue to grow, the SEBINI–
CABIN platform will aid in making the inference of network
topologies a common starting point for further work in systems
biology, such as dynamic modeling, rather than a seldom-reached
end point, as is now the case.
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Color Plate 1. Uncovering the underlying modularity of a complex network. (a) Topological overlap illustrated on a small
hypothetical network. On each link, we indicate the topological overlap for the connected nodes; and in parentheses next
to each node, we indicate the node’s clustering coefficient. (b) The topological overlap matrix corresponding to the small
network shown in (a). The rows and columns of the matrix were reordered by the application of an average linkage
clustering method to its elements, allowing us to identify and place close to each other those nodes that have high
topological overlap. The color code denotes the degree of topological overlap between the nodes. The associated tree
reflects the three distinct modules built into the model, as well as the fact that the EFG and HIJK modules are closer to
each other in the topological sense than to the ABC module (Chapter 7, Fig. 3; see discussion on p. 151).
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BA

Color Plate 4. Structural localization of putative SDRs and CERs in two-component system domains. (a) RR Spo0F (red-
brown ribbon) bound to structural analog of the DD in Spo0B protein. The conserved His is shown in purple, the conserved
Asp in RR in magenta. SDRs and CERs are shown in yellow or, when located on the �4 helix, in white (PDB entry 1F51). (b)
The non-catalytic conformation of HK homodimer. ADP is shown as a purple wireframe, the phosphate-accepting
conserved His residue in magenta spacefill. SDRs and CERs on the ATPase are shown in yellow, or in white if located
on the unresolved ATP-lid loop that was superimposed from PhoQ kinase (PDB entry 1ID0 ), or in green in the RR-specific
CERs side patch. SDRs and CERs on the DD are shown in red on one homodimer and orange on another (PDB entry 2C2A)
(Chapter 18, Fig. 6; see discussion on p. 435).

A B

Color Plate 5. Localization of putative SDRs and CERs on computationally obtained models (models provided by Marina
et al (27) ). (a) HK in the active conformation, the ATPase is docked on the DD so that transfer of the phosphoryl group is
possible. SDRs and CERs on the ATPase domain are shown in yellow or green when located in the RR-specific CERs side
patch. SDRs and CERs on the DD are shown in red on one homodimer and orange on another. (b) Spo0F computationally
docked on HK and subsequently superimposed with RR from OmpR. RR (brown-red ribbon) (PDB entry 1KGS) with its �4
helix swung�90�: the phosphorylated Asp in the RR is shown in magenta, SDR and CERs are shown in light red or, when
located the �4 helix in white. DD (dark blue and dark green ribbon): SDRs and CERs are shown in light blue on one dimer
and in light green on another. ATPase (yellow-green ribbon on the left and light-blue on the right): the colors are the same
as in (a) (Chapter 18, Fig. 7; see discussion on p. 439).



Color Plate 6. Valine aminoacyl-tRNA synthetase (PDB entry 1GAX). The tRNA is shown as a purple wireframe
structure, SDRs and CERs are red balls, and amino acid (valyl-adenylate analog) is in yellow wireframe
(Chapter 18, Fig. 8; see discussion on p. 443).
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