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Preface

Computational systems biology is the term that we use to describe computational
methods to identify, infer, model, and store relationships between the molecules,
pathways, and cells (“systems”) involved in a living organism. Based on this definition,
the field of computational systems biology has been in existence for some time.
However, the recent confluence of high-throughput methodology for biological data
gathering, genome-scale sequencing, and computational processing power has driven a
reinvention and expansion of this field. The expansions include not only modeling of
small metabolic (1-3) and signaling systems (2, 4) but also modeling of the relation-
ships between biological components in very large systems, including whole cells and
organisms (5-15). Generally, these models provide a general overview of one or more
aspects of these systems and leave the determination of details to experimentalists
focused on smaller subsystems. The promise of such approaches is that they will
elucidate patterns, relationships, and general features, which are not evident from
examining specific components or subsystems. These predictions are either interesting
in and of themselves (e.g., the identification of an evolutionary pattern) or interesting
and valuable to researchers working on a particular problem (e.g., highlight a previously
unknown functional pathway).

Two events have occurred to bring the field of computational systems biology to
the forefront. One is the advent of high-throughput methods that have generated large
amounts of information about particular systems in the form of genetic studies, gene
and protein expression analyses and metabolomics. With such tools, research to con-
sider systems as a whole are being conceived, planned, and implemented experimentally
on an ever more frequent and wider scale. The other event is the growth of computa-
tional processing power and tools. Methods to analyze large data sets of this kind are
often computationally demanding and, as is the case in other areas, the field has
benefited from continuing improvements in computational hardware and methods.

The field of computational biology is very much like a telescope with two sequential
lenses: one lens represents the biological data and the other represents a computational
and /or mathematical model of the data. Both lenses must be properly coordinated to
yield an image that reflects biological reality. This means that the design parameters for
both lenses must be designed in concert to create a system that yields a model of the
organism, which provides both predictive and mechanistic information. The chapters in
this book describe the construction of subcomponents of such a system. Computa-
tional systems biology is a rapidly evolving field and no single group of investigators has
yet developed a complete system that integrates both data generation and data analysis
in such a way so as to allow full and accurate modeling of any single biological organism.
However, the field is rapidly moving in that direction. The chapters in this book
represent a snapshot of the current methods being developed and used in the area of
computational systems biology. Each method or database described within represents
one or more steps on the path to a complete description of a biological system. How
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Vi Preface

these tools will evolve and ultimately be integrated is an area of intense research and
interest. We hope that readers of this book will be motivated by the chapters within and
become involved in this exciting area of research.

Organization of the Book

This volume is organized into five major parts: Network Components, Network
Inference, Network Dynamics, Function and Evolutionary Systems Biology, and Com-
putational Infrastructure for Systems Biology. Each section is described briefly below.

Part | — Network Components

This section focuses on methods to identify subcomponents of the complete networks.
Ultimately, such subcomponents will need to be integrated with each other or used to
inform other methods to arrive at a complete description of a biological system. This
section begins with two methods for the prediction of transcription factor binding sites.
In the first, Chapter 1, Marino-Ramirez et al. describe a method for the prediction of
transcription factor binding sites using a Gibbs sampling approach. In Chapter 2, Liu
and Bader show how DNA-binding sites and specificity can be predicted using sophis-
ticated structural analysis. Chapters 3-5 discuss methods to predict protein—protein
interaction (PPI) networks, and Chapter 6 builds on predicted PPIs to identity poten-
tial regulatory interactions. Finally, Chapter 7 discusses the inherent modularity that is
observed in biological networks with a focus on networks of PPIs.

Part Il - Network Inference

This section focuses on methodologies to infer transcriptional networks on a genome-
wide scale. In general, the methods described within focus on using either mRNA
expression data or mRNA expression data coupled with expression quantitative trait
locus (eQTL) data. To a large extent, method development in this area is driven
primarily by the ubiquitous mRNA expression data that are available in the public
domain or that are relatively easily generated within a single laboratory. These methods
have been tremendously enabled by the development of array technology and hence
predominately model mRNA levels (as that is the most ubiquitous data type).
Chapters 8 and 9 present two methods for identifying and modeling transcriptional
regulatory networks, while Chapter 10 focuses on inferring mRNA expression net-
works from eQTL data. Chapter 11 is a review of different methods for inferring and
modeling large scale networks from expression and eQTL data.

Part 1l — Network Dynamics

Systems are not static entities. They change over time and in response to a variety of
perturbations. Ultimately, computational systems biology will have to develop meth-
ods and corresponding data sets that allow one to infer and model the kinetics and
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dynamics of reactions between all the chemical moieties in a cell. The chapters in this
section focus on such methods. Chapter 12 discusses methods to infer both static co-
expression networks and a finite-state Markov chain model for mimicking the dynamic
behavior of a transcriptional network. Chapter 13 focuses on quantitative models of
system behavior based on differential equations using biochemical control theory,
whereas Chapter 14 focuses on the use of stochastic kinetic simulations. Both
approaches have applications where one is superior to the other. At this point in time,
it is not clear which methods will turn out to be most useful in dynamically modeling
the largest number of biological systems. In general, this is likely the case for most of the
technologies described in this book, so it is useful for readers to familiarize themselves
with several concepts. Specifically, both Chapters 13 and 14 provide an excellent
discussion of a variety of historical approaches to the dynamical modeling of biological
systems and the relative merits and downsides to each. Chapter 15 provides an excellent
introduction to considerations for the interplay between experimental design and
dynamic modeling using lambda phage as an example system. The methods and
considerations described within are generally applicable to other biological systems
and highlight the importance of integrating the direction of wet bench work and
computational modeling to more rapidly refine the models.

Part IV — Function and Evolutionary Systems Biology

The ultimate representation of the function of a given biological moiety is a complete
description of all the reactions in which it participates and the relative rates of said
reactions. At present, we are quite distant from this goal for most biological molecules
or systems. However, we are able to use computational methods to predict the most
likely functions of a given protein and even predict which portions and specific
sequences of the protein contribute most to that function. This section is focused on
methods used to infer protein function and on the relationships between function and
evolution.

Ultimately, the reason to study and research “systems” biology is to understand
biological function at a given hierarchical level (be it a single catalytic site or entire
pathways). The interplay between the detailed atomic study of function and the large-
scale study of systems will enable us to achieve this goal. This section contains chapters
that address the interdependence of these two aspects: individual algorithms or tech-
niques to understand the functional role of atoms or residues in single molecules (e.g.,
proteins), which in turn are extrapolated to understand their greater role in terms of
biological or organismal function. Conversely and complementarily, the role of larger
systems and their influence on single molecules is also explored. Together, all these
chapters illustrate the strong dependence between single molecules and entire pathways
or systems.

Part V — Computational Infrastructure for Systems Biology

To represent and organize the large amounts of experimental data and software tools,
database frameworks must be created and made available to the larger biological
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community. This chapter focuses on computational methods and databases as well as
data representations necessary to both integrate and export systems biology informa-
tion to an end user. The user may be the biologist searching for their gene of interest or
they may be the bioinformatician looking for trends in protein function among higher
eukaryotes. Several groups are working on this extremely difficult task of providing
semantic meaning to the large amounts of underlying biological data collected from
single and high-throughput experiments, as well as computational predictions. (As a
parenthetical comment, this is a significantly much harder problem than one faced by
Internet search engines such as a Google, which at this point do not provide any
semantic meaning to a query.) We present only a few such examples in this section
(and in this book). One primary focus is on the Bioverse framework, database, and web
application, which was developed by the editors of this book. However, we also
describe the Biozon as well as the SEBIN and CABIN frameworks. The abstract
representations required to model biological systems are still in fruition, and a comple-
ment of many tools, technologies, databases, and algorithms will have to be integrated
in the future as our knowledge expands.
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Color Plate 1

Color Plate 2

Color Plate 3

Color Plate 4

Uncovering the underlying modularity of a complex network.
(a) Topological overlap illustrated on a small hypothetical network.
On each link, we indicate the topological overlap for the connected
nodes; and in parentheses next to each node, we indicate the node’s
clustering coefticient. (b) The topological overlap matrix correspond-
ing to the small network shown in (a). The rows and columns of the
matrix were reordered by the application of an average linkage cluster-
ing method to its elements, allowing us to identify and place close to
each other those nodes that have high topological overlap. The color
code denotes the degree of topological overlap between the nodes. The
associated tree reflects the three distinct modules built into the model,
as well as the fact that the EFG and HIJK modules are closer to each
other in the topological sense than to the ABC module (Chapter 7,
Fig. 3; see discussion on p. 151).

Topological modules in the Escherichia coli metabolism: the topologic
overlap matrix, together with the corresponding hierarchical tree (zop
and right) that quantifies the relation between the different modules.
The branches of the tree are color-coded to reflect the predominant
biochemical classification of their substrates. The color code of the
matrix denotes the degree of topological overlap shown in the matrix.
The large-scale functional map of the metabolism, as suggested by
the hierarchical tree, is also shown (&ottom) (Chapter 7, Fig. 5; see
discussion on p. 153).

Enlarged view of the substrate module of pyrimidine metabolism, along
with a detailed diagram of the metabolic reactions that surround and
incorporate it. The colored boxes in the background denote the first two
levels of the three levels of nested modularity suggested by the hierarchical
tree. Red-outlined boxes denote the substrates directly appearing in the
reduced metabolism and thus on the tree (Chapter 7, Fig. 6; see discussion
on p. 154 and full caption on p. 155).

Structural localization of putative SDRs and CERs in two-component
system domains. (a) RR SpoOF (7ed-brown ribbon) bound to structural
analog of the DD in SpoOB protein. The conserved His is shown in
purple, the conserved Asp in RR in magenta. SDRs and CERs are shown
in yellow or, when located on the a4 helix, in white (PDB entry 1F51).
(b) The non-catalytic conformation of HK homodimer. ADP is shown
as a purple wiretrame, the phosphate-accepting conserved His residue in
magenta spacefill. SDRs and CERs on the ATPase are shown in yellow,
or in white it located on the unresolved ATP-lid loop that was
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Color Plate 5

Color Plate 6

superimposed from PhoQ kinase (PDB entry 1ID0), or in green in the
RR-specific CERs side patch. SDRs and CERs on the DD are shown in
red on one homodimer and orange on another (PDB entry 2C2A)
(Chapter 18, Fig. 6; see discussion on p. 435).

Localization of putative SDRs and CERs on computationally obtained
models (models provided by Marina et al (27)). (a) HK in the active
conformation, the ATPase is docked on the DD so that transfer of the
phosphoryl group is possible. SDRs and CERs on the ATPase domain are
shown in yellow or green when located in the RR-specific CERs side patch.
SDRs and CERs on the DD are shown in 74 on one homodimer and
orange on another. (b) SpoOF computationally docked on HK and sub-
sequently superimposed with RR from OmpR. RR (&rown-red ribbon)
(PDB entry 1KGS) with its 4 helix swung ~90°: the phosphorylated Asp in
the RR is shown in magenta, SDR and CERs are shown in /ght red or,
when located the 4 helix in white. DD (dark blue and dark green vibbon):
SDRs and CERs are shown in /zght blue on one dimer and in /ight green on
another. ATPase (yellow-green ribbon on the left and light-blue on the
right): the colors are the same as in (a) (Chapter 18, Fig. 7; see discussion
on p. 439).

Valine aminoacyl-tRNA synthetase (PDB entry 1GAX). The
tRNA is shown as a purple wireframe structure, SDRs and CERs
are red balls, and amino acid (valyl-adenylate analog) is in yellow
wireframe (Chapter 18, Fig. 8; see discussion on p. 443).



Chapter 1

Identification of cis-Regulatory Elements in Gene
Co-expression Networks Using A-GLAM

Leonardo Mariiio-Ramirez, Kannan Tharakaraman, Olivier Bodenreider,
John Spouge, and David Landsman

Abstract

Reliable identification and assignment of cis-regulatory elements in promoter regions is a challenging
problem in biology. The sophistication of transcriptional regulation in higher eukaryotes, particularly in
metazoans, could be an important factor contributing to their organismal complexity. Here we present an
integrated approach where networks of co-expressed genes are combined with gene ontology—derived
functional networks to discover clusters of genes that share both similar expression patterns and functions.
Regulatory elements are identified in the promoter regions of these gene clusters using a Gibbs sampling
algorithm implemented in the A-GLAM software package. Using this approach, we analyze the cell-cycle
co-expression network of the yeast Saccharomyces cerevisine, showing that this approach correctly identifies
cis-regulatory elements present in clusters of co-expressed genes.

Key words: Promoter sequences, transcription factor-binding sites, co-expression, networks, gene
ontology, Gibbs sampling.

1. Introduction

The identification and classification of the entire collection of
transcription factor-binding sites (TFBSs) are among the greatest
challenges in systems biology. Recently, large-scale efforts invol-
ving genome mapping and identification of TFBS in lower eukar-
yotes, such as the yeast Saccharomyces cerevisine, have been
successful (1). On the other hand, similar efforts in vertebrates
have proven difficult due to the presence of repetitive elements and
an increased regulatory complexity (2-4). The accurate prediction
and identification of regulatory elements in higher eukaryotes
remains a challenge for computational biology, despite recent

Jason McDermott et al. (eds.), Computational Systems Biology, vol. 541
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progress in the development of algorithms for this purpose (5).
Typically, computational methods for identitying cis-regulatory
elements in promoter sequences fall into two classes, enumerative
and alignment techniques (6). We have developed algorithms that
use enumerative approaches to identify cis-regulatory elements
statistically significantly over-represented in promoter regions
(7). Subsequently, we developed an algorithm that combines
both enumeration and alignment techniques to identify statisti-
cally significant czs-regulatory elements positionally clustered rela-
tive to a specific genomic landmark (8).

Here, we will present a systems biology framework to study czs-
regulatory elements in networks of co-expressed genes. This
approach includes a network comparison operation, namely the
intersection between co-expression and functional networks to
reduce complexity and false positives due to co-expression linkage
but absence of functional linkage. First, co-expression (9, 10) and
functional networks (11, 12) are created using user-selected thresh-
olds. Second, the construction of a single network is obtained from
the intersection between co-expression and functional networks
(13). Third, the highly interconnected regions in the intersection
network are identified (14). Fourth, upstream regions of the gene
clusters that are linked by both co-expression and function are
extracted. Fifth, candidate czs-regulatory elements using A-GLAM
(8) present in dense cluster regions of the intersection network are
identified. In principle, the calculation of intersections for other
types of networks with co-expression and/or functional networks
could also be used to identify groups of co-regulated genes of
interest (15) that may share cis-regulatory elements.

2. Materials

2.1. Hardware
Requirements

2.2. Software
Requirements

1. Personal computer with at least 512 MB of random access
memory (RAM) connected to the Internet.

2. Access to a Linux or UNIX workstation.

1. The latest version of the Java Runtime Environment (JRE)
freely available at http://www.java.com/.

2. The latest version of Cytoscape — a bioinformatics software
platform for visualizing molecular interaction networks (13)
freely available at http://www.cytoscape.org/.

3. The latest version of the MCODE plug-in for Cytoscape —
finds clusters or highly interconnected regions in any network
loaded into Cytoscape (14) freely available at http://cbio.mskec.
org/~bader/software /mcode/.
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4. A modern version of the Perl programming language installed
on the Linux or UNIX workstation freely available at http: //
www.perl.com/.

5. The A-GLAM package (8) freely available at ftp: //ftp.ncbi.
nih.gov/pub/spouge/papers /archive/AGLAM /.

3. Methods

The size of co-expression networks depends on the number of
nodes in the network and the threshold used to define an edge
between two nodes. There are a number of distance measures that
are often used to compare gene expression profiles (16).

Here we use the Pearson correlation coefficient (PCC) as a
metric to measure the similarity between expression profiles
and to construct gene co-expression networks (17, 18). We
establish a link by an edge between two genes, represented by
nodes, if the PCC value is higher or equal to 0.7; this is an
arbitrary cut-off that can be adjusted depending on the dataset
used. The microarray dataset used here is the yeast cell-cycle
progression experiment from Cho et al. (9) and Spellman
et al. (10). The semantic similarity method (11) was used to
quantitatively assess the functional relationships between
S. cerevisine genes.

The A-GLAM software package uses a Gibbs sampling algo-
rithm to identify functional motifs (such as TFBSs, mRNA
splicing control elements, or signals for mRNA 3’-cleavage
and polyadenylation) in a set of sequences. Gibbs sampling (or
more descriptively, successive substitution sampling) is a
respected Markov-chain Monte Carlo procedure for discover-
ing sequence motifs (19). Briefly, A-GLAM takes a set of
sequences as input. The Gibbs sampling step in A-GLAM uses
simulated annealing to maximize an ‘overall score’, a figure of
merit corresponding to a Bayesian marginal log-odds score. The

overall score is given by
G+ —1)!
W:| — cijlog, P;}) - [1]
: !

In Eq. [1], m! = m(m — 1) ... 1 denotes a factorial; a;, the pseudo-
counts for nucleic acid 5 in each position; 2 = a1 + a; + a3 + a4, the
total pseudo-counts in each position; ¢;;, the count of nucleic acid 7 in
position z; and ¢ = ¢;1 + cia + ¢i3 + ¢i4, the total number of aligned
windows, which is independent of the position . The rationale behind
the overall score s in A-GLAM is explained in detail elsewhere (8).

. a—1)!
5= Z <log2(c(+u—)l)'+ Z {log2

=1 ©)]
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To initialize its annealing maximization, A-GLAM places a single
window of arbitrary size and position at every sequence, generating
a gapless multiple alignment of the windowed subsequences. It
then proceeds through a series of iterations; on each iteration step,
A-GLAM proposes a set of adjustments to the alignment. The pro-
posal step is either a repositioning step or a resizing step. In a
repositioning step, a single sequence is chosen uniformly at random
from the alignment; and the set of adjustments include all possible
positions in the sequence where the alignment window would fit
without overhanging the ends of the sequence. In a resizing step,
cither the right or the left end of the alignment window is selected;
and the set of proposed adjustments includes expanding or contract-
ing the corresponding end of all alignment windows by one position
at a time. Each adjustment leads to a different value of the overall
score 5. Then, A-GLAM accepts one of the adjustments randomly,
with probability proportional to exp(s/7T). A-GLAM may even
exclude a sequence if doing so would improve alignment quality.
The temperature 7 is gradually lowered to T" = 0, with the intent of
finding the gapless multiple alignment of the windows maximizing s.
The maximization implicitly determines the final window size. The
randomness in the algorithm helps it avoid local maxima and find
the global maximum of's. Due to the stochastic nature of the proce-
dure, finding the optimum alignment is not guaranteed. Therefore,
A-GLAM repeats this procedure ten times from different starting
points (ten runs). The idea is that if several of the runs converge to
the same best alignment, the user has increased confidence that it is
indeed the optimum alignment. The steps (below) corresponding to
E-values and post-processing were then carried out with the PSSM
corresponding to the best of the ten scores s.

The individual scove and its E-value in A-GLAM: The
Gibbs sampling step produces an alignment whose overall score
s is given by Eq. [1]. Consider a window of length w that is
about to be added to A-GLAM’s alignment. Let J;() equal 1 if
the window has nucleic acid j in positioni, and 0 otherwise.
The addition of the new window changes the overall score by

vfrusful()]) o

The score change corresponds to scoring the new window accord-
ing to a position-specific scoring matrix (PSSM) that assigns the
‘individual score’

) = lows | (52 1y 3)

c+a

to nucleic acid J in positions. Equation [ 3] represents a log-odds
score for nucleic acid 5 in position 7 under an alternative hypothesis
with probability (¢ + a;)/(c+ @) and a null hypothesis with
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probabilityp;;. PSI-BLAST (20) uses Eq. [3] to calculate E-values.
The derivation through Eq. [2] confirms the PSSM in Eq. [3] as
the natural choice for evaluating individual sequences.

The assignment of an E-value to a subsequence with a particular
individual score is done as follows: consider the alignment sequence
containing the subsequence. Let 7 be the sequence length, and recall
that w is the window size. If AS; denotes the quantity in Eq. [2] if the
final letter in the window falls at position ¢ of the alignment sequence,
then AS* = max{AS; : = w, ..., n} is the maximum individual score
over all sequence positions z. We assigned an E-value to the actual
value AS* = As*, as follows. Staden’s method (21) yields P{AS;As*}
(independent of 7) under the null hypothesis of bases chosen indepen-
dently and randomly from the frequency distribution {p;}. The E-
value E = (n — w+ 1)P{AS;As*} is therefore the expected number
of sequence positions with an individual score exceeding As*. The
factor » — w + 1 in E is essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (22). The optional ‘scanning step’ after Gibbs
sampling produces a PSSM given by Eq. [3]. The new scanning
step resembles an iterative PSI-BLAST search based on the PSSM.
First, it assigns an ‘individual score’ to each subsequence of appro-
priate length within the input sequences using the initial PSSM.
Second, it computes an E-value from each individual score to
assess the agreement between the corresponding subsequence
and the PSSM. Third, it permits subsequences with E-values fall-
ing below a threshold to contribute to the underlying PSSM,
which is then updated using the Bayesian calculus. A-GLAM
iterates its scanning step to convergence, at which point no new
subsequences contribute to the PSSM. After convergence,
A-GLAM reports predicted regulatory elements within each
sequence in the order of increasing E-values; users then have a
statistical evaluation of the predicted elements in a convenient
presentation. Thus, although the Gibbs sampling step in
A-GLAM finds at most one regulatory element per input
sequence, the scanning step can now rapidly locate further
instances of the element in each sequence.

1. The yeast cell-cycle-regulated expression data are obtained
from http://cellcycle-www .stanford.edu/ (see Note 1).

2. Pairwise Pearson correlation coefficient (PCC) values are cal-
culated using a subroutine implemented in the Perl program-
ming language (23) (see Note 2).

3. The co-expression network is constructed with all gene pairs
with a PCC greater or equal to 0.7 and is formatted according
to the simple interaction file (SIF) described in the Cytoscape
manual available at http: / /www.cytoscape.org/ (sec Note 3).
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4. The co-expression network can be loaded in Cytoscape, which
is an open-source software for integrating biomolecular inter-
action networks. Cytoscape is available for a variety of operat-
ing systems, including Windows, Linux, Unix, and Mac OS X.

3.2. Functional 1. Gene ontology (GO) annotations for yeast gene products
Similarity Network come from the Saccharomyces Genome Database (SGD) and
Construction were downloaded from http://www.geneontology.org/cgi-

bin/downloadGOGA.pl/gene_association.sgd.gz. The evi-
dence supporting such annotations is captured by evidence
codes, including TAS (Traceable Author Statement) and IEA
(Inferred from Electronic Annotation). While TAS refers to
peer-reviewed papers and indicates strong evidence, TEA
denotes automated predictions, not curated by experts, i.e.,
generally less reliable annotations. For this reason, IEA anno-
tations were excluded from this study.

2. Functional relationships between S. cerevisine genes were
assessed quantitatively using a semantic similarity method
(11) based on the gene ontology (GO). We first computed
semantic similarity among GO terms from the Biological Process
hierarchy using the Lin metric. This metric is based on infor-
mation content and defines term—term similarity, i.c., the
semantic similarity sim (c;, ¢;) between two terms ¢; and ¢; as

2 x max [log(p(c))]
Sim(ci 5-) _ ceS(cig) [4]
7 log(p(e) +log(p(c)))’

where §(c;,c;) represents the set of ancestor terms shared by
both ¢; and ¢;, ‘max’ represents the maximum operator, and
p(¢) is the probability of finding ¢ or any of its descendants in
the SGD database. It generates normalized values between 0
and 1. Gene—gene similarity results from the aggregation of
term—term similarity values between the annotation terms of
these two genes. In practice, given a pair of gene products, g,
and g, with sets of annotations A;and A, comprising 7 and
n terms, respectively, the gene—gene similarity, SIM(g, 4,), is
defined as the highest average (inter-set) similarity between
terms from A; and Aj:

- i X {Zm;lx[sim(% o)) + Zmﬁx[sim(ﬁk, £1,)]}, [5]
k ?

SIM(g:, ;) =

where sim(c;,c;) may be calculated using Eq. [1]. This aggre-
gation method (12) can be understood as a variant of the
Dice similarity.

3. The functional similarity network is constructed using
semantic similarity greater or equal to 0.7 and is formatted
according to the simple interaction file (SIF).
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4. Functional relationships in a group of genes can be further
explored in Cytoscape using the BINGO plug-in (24). Here
we have used the hypergeometric test to assess the statistical
significance (p < 0.05) and the Benjamini & Hochberg False
Discovery Rate (FDR) correction (25).

3.3. Intersection 1. The yeast co-expression and functional similarity networks are

Network Construction loaded in Cytoscape and the intersection network can be
obtained by using the Graph Merge plug-in, freely available
at the Cytoscape Web site. The nodes that are connected by
having similar expression profiles and GO annotations are
present in the intersection network (Fig. 1.1) (sec Note 4).
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Fig. 1.1. Yeast cell-cycle gene co-expression and GO intersection network. The intersection network topology is
shown for yeast genes, represented by nodes linked by one or more edges as described in the text. An edge represents
both co-expression and functional linkage between the nodes connected.
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2. The intersection network can be visualized using a variety of
layouts in Cytoscape. A circular layout of the intersection net-
work using the yFiles Layouts plug-in is depicted in Fig. 1.1.

3.4. Identification 1. The identification of dense gene clusters in the intersection
of Highly network is done using the MCODE Cytoscape plug-in (14)
Interconnected (see Note 5). The clusters identified share similar expression
Regions patterns and functions as described by GO (Fig. 1.2).
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Fig. 1.2. Core histone gene cluster in the intersection network. A. Highly connected cluster identified by MCODE
corresponds to eight core histone genes present in the yeast genome. The eight nodes are connected by 28 co-expression
and functional edges. B. Expression profiles of the core histone genes over the cell cycle. C. Over-represented GO terms in
the Biological Process category for the core histone genes. The statistical significance of each GO term is related to the
intensity of the colored circles (see Note 5).
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Gene @tology

Fig. 1.2. (continued)

3.5. Identification
of Proximal Promoter
Regions

3.6. Identification

of cis-Regulatory
Elements in Promoter
Regions

establishment and/or main @ ce of chromatin architecture

chromatin asse or disassembly

. The Saccharomyces Genome Database (SGD) maintains the

most current annotations of the yeast genome (see http://
www.yeastgenome.org/). The SGD FTP site contains the
DNA sequences annotated as intergenic regions in FASTA
format (available at ftp://genome-ftp.stanford.edu/pub/
yeast/sequence /genomic_sequence/intergenic/), indicating
the 5’ and 3’ flanking features. Additionally, a tab-delimited
file with the annotated features of the genome is necessary to
determine the orientation of the intergenic regions relative to
the genes (available at ftp://genome-ttp.stanford.edu/pub/
yeast/chromosomal_feature/). The two files can be used to
extract upstream intergenic regions (26) for the genes present
in the intersection network clusters (sec Note 6).

Construct FASTA files for each of the gene clusters identified
by MCODE.

Install the A-GLAM package (see Note 7).

. The A-GLAM package has a number of options that can be

used to adjust search parameters (see Note 8).
$ aglam

Usage summary: aglam [options] myseqs.fa
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Options:
—h help: print documentation

—n end each run after this many iterations without improve-
ment (10,000)

— r number of alignment runs (10)

—a minimum alignment width (3)

— b maximum alignment width (10,000)

—j examine only one strand

—iword seed query ()

— finput file containing positions of the motifs ()

-z turn oft ZOOPS (force every sequence to participate in
the alignment)

— v print all alignments in full

— e turn oft sorting individual sequences in an alignment on
p-value

— q pretend residue abundances = 1 /4

—d frequency of width-adjusting moves (1)

— p pseudocount weight (1.5)

— u use uniform pseudocounts: each pseudocount = p/4
— tinitial temperature (0.9)

— ¢ cooling factor (1)

— m use modified Lam schedule (default = geometric
schedule)

—s seed for random number generator (1)

—w print progress information after each iteration

— I find multiple instances of motifs in each sequence

—k add instances of motifs that satisty the cutoff e-value (0)

— g number of iterations to be carried out in the post-processing
step (1,000)
Run A-GLAM to identify the regulatory elements present in
the gene clusters with similar expression patterns and GO
annotations (see Note 9). A-GLAM correctly identifies an
experimentally characterized element known to regulate
core histone genes in yeast (27). The alignments produced
by A-GLAM can be represented by sequence logos (28, 29)
and the positional preferences of the elements can be eval-
uated by plotting the score against relative positions, nor-
malized by sequence length, in the promoter sequences

(Fig. 1.3).
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Fig. 1.3. Core histone regulatory element identified with A-GLAM. A. Sequence logo representation of the motif
obtained from the ungapped multiple sequence alignment identified by A-GLAM (see Note 9). B. Positional preference plot
for the elements identified by A-GLAM where the score in bits is plotted against the relative position of the element in the
upstream regions of the core histone genes.

4. Notes

’ Q 1. The yeast cell cycle data from the Web site include the
experiments from Cho et al. (9) and Spellman et al. (10).

2. The following Perl code can be used to calculate the PCC:

my$r = correlation(\@{$values{$probel }}, \@{$values
{$probe2}});
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sub covariance {

J

my ($arraylref,$array2ref) = @_;

my ($i,$result);

for ($i = 0;8i < @Sarraylref;$i++) {$result +=$arrayl
ref->[ $i] *Sarray2ref->[$i];

J

$result /= @$arraylref;

$result -= mean($arraylref) * mean($array2ref);

sub correlation {

my ($arraylref,$array2ref) = @_;

my ($suml,$sum?2);

my ($suml_squared, $sum2_squared);

foreach (@Sarraylref) {$suml +=$_;$suml_squared
+=$_**2}

foreach (@$array2ref) {$sum2 +=$_;$sum2_squared
+=$_**2}

return (@$arraylref ** 2) * covariance($arraylref]
$array2ref) /sqre(((@$arraylref *$suml_squared)
($suml ** 2)) *((@S$arraylref *$sum2_squared) -
(Ssum2 ** 2)));

sub mean {
my ($arrayref) = @_;
my$result;
foreach (@$arrayref) {$result +=$_ }
return$result / @$arrayref;

3. The simple interaction file (SIF or .sif format) consists of lines
where each node, representing a protein, is connected by an
edge to a different protein in the network. Lines from the

simple interaction file from the co-expression network:
RPL12A pp THRI1

RPLI2A pp TIF2
RPLI2A pp TIF1
RPL12A pp GUKI
RPLI2A pp URA5S
RPL12A pp RPLIB
RPLI2A pp SSH1
RPL12A pp SNU13
RPLI2A pp RPL23B
SHU1 pp DON1
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Two nodes are connected by a relationship type that in this
case is pp. The nodes and their relationships are delimited by a
space or a tab (see the Cytoscape manual for more detailed
information).

4. Two or more networks can be used to calculate their
intersection as needed to select for connections that meet
certain criteria. The researcher can overlay protein—protein
interactions, co-expression and functional networks to
identify the protein complexes created under specific
experimental conditions.

5. The MCODE plug-in ranks the clusters according to the
average number of connections per protein in the complex
(Score). The top five clusters identified by MCODE in the
intersection network are shown below:

Cluster Score Proteins Interactions
1 6.6 15 99
2 3.5 8 28
3 2.267 15 34
4 2 5 10
5 2 5 10

The BiNGO plug-in can be used to determine the GO terms
statistically over-represented in a group of genes. Here we
show the results for cluster 2:

Selected statistical test : Hypergeometric test

Selected correction : Benjamini & Hochberg False Dis-
covery Rate (FDR) correction

Selected significance level : 0.05

Testing option : Test cluster versus complete annotation

The selected cluster :
HHT1 HHF1 HTA1 HHT2 HHF2 HTA2 HTB1 HTB2

Number of genes selected : 8
Total number of genes in annotation : 5932
6. There are a number of Web sites that facilitate the extraction
of promoter sequences. A service for the extraction of human,
mouse, and rat promoters is freely available at http://bio
wulf.bu.edu/zlab/promoser/

7. The A-GLAM package is currently available in source
code and binary forms for the Linux operating system
(see ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/
AGLAM/).
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Corrected

GOID  P-value P-value Description

6333 4.9168E-15 1.2292E-13 Chromatin assembly
or disassembly

6325 2.2510E-12 1.8758E-11 Establishment and /or
maintenance of
chromatin
architecture

6323 2.2510E-12 1.8758E-11 DNA packaging

7001 2.0415E-10 1.2759E-9 Chromosome
organization and
biogenesis (sensu
Eukaryota)

51276 2.5897E-10 1.2949E-9 Chromosome
organization and
biogenesis

6259 5.9413E-9 2.4756E-8 DNA metabolism

6996 6.9565E-7 2.4845E-6 Organelle
organization and
biogenesis

Installation of the Linux binary: Get the executable from the
FTP site and set execute permissions.
$chmod +x aglam

Installation from source: Unpack the glam archive and com-
pile A-GLAM.

$tar —zxvf aglam.tar.gz

$cd aglam

$make aglam

. Possible scenarios and options to modify A-GLAM?’s behavior.

$aglam <myseqs.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in “myseqs.fa”.
$aglam <mysegs.fa> -n 20000 -a 5 -b 15 -j

This tells the program to search only the given strand of the
sequences to find motifs of length between 5 and 15 bp. The
flag » specifies the number of iterations performed in each of
the ten runs. Low values of 7 are adequate when the problem
size is small, i.e., when the sequences are short and more
importantly there are few of them, but high values of # are
needed for large problems. In addition, smaller values of 7 are
sufficient when there is a strong alignment to be found, but
larger values are necessary when there is not, e.g., for finding
the optimal alignment of random sequences. You will have to
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choose 7 on a case-by-case basis. This parameter also controls
the tradeoft between speed and accuracy.

Saglam <myseqgs.fa> -i TATA

This important option sets the program to run in a “seed”-
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed
in the standard Gibbs sampling algorithm, however, A-GLAM
continues to align one exact copy of the “seed” in all “seed
sequences”. Therefore, A-GLAM uses the seed sequences to
direct its search in the remaining non-seed “target sequences”.
Using this option leads to the global optimum quickly.

$aglam <mysegs.fa> -f <positions.dat>

The above command uses an extra option that allows
A-GLAM to take a set of positions from an input file “posi-
tions.dat”. Like with the “-” flag, this option provides “seeds”
tor the A-GLAM alignment. Using this command restricts
the Gibbs sampling step to aligning the original list of win-
dows specitied by the positions in the file. The seed sequences
then direct the search in the remaining non-seed sequences.

$aglam <mysegs.fa> -1-k 0.05 —-g 2000

Usable only with version 1.1. This tells the program to find
multiple motifinstances in each input sequence, via the scan-
ning step (described above). Those instances that receive an
E-value less than 0.05 are included in the PSSM. The search
for multiple motifs is carried on until either (a) no new motifs
are present or (b) the user-specified number of iterations (in
this case, it is 2,000) is attained, whichever comes first.

9. A-GLAM uses sequences in FASTA format as input. Cluster
number 2, identified by MCODE, is composed of eight genes
linked by 28 co-expression and GO connections. Interest-
ingly, the intergenic regions of the same cluster are shared
between the genes in the cluster:

>B:235796-236494, Chr 2 from 235796-236494,
between YBLOO3C and YBLOO2W
TATATATTAAATTTGCTCTTGTTCTGTACTTTCCTAATTCTTATGTA
AAAAGACAAGAAT
TTATGATACTATTTAATAACAAAAAACTACCTAAGAAAAGCATCATGCAG
TCGAAATTGA
AATCGAAAAGTAAAACTTTAACGGAACATGTTTGAAATTCTAAGAAAGC
ATACATCTTCA
TCCCTTATATATAGAGTTATGTTTGATATTAGTAGTCATGTTGTAATCT
CTGGCCTAAGT
ATACGTAACGAAAATGGTAGCACGTCGCGTTTATGGCCCCCAGGTTAAT
GTGTTCTCTGA
AATTCGCATCACTTTGAGAAATAATGGGAACACCTTACGCGTGAGCTGT
GCCCACCGCTT
CGCCTAATAAAGCGGTGTTCTCAAAATTTCTCCCCGTTTTCAGGATCAC
GAGCGCCATCT
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AGTTCTGGTAAAATCGCGCTTACAAGAACAAAGAAAAGAAACATCGCGT
AATGCAACAGT
GAGACACTTGCCGTCATATATAAGGTTTTGGATCAGTAACCGTTATTTG
AGCATAACACA
GGTTTTTAAATATATTATTATATATCATGGTATATGTGTAAAATTTTTT
TGCTGACTGGT
TTTGTTTATTTATTTAGCTTTTTAAAAATTTTACTTTCTTCTTGTTAAT
TTTTTCTGATT
GCTCTATACTCAAACCAACAACAACTTACTCTACAACTA
>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W
TGTATGTGTGTATGGTTTATTTGTGGTTTGACTTGTCTATATAGGATAA
ATTTAATATAA
CAATAATCGAAAATGCGGAAAGAGAAACGTCTTTAATAAATCTGACCAT
CTGAGATGATC
AAATCATGTTGTTTATATACATCAAGAAAACAGAGATGCCCCTTTCTTA
CCAATCGTTAC
AAGATAACCAACCAAGGTAGTATTTGCCACTACTAAGGCCAATTCTCTT
GATTTTAAATC
CATCGTTCTCATTTTTTCGCGGAAGAAAGGGTGCAACGCGCGAAAAAGT
GAGAACAGCCT
TCCCTTTCGGGCGACATTGAGCGTCTAACCATAGTTAACGACCCAACCG
CGTTTTCTTCA
AATTTGAACTCGCCGAGCTCACAAATAATTCATTAGCGCTGTTCCAAAA
TTTTCGCCTCA

CTGTGCGAAGCTATTGGAATGGAGTG
TATTTGGTGGCTCAAAAAAAGAGCACAATAGTTA
ACTCGTCGTTGTTGAAGAAACGCCCGTAGAGATATGTGGTTTCTCATGC
TGTTATTTGTT
ATTGCCCACTTTGTTGATTTCAAAATCTTTTCTCACCCCCTTCCCCGTT
CACGAAGCCAG
CCAGTGGATCGTAAATACTAGCAATAAGTCTTGACCTAAAAAATATATA
AATAAGACTCC
TAATCAGCTTGTAGATTTTCTGGTCTTGTTGAACCATCATCTATTTACT
TCCAATCTGTA
CTTCTCTTCTTGATACTACATCATCATACGGATTTGGTTATTTCTCAGT
GAATAAACAAC

TTCAAAACAAACAAATTTCATACATATAAAATATAAA
>N:576052-576727, Chr 14 from 576052-576727, between
YNLO31C and YNLO30W
TGTGGAGTGTTTGCTTGGATCCTTTAGTAAAAGGGGAAGAACAGTTGGAA
GGGCCAAAGT
GGAAGTCACAAAACAGTGGTCCTATATAAAAGAACAAGAAAAAGATTATT
TATATACAAC
TGCGGTCACAAGAAGCAACGCGAGAGAGCACAACACGCTGTTATCACGCA
AACTATGTTT
TGACACCGAGCCATAGCCGTGATTGTGCGTCACATTGGGCGATAATGAAC
GCTAAATGAC
CAACTCCCATCCGTAGGAGCCCCTTAGGGCGTGCCAATAGTTTCACGCGC
TTAATGCGAA
GTGCTCGGAACGGACAACTGTGGTCGTTTGGCACCGGGAAAGTGGTACTA
GACCGAGAGT
TTCGCATTTGTATGGCAGGACGTTCTGGGAGCTTCGCGTCTCAAGCTTTT
TCGGGCGCGA
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AATGCAGACCAGACCAGAACAAAACAACTGACAAGAAGGCGTTTAATTTA
ATATGTTGTT
CACTCGCGCCTGGGCTGTTGTTATTCGGCTAGATACATACGTGTTTGTGC
GTATGTAGTT
ATATCATATATAAGTATATTAGGATGAGGCGGTGAAAGAGATTTTTTTT
TTTTCGCTTAA
TTTATTCTTTTCTCTATCTTTTTTCCTACATCTTGTTCAAAAGAGTAGC
AAAAACAACAA

TCAATACAATAAAATA

>B:255683-256328, Chr 2 from 255683-256328, between
YBROO9C and YBRO10W
ATTTTACTATATTATATTTGTTGCTTGTTTTTGTTTGTTGCTTTAGTAC
TATAGAGTACA
ATAATGCGACGGAAACCATCATATAGAAAAAATATCTCGGTATTTATAG
GAAAAAGAATT
AGACCTTTTCCACAACCAATTTATCCATCAAATTGGTCTTTACCCAATG
AATGGGGAAGG
GGGGGTGGCAATTTACCACCGTATTCGCGGGCATTTGCTAAAGTAAACA
ACTTCGGTTTT
TACCACTAACCATTATGGGGAGAAGCGCTCGGAACAGTTTTACTATGTG
AAGATGCGAAG
TTTTCAGAACGCGGTTTCCAAATTCGGCGGGGAGATACAAAAAAGATTT
TTGCTCTCGTT
CTCACATTTTCGCATTGTCCCATACATTATCGTTCTCACAATTTCTCAC
ATTTCCTTGCT
CTGCACCTTTGCGATCCTGGCCGTAATATCTCTCCTTGACTTTTAGCGT
GGAAGATAACG
AAATGCCCGGGCGATTTTTCTTTTTGGTACCCTCCACGGCTCCTTGTTG
AAATACATATA
TAAAAGACTGTGTATTCTTCGGGATACATCTCTTTCCTCAACCTTTTAT
ATTCTTTCTTT
CTAGTTAATAAGAAAAACATCTAACATAAATATATAAACGCAAACA

A-GLAM has a number of useful command line options that
can be adjusted to improve ab initio motif finding; in this
example we have restricted the search to motifs no larger
than 20 bp.

$aglam -b 20 -1 02.fa

A-GLAM: Anchored Gapless Local Alignment of

Multiple
Sequences Compiled on Jun 2 2006
Runl... 11724 iterations
Run 2... 10879 iterations
Run 3... 10878 iterations
Run 4... 10336 iterations
Run 5... 10181 iterations
Run 6... 10637 iterations
Run 7... 10116 iterations
Run 8... 11534 iterations

Run 9... 10097 iterations
Run 10... 10239 iterations
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The sequence file was[ 02.fa]

Reading the file took[ 0] secs
Sequences in file[ 4]

Maximum possible alignment width[ 1292]
Score[ 243.4] bits

Motif Width[ 20]

Runs [ 10]

Best possible alignment:

>B:235796-236494, Chr 2 from 235796-236494, between
YBLOO3C and YBLOO2W

365 AGGCGAAGCGGTGGGCACAG 346 — (21.29360)
(2.820982e-08)

394 GGGAGAAATTTTGAGAACAC 375 — (13.97930)
(5.205043e-04)

309 ATGCGAATTTCAGAGAACAC 290 — (11.12770)
(5.771870e-03)

314 TTGAGAAATAATGGGAACAC 333 + (9.034960)
(2.714569e-02)

>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W

423 GTGCGAAGCTATTGGAATGG 442 + (18.55810)
(2.256236e-06)

278 GCGCGAAAAAGTGAGAACAG 297 + (13.90430)
(6.495526e-04)

418 AGGCGAAAATTTTGGAACAG 399 — (12.51460)
(2.007017e-03)

262 CCGCGAAAAAATGAGAACGA 243 — (9.499530)
(2.299132e-02)

>N:576052-576727, Chr 14 from 576052-576727,
between YNLO31C and YNLO30W

294 ATGCGAAGTGCTCGGAACGG 313 + (21.65330)
(1.526033e-08)

367 ATGCGAAACTCTCGGTCTAG 348 — (11.95760)
(2.781407e-03)

399 ACGCGAAGCTCCCAGAACGT 380 — (11.25120)
(5.253971e-03)

288 GCGTGARACTATTGGCACGC 269 — (8.853600)
(3.961768e-02)

>B:255683-256328, Chr 2 from 255683-256328, between
YBRO09C and YBRO10W

258 GGGAGAAGCGCTCGGAACAG 277 + (22.13350)
(6.281785e-09)

293 ATGCGAAGTTTTCAGAACGC 312 + (11.81510)
(3.041439e-03)

409 GTGAGAAATTGTGAGAACGA 390 — (8.852760)
(3.780865e-02)

375 ATGCGAAAATGTGAGAACGA 356 — (8.564750)
(4.774790e-02)
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! 16 sequences in alignment

! Residue abundances:Pseudocounts
!'A=0.312544:0.468816C=0.187456:0.281184
1'G=0.187456:0.281184T=0.312544:0.468816

! Total Time to find best alignment[ 15.87] secs
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Chapter 2

Structure-Based Ab Initio Prediction of Transcription
Factor-Binding Sites

L. Angela Liu and Joel S. Bader

Abstract

We present an all-atom molecular modeling method that can predict the binding specificity of a
transcription factor based on its 3D structure, with no further information required. We use molecular
dynamics and free energy calculations to compute the relative binding free energies for a transcription
factor with multiple possible DNA sequences. These sequences are then used to construct a position
weight matrix to represent the transcription factor—binding sites. Free energy differences are calculated
by morphing one base pair into another using a multi-copy representation in which multiple base pairs
are superimposed at a single DNA position. Water-mediated hydrogen bonds between transcription
factor side chains and DNA bases are known to contribute to binding specificity for certain transcrip-
tion factors. To account for this important effect, the simulation protocol includes an explicit
molecular water solvent and counter-ions. For computational efficiency, we use a standard additive
approximation for the contribution of each DNA base pair to the total binding free energy. The
additive approximation is not strictly necessary, and more detailed computations could be used to
investigate non-additive effects.

Key words: Transcription factor-binding sites, molecular dynamics, free energy, position weight
matrix (PWM), multi-copy, thermodynamic integration, protein-DNA binding.

1. Introduction

Transcription factors are DNA-binding proteins that control gene
expression (1). They often recognize short DNA sequences (about
six to eight base pairs long, roughly the number of base pairs
exposed on the single face of a DNA major groove) that can be
degenerate. Traditionally, binding sites have been obtained using
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experimental methods, including SELEX (2), ChIP-chip (3), pro-
tein-binding microarrays (4), etc. These methods are often labor-
intensive and expensive.

The binding sites of a transcription factor are intrinsically
determined by the 3D structures of the protein and DNA and
their structural complementarities. Binding sites of a transcription
factor may also depend on its participation in a multi-protein
complex. It is therefore desirable to predict these binding sites
based on the 3D structures of transcription factors. This ab initio
approach uses all-atom molecular simulation and remains a chal-
lenging problem. Several previous attempts (5-7) are limited to
implicit solvent, enthalpic calculations of the free energy and fro-
zen macromolecular backbones, all of which could lead to a bias in
the binding site prediction.

In this chapter, we present an improved and, in principle, exact
method (at least to the level of accuracy of molecular force fields)
that can predict the transcription factor-binding sites using their
structural information. There is no other required information,
except for a well-chosen atomic force field for the representation of
the protein—DNA complex.

The theoretical basis for structure-based binding site pre-
dictions for transcription factors is the binding free energy of
the protein—-DNA complex, calculated as the difference in free
energy between the solvated complex and the solvated indivi-
dual protein and DNA components. A transcription factor
could possibly bind to multiple different DNA sequences
with comparable binding affinity. This is because both DNA
and protein are highly flexible molecules. Once a DNA base
pair is changed to a different base pair and its prior favorable
contacts with the protein are disrupted, protein and DNA can
relax and change their geometries to achieve alternative favor-
able binding conformation. Typically, a specific DNA sequence
and a non-specific DNA sequence to the same transcription
factor differ only in binding energy on the magnitude of
10 kcal/mol. This is roughly equivalent to the energy of
breaking two to five hydrogen bonds, as hydrogen bonds
formed between oxygen and nitrogen atoms are typically
2-5 kcal/mol.

The relative binding free energy of a transcription factor with
two different DNA sequences can be obtained using the following
thermodynamic cycle:

DNA(aq)+protein(aq) — protein — DNA complex (aq) AG
| AGpna 1 AGeomp
DNA'(aq)+protein(aq) — protein — DNA’ complex (aq) AG’
AAG = AG' — AG = AGeomp — AGoa, 0
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where AAG s the relative binding free energy of the protein with
DNA and DNA’. The two horizontal reactions represent the
association of the protein with two different DNA sequences.
These binding free energies can be obtained from experimental
measurement. The two vertical reactions represent mutations of
changing the DNA sequence in the DNA duplex (A Gpna) and the
protein—-DNA complex (AGeomp). In computation, it is the two
vertical or “mutational” reactions that are calculated. There are
two common methods for the calculation of such “mutational”
free energies: free energy perturbation and thermodynamic inte-
gration. From our experience, we found that the latter method,
thermodynamic integration, is easy to implement and provides
more opportunities for extension such as free energy decomposi-
tion analyses. In this chapter, we use this method exclusively.

A prevalent representation of the transcription factor-binding
site is a position weight matrix (PWM), which can be converted
into a sequence logo for graphical representation. In order for the
PWM representation to be valid, each base pair must contribute
independently or additively to the total binding free energy, com-
monly called the “additive approximation”. In transcription
factor — DNA complexes that have relatively small deformations
in the DNA structure, this assumption has been observed to be a
fairly good simplification (6). In this chapter, we will also use this
additive approximation and point out ways to assess the non-
additivity in Note 1.

At each base pair position along the DNA, there are four
possible Watson-Crick base pairs. Equation [1] can be used to
calculate the relative binding free energies among these four
possible base pairs, which will result in a four-level energy
diagram. The base pair with the lowest energy leads to the
strongest binding, and is normally the base that appears in the
experimental consensus binding sequence. These relative ener-
gies can be converted into probabilities using the Boltzmann
factor, as in

exp[—B(E; — Ep)]
> exp[-p(E — E)|’

7€{A,C,G,T}

Pr(bp = o, € {A,C,G,T}) = 2]

where the four possible base pairs are labeled as A, C, G, or T; oo and
y represent possible base pair identities; f is the inverse tempera-
ture (i.e., 1/kgT, kg is the Boltzmann constant and 7 is the
temperature); E, and Ey represent the free energy of the base
pair o and the free energy of a reference base pair. Then (E, — Ep)
corresponds to the AAG of Eq. [1] for changing the reference
base pair into base pair «. For convenience, we choose the base pair
leading to the lowest free energy (thus the strongest binder) as the
reference point.
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These probabilities can then be converted into a sequence logo
(8) using the following formula,

IC(ly=2+ > Pr(a,1)log, Pr(x, ), 3]
x€{A,C,G,T}

where IC(/) represents the information content (in bits) at base
pair position J; Pr(a,/) represents the probability (from Eq. [2]) of
base pair o at position /. In the sequence logo, the letters A, C, G,
and T (representing the corresponding base pair) are stacked on
top of each other in the order of descending probability at each
base pair position. The relative height of each base pair at a position
is proportional to their corresponding probabilities. The maxi-
mum height of information content at each position is 2 bits,
representing 100% conservation at the position; the minimum
height is 0, representing equal probabilities for all four possible
base pairs.

Taking the vertical reaction AGgomp as an example, the free
energy simulation and analysis can be done as follows. We will use a
single base pair change as an example, using the above-mentioned
additive approximation. First, a protein—-DNA complex structure is
made. Then a base pair at a specific position is changed to another
possible base pair. These two structures represent the reactant and
the product of the reaction. Our job is to calculate the free energy
change associated with the reaction. Because free energy is a state
function, we can connect the reactant and the product using an
arbitrary reaction path, and integrate the energy gradient along the
path to obtain the total free energy change. This approach is called
thermodynamic integration. The formal derivation of this method
can be found in Leach’s introductory modeling book (9), as well as
most of the theoretical background for this chapter. More
advanced treatments are also available (10). Here we list the equa-
tions that are pertinent to the discussion. The energy function of
the system is

H == H() + (1 - /I)Hrcac + /alroda [4]

where His the total Hamiltonian of the system that contains all the
energetic terms; Hy is the energy terms for the environmental
atoms, comprising all those other than the reactant and product;
H,,c and H,,.q represent the energy terms associated with atoms
in the reactant and the product, respectively; and A represents the
reaction coordinate (aka coupling parameter). Here the reactant
refers to the original base pair; the product refers to the final base
pair; and the environment refers to the atoms of the DNA back-
bone, other DNA base pairs, protein, and the solvent. From this
equation we can see that the Hamiltonian becomes that of the
reactant system when 4 is 0, and becomes that of the product
system when 4 is 1. At intermediate / values, the Hamiltonian
corresponds to an artificial system that contains both the reactant
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atoms and the product atoms. The reactant and the product,
however, do not have any interaction terms, allowing them to
occupy the same space.

Based on the linear coupling scheme of Eq. [4], the free
energy change for changing the base pair is

1 1
,/OH
AG_/dﬂ<m>;&_/d)~<Hprod_Hreac>lv [5]
0 0

where the angular brackets “( ),” represent an ensemble average at
a particular value of 4. In practice, the free energy simulation is
done using traditional molecular dynamics methods, except that
the energy function is now evaluated using Eq. [4]. After every
1 ps or so, the simulation trajectory will be saved. When the
simulation is done, the saved trajectory will be analyzed using
Eq. [5] to obtain the ensemble average of the Hamiltonian gra-
dient. Typically, a numerical integration scheme is used to com-
pute the free energy change for the reaction, such as the
trapezoidal rule.

2. Materials

We list here the required computational resources for carrying out
the computations discussed in the next section. The computa-
tional cost is listed in Note 2.

The majority of the calculations are done using a molecular
modeling package called CHarmMm (http://www.charmm.org)
that requires a license. The version for wide distribution as of
Jan. 2009 is ¢35bl. We have carried out all calculations using
version ¢32bl. CHARMM requires FORTRAN9O compiler. On a
Linux computer with Intel processors, the GNU FORTRAN compi-
ler suffices. On Apple PowerPC computers with IBM processors,
the IBM ForTraN compiler is required. The benchmarks for these
two architectures lead to similar running time for identical mole-
cular test systems in serial mode, where the Intel processor is
3.0 GHz and the IBM processor is 2.2 GHz. CHARMM requires a
moderate amount of memory at about 250 MB on the above two
architectures for a system with about 25,000 atoms. The CHARMM
executable is also available at public supercomputer sites, such as
BigBen at the Pittsburgh Supercomputing Center (PSC), which
has a parallel version of CHarRMM installed (proof of license is
required for usage). Benchmarks for additional systems are avail-
able from CHARMM’s website, which lists a wide range of supported
architectures and compilers.
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We chose CHARMM because we found it the easiest for imple-
menting the calculations we desired (se¢ Note 3). The CHARMM27
atomic force field has been well tested to be accurate for the
description of proteins and nucleic acids. In tests on BigBen at
PSC, we have found a drop-off in performance for running
CHARMM on more than 16 compute nodes (32 CPUs) in parallel.
This drop-off may be system-specific or even due to inexperience
on our part. We did not investigate this issue because paralleliza-
tion of the code is not particularly important for our calculations.
Calculations may be trivially parallelized by simulating each
nucleotide on a separate node (see Note 4).

3. Methods

3.1. Simulation
Protocols for Native
DNA Duplex or Native
Protein-DNA Complex

3.1.1. Preparation of the
Complete Structure File

The starting point of the simulation is the 3D structure of the
protein—DNA complex of interest. The structure can be obtained
from X-ray crystallography, NMR determination, or homology
modeling. We outline the protocol in Fig. 2.1 and explain the
steps below. The same protocols are carried out for the protein—
DNA complex as well as the DNA duplex in the complex. This is
necessary according to the thermodynamic cycle in Eq. [1].

CHARMM incorporates PDB (11) structural files to initiate the
molecular modeling and simulation. The starting structure’s
PDB file must be edited to follow CHARMM’s naming conven-
tion. This may be done manually. One can also write a computer
program to do these modifications once they become familiar
with the required changes for amino acids and nucleotides. If the
starting structure is from crystallography, missing side chains will
be added by CuarmM. If the structure file is obtained from NMR
determination, the hydrogen atoms need to be removed first,
and CHarMM’s HeuiLD module is used to add hydrogen atoms
according to its own naming convention. Any water molecules
that are resolved in the original structures are also removed.

A common practice for the assignment of charge state of
titratable amino acid residues is to assign a + 1 charge for all
basic residues including lysine and arginine, assign a — 1 charge to
all acidic residues including glutamate and aspartate, and finally
assign a +1 charge to histidine residues that are exposed at the
protein surface. These assignments are appropriate for near-
neutral pH values. If histidine is buried in the protein core, then
more advanced studies are required to assign its proper protona-
tion state. For the transcription factors we have simulated to date,
all histidine residues are exposed at the surface.



3.1.2. Introduction of
Explicit Water Molecules
and Preparation of
Minimized Structure in
Water Box
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PDB structure file of
DNA duplex or
protein-DNA complex

J\i add missing atoms

complete
structure file

Q add water box

structure in
water box

ﬂ minimize

minimized structure
in water box

[ | add counter-ions

neutral structure
in water box

heat to room T;
equilibrate for 1 ns

equilibrated structure
in water box at 300 K, 1 atm

equilibrate for 0.5 ns
using cutoff electrostatics

| final native structure |

Fig. 2.1. Simulation protocol for generating a fully equilibrated native protein—DNA
complex or DNA duplex structure in explicit solvent.

The ends of the protein contain a positively charged N-termi-
nus and a negatively charged C-terminus. For the DNA section of
the structure file, the 5" end phosphate groups of both strands are
removed. Other possible end-cappings are also supported in
CHARMM.

Once the initial PDB file is edited to conform to CHARMM’S
convention and missing atoms are added, we will have a dry
protein—-DNA complex or DNA duplex with no solvent atoms.

Since we consider explicitly the role of water in the binding of
protein and DNA, we now add water molecules to the dry complex
structure (see Note 5) to form a solvated system in a periodic
boundary condition. Because the water model TIP3P was used
during the development of the current CHarRMM force field
CHARMM27, we recommend its usage over other water models.
Once the water molecules are added, a series of minimizations
are required to allow the water molecules to relax around the
macromolecules. The recommended minimization algorithms
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3.1.3. Introduction of
Counter-lons

3.1.4. Heating and
Equilibration of the
Structure

are Steepest Descent at the initial stage of the minimizations, and
then Adopted Basis Newton-Raphson method for more refined
minimizations. We use 1,000 steps of the former and 3,000 steps
of the latter. The energy of the system should be decreasing
steadily and reach stability. However, we do not advise running
long minimizations to achieve convergence (to reach absolute zero
K in temperature), as all our molecular dynamic simulation and
free energy calculations need to be carried out at room
temperature.

After the system in the water box is minimized, we use the CHARMM
script file written by Rick Venable (available from CHARMM Dis-
cussion Forum Script Archive at http://www.charmm.org/
ubbthreads /ubbthreads.php?Cat=0) to replace an appropriate
number of water molecules with counter-ions. For the protein—
DNA complexes we have studied, typically about ten sodium ions
are required to neutralize the system. For a 10-base pair DNA
duplex, 18 sodium ions are required. In Venable’s script, the same
number of water molecules as the desired counter-ions are selected
at random and replaced by sodium ions. Then the system is mini-
mized for 50 steps by Steepest Descent and by Adopted Basis
Newton-Raphson. One hundred different sets of water selections
are done. The lowest energy configuration among them is chosen
to proceed to the next step.

Since minimization freezes many degrees of freedom of the sys-
tem, the solvent box is roughly about 50 K in temperature. Now
we heat the system to room temperature and equilibrate it for
1.5 ns. We ramp up the temperature linearly from 50 to 300 K
over 50 ps at a heating speed of 5 K per ps. During equilibration,
constant temperature (300 K) and constant pressure (1 atm) are
maintained using CHARMM’s CPT keyword. This corresponds to
the NPT ensemble. A time step of 1 fs is used. SHAKE is used to
constrain all the bonds with hydrogen atoms to be at the equili-
brium values. All other degrees of freedom are allowed.

The Brock module for free energy analysis has a limitation in
that it requires the electrostatic interactions to be evaluated using
non-Ewald methods, i.e., spherical cutoffs. Long, computationally
expensive cutofts are required to obtain an adequate representa-
tion of long-range electrostatic interactions. To reach a compro-
mise between accuracy and computational saving, we carry out
initial equilibration of the system for 1 ns using Ewald summation
method Particle Mesh Ewald. Then we switch to spherical cutoff
scheme using a cutoffvalue of 14 A. Further equilibration of 0.5 ns
is run at this condition.

After the 1.5 ns equilibration, the native protein—-DNA com-
plex structure is now considered well equilibrated. We need to
note here that this equilibration time is still far too short for the
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equilibration of the counter-ions, which typically requires much
longer equilibrations on the scale of tens to hundreds of ns. Please
see Note 6 for strategies that avoid long equilibrations for ions.

CHARMM supports dual-topology, which means that in the “muta-
tional” reactions, the reactant and the product chemical groups
co-exist in the structure. This is also known as “multi-copy”
representation, where multiple functional groups occupy possibly
the same space; their interactions with the rest of the system are
scaled by a coupling parameter, but there are no interactions
among the multiple copies. As we have discussed in the Introduc-
tion, thermodynamic integration is an established method for
calculating the free energy change associated with changing one
functional group in the multi-copy into another. In the simula-
tions that are discussed in this chapter, we consider only the co-
existence of two possible base pairs at any base pair position.
Figure 2.2 illustrates the construction of such structures. We call
these 2-base multi-copy base pairs, or in short multi-copy base
pairs. Details on how to create structures with multi-copy bases
and how to enable CHARMM to evaluate their force and energy
functions are in Notes 7 and 8.

The Brock module in CHARMM allows straightforward force and
energy evaluation of multi-copies. Here we use a simple example to
illustrate its usage. Imagine a protein—-DNA complex in which one
base pair is a multi-copy base. Using Eq. [4], the total Hamilto-
nian that contains the contributions from the environment, the
reactant, and the product will be further separated into six con-
tributions, as in Eq. [6] in Brock.
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Fig. 2.2. Schematic diagram of multi-copy base pair. Single base pair change from A
(gray, bottom base pain to C (black, top base pair) is used as an example. The multi-copy
base pair is referred to as A/C. The left strand is treated as the leading strand. The bases
within each physical base pair interact normally, as evidenced by the hydrogen bonds
(dotted lines) between complementary bases. The gray (reactant) atoms do not interact
with the black (product) atoms.
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3.2.3. Simulation of Multi-
copy Structures

Env  Reac Prod
Env 1 1-24 A
Reac 1-7 0
Prod A

This matrix is used for force and energy evaluation. The labels
“Env”, “Reac”, and “Prod” represent the environmental atoms,
the atoms in the reactant, and the atoms in the product, respec-
tively. The matrix is symmetric so the lower halfis not shown. Each
element in the matrix represents the interaction term between the
atoms in the corresponding row and the atoms in the correspond-
ing column. For example, the term Hj in Eq. [4]is 1 in the matrix
and represents the interactions between atoms in the environment.
Note that the interactions that involve reactant atoms are scaled by
the (1-1) coupling parameter, whereas those involving product
atoms are scaled by A, just like in Eq. [4]. Finally, there are no
interactions between the atoms of the reactant and the atoms of
the product, hence the zero in the matrix.

Brock uses a different matrix to calculate the Hamiltonian
gradient in Eq. [5] for the free energy analysis. The matrix is listed
in Eq. [7].

Env Reac Prod

Env 0 -1 1

7]
Reac -1 0
Prod 1

Note that at all values of 4, the analysis matrix is of the same
form.

Because of the flexibility of BLock, multiple multi-copy bases
can be studied at the same time, and the dynamics and analysis
matrices need to be adjusted correspondingly. The environmental
atoms can also be further partitioned so that their contributions to
the free energy can be calculated separately.

For each multi-copy structure we create in Section 3.2.1, the
following simulation protocol is used.

A short minimization is needed in order to resolve the poten-
tial bad contacts caused by the introduction of the multi-copy base
pair. We use 100 steps of Steepest Descent and 100 steps of
Adopted Basis Newton-Raphson for this purpose. Then the sys-
tem is heated from 50 to 350 K over a linear ramp for 15 ps at a
speed of 20 K per ps. Then the system is equilibrated at 350 K for
15 ps. After that, a linear ramp is used to cool the system down to
300 K at a speed of =10 K per ps for 5 ps. The system is then
equilibrated at 300 K for 65 ps. This heat-cool-cycle is similar to
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the annealing process, except that we only heat the system up to
50 K above room temperature. The current force field is still
expected to be reasonable in describing the system. The purpose
of this heat-cool-cycle is to help the new multi-copy structure
overcome the energy barriers that could trap the structure in the
conformation favorable only to the native structure (see Note 9).
Finally, a 100 ps production run is done (se¢ Note 10), during
which the system configuration is saved at every 0.5 ps. A time step
of 1 fs is used. SHAKE is again applied to constrain bonds invol-
ving hydrogen atoms.

During the simulation, we use IMAGE to describe the cubic-
shaped periodic boundary condition. The BLock matrix of Eq. [6]
is used for force and energy evaluation. We assume that the density
of the system is well-equilibrated over 1.5 ns simulation (Section
3.1.4). So the box size is fixed here using the final box size from
the 1.5 ns equilibration, and the NVT ensemble is run. After the
production run is finished, we examine all the saved configurations
to calculate the free energy change using the BLock analysis matrix
of Eq. [7].

The saved configurations in the trajectory might be correlated
among adjacent frames. To correct for this effect, we use Eq. [8]
in estimating the sampling error.

E:G[G) 1+T/2: |JEN: (P —%) 1+¢
N)1-¢ — N(N-1)1-¢
where E is the estimated error of the free energy change AG, x
represents AG value at each frame, ¢ is the correlation between
adjacent frames, fis the frame number from 1 to N (total number
of frames), and o is the standard deviation of AG for all frames.

Systematic and statistical errors that could exist in the simulation
and free energy calculations are summarized in Notes 9 and 10.

1/2
;8]

According to Eq. [1], two free energy calculations (one for the
complex and one for the DNA duplex) are required to obtain the
relative binding free energy for a single base pair change as in
AAG = AGeomp— AGpna- At each base pair position, we evaluate
the free energy changes for three multi-copy structures for both
the DNA duplex and the protein-DNA complex. We carry out
three AAG calculations as a tournament, which contains three
AGpna and three AGeomp calculations. Two competitions for
multi-copy A/T and C/G are carried out first to obtain AAG,
t and AAGc /. The two winners then compete in the second
round, e.g., AAGs ¢ when A and C are the two winners. These
three relative free energies are sufficient to describe the energy
diagram of all four possible base pairs. These energies are then

converted into probability and sequence logo representation using
Eqgs. [2] and [3].



34 Liu and Bader

4. Notes

’ Q 1. Correlation between adjacent base pairs. The “additive

approximation” in Section 1 might not always be valid
depending on the transcription factor. We can estimate the
correlation between adjacent base pairs by the following test.
Itis analogous to comparing the energy change caused by two
separate single mutations of the DNA and the energy change
caused by a double mutation of the DNA. For example, one
might be interested in the correlation between positions five
and six. The user will first do two separate free energy evalua-
tions for position five and position six. Only one base pair is
changed at any time. Then, the user calculates the free energy
change caused by changing positions five and six simulta-
neously. Taking multi-copy base pair A/C as an example,
we use A5C and A6C to describe the base pair change at
these two positions. The non-additivity can be estimated by
AAGasc a6c — (AAGasc + AAGagc). These calculations can
help quantify the non-additivity as well as the correlation
between adjacent base pairs.

. Total computational cost and monetary equivalent. The com-

putational cost for obtaining the binding sites as a PWM for a
transcription factor is about 400 CPU-days on a single Intel
3.0 GHz processor. The calculations in Sections 3.1 and 3.2
are both included. We also list in Table 2.1 the computa-
tional cost on the supercomputer BigBen at PSC. The total
computational cost for the prediction of one transcription
factor is about 1.2 CPU-years, or $1,200 if we assume one
CPU-year is about $1,000.

. Force field and multi-copy implementations. We compare four

popular molecular modeling packages here, CHARMM, AMBER,
Namp, and GROMACS, and explain the reasons based on which
we choose CHARMM in our simulations (Section 2).

CHARMM was the first package to be developed and has the
most capabilities and functions. CHARMM and AMBER are writ-
ten in FORTRAN, and the GROMACS is written in C. NAMD is
developed using similar philosophy of CHARMM, but is written
in C++/C. All four packages can carry out traditional mole-
cular dynamics simulations, and lead to similar results when
the same force field is used.

Many packages allow the user to choose a specific force
field. The CuarMM27 force field is currently recommended
for use in CHARMM. It can accurately characterize proteins and
nucleic acids, and has overcome problems associated with the
older versions. AMBER parm99 and parmO03 are force fields
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Computational cost for the prediction of transcription factor-binding sites
on supercomputer BigBen at Pittsburgh Supercomputing Center

Counter CPU hour CPU days

Native structures

Protein-DNA complex, 1.5 ns equilibration 1,200 50

DNA duplex, 1.5 ns equilibration 1,200 50

Multi-copy structures

Number of free energy evaluations per AG 1 160

Number of AG's per AAG 2

Number of AAG's per base pair in tournament 3

Number of base pair positions 8

Number of free energy evaluations per protein 48 7,680 320

Total cost per protein

10,080 420

recommended for use in AMBER. However, the A-DNA form
tends to be over-stabilized in these force fields (13, 14).
Gromacs uses OPLS force field for all-atom simulations that
leads to good results for proteins but is less characterized for
nucleic acids. Namp allows the user to choose whether they
want to use CHARMM, AMBER, or GROMACS force fields.

All these force fields use pairwise additive energy functions,
typically including the bond length, bond angle, dihedral
angle, van der Waals, and electrostatic interaction terms.
Two library files are used for the implementation of the
force field. The topology library file contains the list of these
terms, whereas the parameter library file contains the force
constants and other relevant constants.

The most important factor that leads us to choose CHARMM
is its “dual-topology” implementation. AMBER and GROMACS
support only “single-topology”, which means thatifa “muta-
tional” free energy perturbation is to be carried out, the two
end points (reactant and product) must be similar in structure
and number of atoms. In practice, they typically differ in only
a small functional group (15). This poses serious challenges
for the perturbations of two groups of varying number of
atoms. For instance, one might be interested in finding the
free energy change associated with morphing an A="T base
pair into a T = A base pair along a linear coupling path. For
this mutation, the total numbers of atoms in the two end
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states are the same. However, because the atom types and
parameters are very different for bases adenine and thymine,
this morphing and free energy calculation was difficult for us
to implement in AMBER and, presumably, Gromacs. One
possible solution is to introduce a common intermediate
topology, calculate two free energy changes of the two end
states morphing into the intermediate, and then calculate the
sum of the two to obtain the total free energy change. As we
have already mentioned in Note 9, free energy calculations
have a large innate systematic error, and we decided against
using two “single-topology” simulations to mimic a single
“dual-topology” calculation.

In contrast, both CHARMM and Namp support “dual-
topology”. However, NaMD only supports free energy per-
turbation for “mutational” reactions, which is generally less
accurate than thermodynamic integration. This is because in
the free energy perturbation formula (9, 10), the free energy
change is obtained as the ensemble average of the exponen-
tial of the energy function of the system. If we assume these
energy function evaluations are Gaussian-distributed, which
is often true, then only one of the tails of the Gaussian curve
will contribute to the final free energy change, since all the
other energy values nearly contribute nothing to the ensem-
ble average of the exponentials. However, given the same
trajectory, if we use thermodynamic integration, then all
these configurations will contribute to the final free energy
change. A second factor is that, to our knowledge, Namp
only permits single mutations. In CHARMM, the BLock mod-
ule allows us to carry out simulations of multiple mutations
at the same time, which could lead to significant computa-
tional saving.

Parallelization. CHARMM, as pointed out in Section 2, does
not scale very well in parallel. However, inefficient paralleliza-
tion is at best a minor concern for our study, because the
calculations we have described in Section 3.2 are trivially
parallelizable by running a free energy calculation at each
base pair on a different node. For a binding site of length
eight, 48 free energy evaluations are required to obtain the
relative binding free energies at all eight base pair positions
(see Table 2.1 second column). The only exception to the
trivial parallelization is the initial long equilibration (for
1.5 ns, Section 3.1.4) for generating configurations of the
native protein—-DNA complex and DNA duplex. If parallel
runs are to be planned, we advise a short benchmark to be
done first to establish the optimal number of processors for
each system of different size. For the protein-DNA com-
plexes we have studied (about 25,000 atoms in total), we



Binding Site Prediction 37

found that the optimal number of processors was eight on the
supercomputer BigBen at PSC, and the 1.5 ns equilibrations
typically take about 6 days.

. Addition of water box as solvent. In Section 3.1.2, water box is
added to the dry protein-DNA complex or DNA duplex. A
CHARMM script file written by Lennart Nilsson can be used to
add a small box of water with a maximal number of water
molecules of 9,999. A modified script file written
by Davit Hakobyan can be used to add larger boxes of
water exceeding 10,000 water molecules. Both script files
assume periodic boundary condition. These script files can
be downloaded from the “Script Archive” on the “CHARMM
Discussion Forum” (http://www.charmm.org/ubbthreads/
ubbthreads.php?Cat=0). The TIP3P water model is used in
these scripts.

For periodic boundary conditions, there are a variety of
available box shapes to choose when adding water molecules
using the above-mentioned scripts. Since we rely on the
Brock module, which in turn requires the IMAGE module of
CHARMM, to carry out free energy simulation and analysis, we
use the cubic box shape, which is supported by IMaGe. It is
also possible to use other more spherical-like box shapes, such
as truncated octahedron, but it requires the creation of the
corresponding IMAGE file by the user.

. Other treatments of counter-ions. Two simple strategies are
listed here, which avoid running long equilibrations for the
ions in the system (Section 3.1.4). First, the system can be
studied without counter-ions as a non-neutral system. This
means that Section 3.1.3 can be bypassed. The Ewald summa-
tion and spherical cutoft methods for electrostatic interactions
are still valid in non-neutral systems. However, for certain
molecular systems, salt concentration is an important factor
for structural stability. In this case, both positive and negative
ions should be added in order to obtain the desired salt con-
centration. Second, one can use a simple uniform neutralizing
background to achieve neutral system. This is typically achieved
by setting the k= 0 term in the Ewald sum to zero (this term is
automatically zero for a charge-neutral system). Simulations
with a uniform neutralizing background may require modifica-
tions to be made to the standard CHARMM source code.

. Generation of structures with multi-copy bases. There are two
types of files that must be created for the study of multi-copy
structures in Section 3.2: PDB and an extended topology
library file. We explain the method for creating PDB files with
multi-copy bases in this section. The extended topology file is
explained in Note 8.
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First of all, a library of all 2-base multi-copy PDB files is
made. There are several ways of doing this. We use the standard
base geometry in Ref. (12) to create PDB files for each base.
These base geometries do not contain the backbone geometry
or hydrogen atoms. One can then use CHARMM to read this
PDB file and use “IC BUILD” and HBUILD routines to create a
complete PDB file for each DNA nucleotide. Note that
CHARMM’s default nucleotides are for RNA, so patches need
to be applied to convert them into DNA nucleotides. After the
set of PDB files are prepared for the four DNA nucleotides, the
atomic entries for the base atoms are concatenated to form the
2-base multi-copy PDB files. We use the following shorthand
for multi-copy bases, e.g., A/C represents the multi-copy base
of changing adenine to cytosine in the leading (1st) strand of
the DNA (C/Ais not needed as it is simply the reverse reaction
of A/C). There are six files needed for describing all possible 2-
base multi-copies that constitute the library: A/C,A/G, A/T,
C/G,C/T,and G/T.

Second, a fully equilibrated native DNA duplex or protein—
DNA complex structure is modified to create all possible
multi-copy structures for each base pair position. For a
10-base pair DNA, there are 60 multi-copy structures. We
developed a C++ program to replace the original base pair by
one multi-copy base pair from the above-mentioned library.
Three rotations are required to align the N-glycosidic bond,
then align the base atoms to preserve Watson-Crick base-
pairing arrangement, and finally align the original plane of
the base with the new multi-copy plane. For the complemen-
tary strand, the complementary multi-copy base is used so
that proper base pairing is achieved.

. Topology files for multi-copy bases. The multi-copy bases of the

previous section are not yet integrated in the CHARMM27
topology files (“top_all27_prot_na.rtf”). The user needs to
create topology entries for the six multi-copy bases (Note 7)
and append them to the original library file. The interested
users can consult CHARMM27’s topology library file,
“top_all27_prot_na.rtf”, which is distributed with the pack-
age, to learn the proper naming conventions CHARMM uses for
protein and nucleic acids.

The lines starting with “ATOM?” in the PDB file are
used by CHARMM to define the 3D coordinate of each
atom. However, PDB files do not specify which atom is
bonded with which one. The topology library file contains
the information of the bonding arrangement and connec-
tivity of each monomer unit (amino acids for proteins and
nucleotides for DNAs), so that all the bonds, angles, and
dihedral angles can be included in the evaluations of the
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force and energy. Therefore, it is of paramount importance
that the topology of the molecular system is properly
built.

For each nucleotide in the topology library file,
“top_all27_prot_na.rtf”, there are the following sections of
information: the atom types, the atomic charges, the bonds
that connect the atoms, the hydrogen bond donor and
acceptor atoms, and the internal coordinates required for
adding missing hydrogen atoms and side chains for “IC
BUILD” and HsuiLp. Since all the entries of the nucleic
acid nucleotides share identical backbone section (phos-
phate and sugar group), only the entries corresponding to
the base atoms need to be combined to form the multi-copy
base section. All the sections that correspond to base atoms
need to be combined. The hydrogen bond sections are
necessary if the HeonDp module of CHARMM is to be used
for hydrogen bond analysis.

An important addition to the multi-copy topology library
file is the non-bonded exclusion section between atoms of the
two bases in the multi-copy. For example, if A /C multi-copy
is made, the atom section of the topology file must specify
that the base atoms of the cytosine do not have any non-
bonded (including electrostatic and van der Waals) interac-
tions with the adenine base atoms.

As bond angles and dihedral angles are not explicitly listed
in the topology files, the keyword “SETUP” is needed for
generating them in CHARMM. This step will add one unwanted
bond angle and four unwanted dihedral angles between the
two bases in the multi-copy. So the keyword “DISCON-
NECT” should be used for these two bases, which will
remove the unwanted angles from future force and energy
evaluation. Using this method, the user will also need to
append a few fictitious force field parameters to the standard
parameter file (“par_all27_prot_na.prm”) for the unwanted
angles. The force constant values do not matter, as they are
removed from the force and energy evaluation by the “DIS-
CONNECT” step.

. Systematic error. As we can see from the Introduction, the
relative binding free energy of a protein with two difter-
ent DNA sequences is usually small. This creates a pro-
blem if the systematic and statistical errors of the
calculation are larger than the relative energy difference
we want to calculate. Statistical errors can be overcome
by running longer simulations to collect independent
data values for analysis. Systematic error is still a hard
problem and there is no sound solution for its complete
removal. Systematic error in molecular dynamics
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10.

simulation and free energy calculation is typically a result
of poor sampling of the entire conformational space. It
may also be due to biases in the molecular force field.
Sufficient sampling of alternative favorable conforma-
tions of the protein and DNA is necessary. However,
because these macromolecular systems contain tens of
thousands of atoms and huge number of degrees of
freedom, the entire conformational space is combinato-
rially large. This rugged energy surface often presents
energy barriers between adjacent local minima, possibly
limiting the sampling space. The heat-cool-cycle step we
use in Section 3.2.3 is an attempt to overcome local
energy barriers.

For protein—-DNA complexes, a problem that could
cause insufficient sampling is the long-lived hydrogen
bonds between protein and DNA bases. The hydrogen
bonds formed with the DNA backbone generally do not
contribute to the binding specificity, unless the backbone
geometry is highly dependent on the base identity. If
there is a particular hydrogen bond that exists between a
protein residue and a DNA base pair throughout the
simulation of the native complex, one must closely exam-
ine what is the fate of this hydrogen bond in the multi-
copy complex structures. Since the multi-copy base pair is
larger and needs more space, a prior stable hydrogen
bond might become unstable due to strong van der
Waals repulsion, and that part of the configurational
space will no longer be sampled, leading to a bias in the
calculations. This can also be true is there is a persistent
and stable water-mediated hydrogen bond between the
protein and the DNA. For such cases, other force field
choices might need to be explored, such as the “soft core
potential” that tones down van der Waals repulsion to
allow bulky groups in a crowded space.

Statistical error. The duration of the production run dur-
ing which trajectory frames are saved for future free
energy analysis is important. Good statistics can in gen-
erally be achieved by running a sufficiently long produc-
tion. However, the ensemble average we want to calculate
Eq. [5] converges at about 100 ps (Section 3.2.3),
indicating that longer productions than that will lead to
the same free energy results. This production duration
might be different for different systems. Therefore, it is
important that the users examine the convergence of the
ensemble average to reach a good compromise of conver-
gence and statistical significance.
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Chapter 3

Inferring Protein—Protein Interactions from Multiple Protein
Domain Combinations

Simon P. Kanaan, Chengbang Huang, Stefan Wuchty, Danny Z. Chen,
and Jesus A. lzaguirre

Abstract

The ever accumulating wealth of knowledge about protein interactions and the domain architecture
of involved proteins in different organisms offers ways to understand the intricate interplay between
interactome and proteome. Ultimately, the combination of these sources of information will allow the
prediction of interactions among proteins where only domain composition is known. Based on the
currently available protein—protein interaction and domain data of Saccharomyces cerevisine and
Drosophila melanogaster we introduce a novel method, Maximum Specificity Set Cover (MSSC), to
predict potential protein—protein interactions. Utilizing interactions and domain architectures of
domains as training sets, this algorithm employs a set cover approach to partition domain pairs,
which allows the explanation of the underlying protein interaction to the largest degree of specificity.
While MSSC in its basic version only considers domain pairs as the driving force between interactions,
we also modified the algorithm to account for combinations of more than two domains that govern a
protein—protein interaction. This approach allows us to predict the previously unknown protein—
protein interactions in S. cerevisine and D. melanogaster, with a degree of sensitivity and specificity
that clearly outscores other approaches. As a proof of concept we also observe high levels of co-
expression and decreasing GO distances between interacting proteins. Although our results are very
encouraging, we observe that the quality of predictions significantly depends on the quality of
interactions, which were utilized as the training set of the algorithm. The algorithm is part of a
Web portal available at http://ppi.cse.nd.edu.

Key words: Domain combinations, set cover, protein interaction prediction.

1. Introduction

Contemporary proteome research attempts to elucidate the struc-
ture, interactions, and functions of the proteins that constitute
cells and organisms. Large-scale methods determine the molecular
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interactions and unravel the complex web of protein—protein inter-
actions in single-cellular organisms such as Helicobacter pylori (1)
and  Saccharomyces cevevisine (2-7). Most recently, attention
focused on the first protein—protein interaction maps of complex
multicellular organisms such as Caenorbabditis elegans (8, 9) and
Drosophila melanggaster (10).

Such experimental results provide the basis for theoretical con-
siderations that focus on the prediction of potential protein—protein
interactions. Pioneering methods drew on the observation that
interacting protein domains tend to combine into a fusion protein
(11, 12) in higher organisms. Another method utilizes the observa-
tion that proteins having matching phylogenetic profiles strongly
tend to be functionally linked (13, 12). The domain architecture of
interacting proteins offers a framework (14) for assessing the poten-
tial presence of a particular interaction by clustering protein
domains, depending on sequence and connectivity similarities.
Another approach estimates the maximum likelihood of domain
interaction (15, 16). Further ideas include overrepresented domain
signatures (17), graph-theoretical methods (18), and other prob-
abilistic approaches (19). Support vector machines also were
employed to predict potential interactions by modeling network
motifs that exhibit higher reliability of the underlying protein—
protein interactions (20).

2. Materials

2.1. Protein—Protein
Interactions

The first comprehensive, albeit weakly overlapping protein—
protein interaction maps of S. cerevisine have been provided
with the yeast-two-hybrid method (2, 4). Currently, there exists
a variety of yeast-specific protein—protein interaction databases.
Most of them, such as MINT (21), MIPS (22), and BIND (23),
collect experimentally determined protein—protein interactions.
These databases lack an assessment of the data’s quality.
In contrast, the GRID database, a compilation of BIND, MIPS,
and other data sets, as well as the DIP database (24), provides sets
of manually curated protein—protein interactions in S. cerevisiae.
The majority of DIP entries are obtained from combined, non-
overlapping data mostly obtained by systematic two-hybrid
analyses. Here, we used a compilation of yeast interactions that
have been evaluated by a logistic regression method, allowing
the assessment of 47,773 interactions among 4,627 proteins
(25). Similarly, experimentally determined interactions in
D. melanogaster were evaluated, allowing for 20,047 interactions
among 6,996 proteins (10).
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The advent of fully sequenced genomes of various organisms has
facilitated the investigation of proteomes. The Integr8 database
(http://www.ebi.ac.uk/integr8) has been set up to provide
comprehensive statistical and comparative analyses of complete
proteomes of fully sequenced organisms. The initial version of
the application contains data for the genomes and proteomes of
182 sequenced organisms (including 19 archae, 150 bacteria, and
13 eukaryotes) and proteome analysis derived through the inte-
gration of UniProt (26), InterPro (27), CluSTr (28), GO/GOA
(29), EMSD, Genome Reviews, and IPI (30). In particular, we
utilized IPI (International Protein Index) files of Yeast, which
provide full annotations of each protein with its corresponding
domains. In particular, we elucidated the domain architecture of
the corresponding proteins by focusing on PFAM domain infor-
mation as of the corresponding IPI files (31).

Genes with similar expression profiles are likely to encode inter-
acting proteins (32, 33). We assess MSSC’s ability to predict pairs
of potentially interacting yeast proteins (Section 3.5), by utilizing
the gene expression data of S. cerevisae and D. melanggaster. By
downloading 1,051 expression profiles of Yeast and 157 of fly
from the Stanford Microarray Database (SMD, http://genome-
wwwh5.stanford.edu), we calculated the Pearsons correlation coef-
ficient 7p for each pair of interacting proteins. Provided there exist
data for both proteins over m time points, the Pearson correlation
coefficient is calculated by

1N~ %
_ WZZ =1%)i— Y
rp = . ) [1]
O'ZO']
where x and y are the sample means, and ¢; and oj are the standard
deviations of zand j.

For any two interacting proteins, we calculate an annotation-based
distance between proteins, taking into account all Gene Ontology
terms (29) (GO, http://www.geneontology.org) that are com-
mon to the pair and terms which are specific to each protein. Any
two proteins can have several shared GO terms (common terms)
and a variable number of terms specific for each protein (specific
terms). This distance between interacting proteins z and jis based
on the Czekanowski-Dice formula (34):

| Tco(4)416o(7)|

di; = . : . —.
Y | Teo(2) U Teo ()] + | Teo (2) N Teo (/)|

2]

In this formula, Tgo are the sets of the proteins with associated
GO terms while | Tgo| stands for their number of elements, and A
is the symmetrical difference between two sets. This distance
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formula emphasizes the importance of the shared GO terms by
giving more weight to similarities than to differences. Conse-
quently, for two genes that do not share any GO terms the distance
value is 1, while for two proteins sharing exactly the same set of GO
terms the distance value is 0.

3. Methods

3.1. General Outline of
the Protein Gover
Problem

3.2. Domain
Combinations

Investigations of the three-dimensional protein structure suggest
that the fundamental unit of protein structure is a domain. Inde-
pendent of neighboring sequences, this region of a polypeptide
chain folds into a distinct structure and mediates the proteins’
biological functionality. A domain can also be defined as an
amino acid sequence motif with an associated function. Largely,
proteins contain only one domain (35) while the majority of
sequences from multicellular eukaryotes appear as multidomain
proteins of up to 130 domains (36).

We identify proteins in the proteome that give rise to protein
interactions through the selection of domain combinations that
explain the known protein interaction network. In the simplest
case, we use only a selected set of domain pairs in a training set of
protein interactions R = (Pg, Er), where Py is the set of proteins,
and Eg defines a set of edges between proteins if and only if they
interact with each other. The protein interactions R induce a set
of domain pairs Dy = {(4;, 4;) } where the domains 4;and 4;belong
to the proteins involved in the interactions Egr. Schematically,
we show these relations in Fig. 3.1a. The protein—protein cover
problem thus arising is to choose an “optimal” subset of domain
pairs Dgr, D C Dg, such that D covers all the interactions in R
(Section 3.5).

We conceptualize domains as the driving force behind the forma-
tion of protein interactions. Since the vast majority of proteins in
single cellular organisms carry a single domain, domain pairs are
sufficient to explain the presence of a protein interaction. How-
ever, in more complex organisms the number of multidomain
proteins increases. Indicating that protein interactions might be
also facilitated by multidomain interactions, we also allow Dy to
include combinations of interacting domains that are potentially
involved in a given protein interaction. As such, we handle domain
combinations in our framework as new “domains.” Assuming that
P;has domains d;, d,, and d3, we label d;d>, d;ds, d> d3,and djdds
as “new” domains (Fig. 3.1b). Depending on the complexity of
the proteins, we might only want to look at combinations up to a
certain number of domains.
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Fig. 3.1. Combinatorics of protein interactions. (a) In the simplest case, we consider
protein domain pairs as the driving force behind the formation of protein interactions.
(b) In a more sophisticated way, we also consider combination of domain pairs that
potentially can give rise to observed protein interactions.

The set of domain pairs D obtained from a training set of interac-
tions among proteins for which the domain architectures are
known can be utilized in different ways to predict protein—protein
interactions. The association method (17) assigns an interaction
probability (4,,, 4,,) to each domain pair (4,,, 4,) in Dg (such that
DR = D) by

P(d;, dy) = 25 3]

iy By N, 3

where I;;is the number of interacting protein pairs that contain (4;,
d;),and Nj;is the total number of protein pairs that contain (4;, 4;).
The interaction probability for each putative interaction between
pairs of proteins is calculated using

P(P;, Py) =1 — (1 = P(dy, dy))- (4]
(d i) (P, )
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3.3.2. Maximum Likelihood
Estimation (MLE)

3.4. Transformation of
Protein Network to Set
Gover Problem

The maximum likelihood estimation method (15) assumes that
two proteins interact if at least one pair of domains of the two
proteins interacts. Under the above assumption, any protein pair
(P;, P)) is the same as the one used in our protein—protein cover
problem, Eq. [4]. So, the maximum likelihood is

L=T[PO;=1)%(1 - P(O;=1)" % 5]
where

0. — {1 if (P;, P;) € Eg,
Y710 otherwise.

(6]

The likelihood Lis a function of 0 (P(d;, 4,), f,, f,), where P(d,,
d;) represents the probability that domains 4; and 4; interact
while f, and f, indicate fixed rates of false positive and false
negative interactions in the underlying network. Note that in
both the Association Method (AM) and the Maximum- Likelihood-
Estimation (MLE), domain pairs were utilized to predict potential
protein interactions.

Suppose X is a finite set and F is a family of subsets of X that can
cover X,i.e.,X C Jgor S. The set-cover problem is to find a subset
C of F to cover X,

xclJs [7]

SeC

where C is also required to satisfy certain conditions according to
different specific problems. For example, the minimum exact set-
cover problem requires that Xgc¢|S| is minimized, allowing fora C
with minimum cardinality |C| (37, 38). The minimum set-cover
problem is NP-complete. The set-cover problem can be general-
ized for our purposes by putting X into a bigger set 1 (Fig. 3.2a).
Suppose Tis a finite set, X C 7 and F is a family of subsets of 1
that can cover X, i.e.,X C (Jgcp S. Thus, the generalized set-cover
problem is to find a subset C of F to cover X,

XC US, 8]

SeC

where C is again constrained to certain problem-specific conditions.
This theoretical framework allows us to conceive protein interac-
tions as a set-cover problem. As already mentioned, protein—protein
interactions can be modeled as a graph Pg = (P, E), where Pis the set
of proteins and Eis the set of edges between two proteins if and only
if they interact with each other. A set-cover problem is set up from
the protein—protein interaction network Pg by taking

Y = {all protein pairs (P;, P;)|P;, P; € Pr},
X = {protein pairs (P;, P;)|(P;, P;) € Er},
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b

Fig. 3.2. Schematic representations of set cover problems. (a) Here, we show the
generalized set cover problem: Xis a subset of ¥, and F = {S;,1 < i < t} isafamily of
subsets of Y. (b) MSSC chooses a set S with the minimum % The greedy algorithm for
MSSC allows overlapping of subset inside X. The overlap actually increases the inter-
action probability for a protein pair.

and F to be the set of all domain pairs (4,,, 4,,), where (4,,, 4,,) is
contained by at least one element of X. A domain pair (4,,, 4,,) is
considered as a subset of 1. Specifically, it a protein pair (P;, P;) (an
elementin X') contains (4,,, 4,), then (P;, P;) belongs to the subset
(A, 4,,).

Suppose we find a subset C of F to cover every element (P;, P;)
in X where an element in C corresponds to a domain pair (4, 4,,).
If (4,,, d,,) covers (P;, P;), then the two proteins P; and P; contain
d,, and 4, respectively. Since (4,,, 4,,) can be used to cover the
interaction between P;and P}, we also have a set of domain pairs to
cover the protein network Pg. Suppose there is a set D of domain
pairs to cover the network Pg. For every element (P;, P)) in X,
there is a domain pair (d,,, d,,) from D to cover the interaction
between P;and P;. Since (4,,, 4,,) can be viewed as an element in F,
the collection C ofall the domain pairs from Dis a subset of F, and
C covers X.

In this transformation, the set of protein—protein interactions
Pr corresponds to the set X that needs to be covered, and a
domain pair corresponds to an element in F (a subset of 7).

Once a set cover that fulfills these criteria is found, sets of
protein domain interactions allow a description and explanation
of the underlying protein interactions to the best extent. Such pairs
of proteins can be scanned if an interaction among their domains is
actually present in the set cover and therefore is a potential candi-
date for a putative protein interaction.

Many ways exist that allow choices of domain pairs which cover the
protein—protein interactions in a training set. AM simply uses all
the possible domain pairs to explain the protein—protein
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interaction network, i.e., it uses F to cover X, so the resulting
specificity is very low (15). Sometimes, we are only interested in
using a subset of domain pairs to cover the protein—protein inter-
action network, and hopefully the subset is chosen so that both
specificity and sensitivity are maximized. So, the MSSC problem is
to find a subset C of F to cover X such that

m(C) =2 _|$ - X| 9]
seC
is minimized.

MSSC allows the subset Cto cover the overlap with X, but the
overlap with 7 — X (outside X ) is minimized. MSSC chooses a
cover in this way to maximize the specificity because the false
positives appear only in ¥ — X. In developing a greedy algorithm
for MSSC (Fig. 3.3) at each step, it chooses a subset whose ratio
between the part outside X and the part inside
U, (]S — X]|)/(ISN UlJ), is minimized (Fig. 3.2b).

The number of iterations of the while loop is bounded by
min(|X|, |F|) where each single iteration takes (O|X||F|) time; so
the time complexity of this greedy algorithm is
O(|X||F) min(|X],|F|)). If we apply appropriate data structures,
it can be realized in O(log|F|Xscp|S|) time. In particular, we
maintain a bipartite graph between the elements in 7 and the
elements in F. If the former is contained by the latter, we add an

GREEDY_MSSC(Y, X, F)

U+ X

E—F

C+ 10

while U # ()

do pick S € £ with the minimum
(a tie is broken by |SN UJ)

U<+ U —{S}
E+ E—{S}
C+ CuU{S}

|S—x|
[snUl

return C

Fig. 3.3. Pseudocode of the greedy algorithm for solving the Maximum Specificity
Set Cover (MSSC) problem. In this representation, we describe the basic steps of the
greedy algorithm, which allows us to find a set cover with maximum specificity. In
particular, the routine GREEDY_MSSC (Y, X, F) receives X, the set of actual interactions, Y
the set of non existing interactions, and F, a family of possible families of protein domain
interactions that cover X. In every step of the algorithm a family Sfrom Eis chosen, which
minimizes the ratio between the cover between Sand X and the intersection between S
and the already covered set of interactions U. This optimization procedure allows us to
obtain an optimal collection of families of domain interactions that allow the largest
possible cover of interactions.
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edge between them, so there are Xgcp|S| edges. Furthermore, we

store all elements in Finto a heap ordered by }g;{}(‘l When asubset §

is selected, it is excluded from our problem. We update the bipar-
tite graph and the heap accordingly. The bipartite graph will not be
updated more than X gcp|S| times totally. For a single S, the updat-
ing of the heap takes |S|log]|F|. Therefore, the total time is
O(Zser|S| + Zscr|S|log | F|), which is O(log |F|Zscr|S|). If |F| is
very large, we use an array of | X |2 instead of a heap to store F,
resulting in a time which is O(| X|* 4+ Zsc£|S]).

The greedy algorithm only allows an approximation. Its solu-
tion has the following relationship with the optimal solution of
MSSC

Theorem Suppose C, is the approximation of MSSC found by
the above greedy algorithm, and C, is an optimal subset for MSSC.
Let b = maxgep |S|. If m(C,) = 0, then m(C,) = 0; otherwise, we
have

< [In(k—1)+1]. [10]

The proof for this theorem can be found in (39). Since % is the
maximum number of elements a subset can have, it corresponds to
the maximum number of protein pairs that contain a domain pair
in the protein network. Therefore, this theorem indicates that the
difference between the approximated and the exact solution
remains small, if the maximal number of protein interactions cov-
ered by a domain pair is kept small too (i.e., we want to get rid of
“promiscuous” domain pairs).

The MSSC procedure, which also accounts for multidomain
interactions, allows us to predict putative protein—protein interac-
tions in S. cerevisine and D. melanogaster. We observe that our
algorithm clearly outscores previous methods such as the Association
method (AM) and Maximum Likelihood Estimation (MLE) in
terms of sensitivity and specificity. We also observe that our algo-
rithm increases the quality of predictions by using a carefully selected
training set of protein interactions. As such we observe that a curated
set of yeast and fly protein interactions, which aims to evaluate each
interaction with a confidence score, can increase the quality of pre-
dictions drastically. Indeed, we observe that our predictions correlate
significantly with elevated levels of co-expression and low GO dis-
tances, a strong indication for the quality of our predictions.

Since it was used in the original paper (15), we use the combined
data set of Uetz et al. (4) and Ito et al. (2), which allows a direct
performance comparison of AM, MLE, MSC, MSSC, and MSSC,.
We choose MSSC,, the MSSC version that accounts for up to two
domain combinations, since we did not find a significant
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improvement when going to greater than two domain combina-
tions with the current data. However, this might not be the case
for more complex data sets.

We use all interactions in the aforementioned dataset as train-
ing and test sets. As for information about the domain architecture
of'yeast proteins, we utilized PEAM domain data (31) as laid down
in the Integr8 database. This induces an overfitting, but results in
disjoint training and testing sets are qualitatively similar. We mea-
sure the prediction accuracy by specificity, the ratio of the number
of matched interactions between the predicted interaction set, 1,

and the testing set, 7, over the total number of predicted interac-

tions, SP = % As quality parameters, we define sensitivity as the

ratio of the number of matched interactions between the predicted

set, I, and the testing set, T, over the total number of observed

interactions, SN = %

In Fig. 3.4, we observe that MSSC — the implementation of
our algorithm that accounts for domain pairs only — outperforms
AM in terms of both specificity and sensitivity drastically. While
MSSC in general allows for results that are very similar to MLE, we
observe that MSSC generates significantly more results in areas of
high specificity.

Apart from MSSC, we also tried the minimum set cover
(MSCQC), utilizing domain pairs. MSC uses different criteria to
choose the subset C from F so that C has minimum cardinality
|C| (38, 39). Compared to MSSC, MSC chooses fewer domain

1007 =F
80
60

40

sensitivity

20

o

40 60 100
specificity

Fig. 3.4. Performance comparison of different algorithms. We compare the perfor-
mance of the Association Method (AM) (77), Maximum Likelihood Estimation (MLE) (75),
Minimum Set Cover (MSC) (38), Maximum Specificity Set cover (MSSC), and its version
that uses pairwise domain combinations (MSSC,). As training and testing set we utilize a
combined set of interactions retrieved from yeast-two-hybrid compilations of Uetz et al.
(4) and Ito et al. (2). We observe that MLE and MSSC share the same prediction
characteristics while MSSC, allows the best predictions. On the other hand, MSSC and
MSSC, clearly outscore AM and MSC.
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pairs to cover the protein—protein interaction network, but actu-
ally covers more false positives, as indicated by the comparably low
values of sensitivity and specificity. In Fig. 3.4, we also observe
that an implementation of MSSC that accounts for interactions
between up to two domain combinations (MSSC,) slightly out-
performs MSSC. Note that the solution for MSSC is a subset of
MSSC,; since both use the same algorithm, while MSSC, gives the
algorithm more choices in order to obtain more accurate
predictions.

Currently available sets of protein—protein interactions contain
startling rates of false positives (~50%) and false negatives
(~90%) (40). However, there exist a variety of ways to circumvent
this problem. One of the most reliable ways to assess the quality of
interactions is to integrate different sources interactions to increase
their reliability. In particular, training a logistic regression model
with parameters such as co-expression, topological and protein
interaction related data allows a prediction of an interaction’s
reliability quantified by a confidence value (25). Here, we utilize
such evaluated interaction data sets of the organisms S. cerevisine
(25) and D. melanogaster (10), combining 4,627 yeast proteins
and 47,783 interactions and 6,996 fly protein, which are involved
in 20,047 interactions. All of these interactions are evaluated by a
confidence value.

In general, proteomes are composed by a majority of proteins
that carry one domain. However, in more complex organisms,
proteins carry more than one domain, suggesting that domain
combinations are putatively important for protein interactions.
In Fig. 3.5, we present the sensitivity/specificity curves we
obtained by applying MSSC and MSSC, to the curated sets of
yeast and fly protein interactions. In particular, we utilized sets of
increasing reliability (as measured by the threshold of the confi-
dence value ¢) of yeast (25) and fly (10), allowing us to obtain
sensitivity /sensitivity curves of predictions by considering these
sets as trainings as well as testing set. In general, we observe that
both yeast and fly protein interaction sets of increasing reliability
outscore the corresponding curves obtained with sets of lower
quality. In particular, our results suggest that predicting interac-
tions with MSSC,; slightly outperforms the results obtained with
MSSC, indicating the role of protein domain combinations for the
underlying interactome. In the following, we predict protein inter-
actions in yeast and fly by the application of the MSSC, algorithm.

To evaluate the quality of our predictions, we analyze the
distributions of co-expression correlations. In Fig. 3.6, we
observe that training sets containing high confidence interactions
indeed allow a significant shift of distributions of co-expression
correlation coefficients. In both cases, yeast and fly predictions
show significant different means of their distributions when
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Fig. 3.5. Sensitivity/specificity curves of predictions in yeast and fly protein
interactions sets. We predicted interactions by feeding the MSSC and MSSC, algo-
rithms with protein interactions sets of increasing reliability (c). We obtained sensitivity/
specificity curves by considering these sets as trainings as well as testing sets. (a) In
general, we observe that both (a) yeast and (b) fly protein interaction sets of increasing
reliability allow us to obtain sensitivity and specificity values that outscore the corre-
sponding curves obtained with sets of lower quality. In particular, our results suggest that
predicting interactions with MSSC, slightly outscores the results obtained with MSSC,
indicating the dominating role of domain combinations for the underlying interactome.

compared to a background distribution (which is defined as the
full set of uncurated yeast (25) and fly interactions (10)). Signifi-
cant Student’s #-test scores support our conclusion that high-
quality interactions allow a higher degree of quality predictions.
As a different measure for the existence of a predicted interac-
tion, we utilize the empirical observation that interacting proteins
show a significantly elevated tendency to share similar functions.
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Fig. 3.6. Co-expression and GO distance analysis of the predictions in yeast and fly.
Compared to a comprehensive set of co-expression correlations values of protein links
(background), we observe that in (a) yeast and (b) fly the quality of the underlying protein
interaction network increases the quality of our predictions. The shift toward higher
coexpression correlation values is further supported by significant Student’'s t-test
scores, when testing the curves of the predictions to a background distribution being
the full set of uncurated yeast and fly interactions. [c > 0.5:2.61 (P=9.1 x 10’3), c>
0.7:41.66(P <1079, ¢c>0.9:36.26 (P<10 "% andfly[c > 0.5:4.20 (P=2.6 x
107%),¢>0.7:10.53 (P< 1079, ¢ > 0.9: 8.81 (P < 10 '%). As a different indicator
of the existence of a potential interaction we show the GO distance for yeast ((a), inset)
and fly ((b), inset). Similarly to the distributions of co-expression coefficients we find that
an increasing quality of the training sets allows qualitatively better predictions as exemplified
by the shifts toward lower values. These results are further supported by significant Student’s
ttest scores when compared to the background distributions of yeast [¢ > 0.5 : 3.85
(P=12 x 107%,¢>0.7:310 (P=2.0 x 107%,¢>0.9:594 (P=29 x 10~°) and
fly [(;*0)2 0.5:1.02(P=0.31),c>07:288 (P=4.0 x 1073, ¢>09:6.27 (P=59 x
107 ).

In turn, a measure that represents functional similarity might be
used as an indicator of an interaction’s existence. Utilizing GO
annotations (29), we calculate a GO distance (see Materials) for
every predicted interaction. If two proteins do not share any GO
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terms, the distance value is 1, while the opposite holds for proteins
sharing exactly the same set of GO terms. Indeed, in the insets of
Fig. 3.6, we observe that both yeast and fly predictions, that were
obtained with high-quality training sets show a stronger functional
similarity. Again, in both cases distributions have significantly
different means as exemplified by significant Student’s z-test
scores, indicating that high-quality interactions indeed influence
the quality of the predictions.

4. Conclusions

In this paper, we present a novel algorithm that allows the selection
of a set of domain pairs, which covers the experimental observa-
tions and maximizes the specificity in the training set of protein
interactions. Compared to previous methods, MSSC is able to
improve the specificity for a given sensitivity. As a refinement of
this algorithm we also introduced the opportunity to model and
predict interactions as the consequence of interactions among
many combinations of domains. In particular, we observe that
the relatively small amount of multidomain proteins in yeast com-
pared to fly already have a significant impact on the interactions of
the underlying interactome. As such, we observe that we obtain
better results by applying MSSC,, our algorithmic extension that
accounts for domain combinations.

5. Notes

1. Dependence from training data. Our results also suggest that
the quality of predicted protein—protein interactions strongly
depends on the utilized training sets. Although we showed
that our algorithm by design reduces the amount of false
positives, it allows only high-quality interactions if the train-
ing set reflects an elevated degree of quality.

The dependence on high-quality interaction sets also poses a
sometimes intricate problem. The increase in quality always is
accompanied by a decrease of protein interactions and there-
fore limits the number of interacting proteins involved. Thus,
the number of protein domains that allow these interactions is
diminished as well. Since protein interactions and domains are
the major data sources of our algorithm, the choice of an
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appropriate training set that balances quality and a reasonable
number of domains, that still allows predictions on a large
scale is a crucial step.

2. Outlook. The proposed algorithm can be used to predict
protein interactions for every organism for which data of
protein interactions and the corresponding protein domain
architectures are available. Encouraged by the high quality of
our results, a next step is the prediction of potential interac-
tions between proteins in organisms where high-quality inter-
action data are available to train MSSC,. Furthermore,
proteins that participate in many interactions are preferen-
tially conserved and change their sequence only to a small
extent (41, 42). The observation that high clustering and co-
expressed protein—protein interaction sets show preferential
evolutionary conservation (43, 44), and increased reliability
(18) allows us to not only obtain a high-quality set of inter-
actions potentially serving as the basis for predictions in a
reference organism. In fact, such sets of interactions may
also indicate evolutionary cores that have been conserved
more generally among different organisms. As such they not
only allow the evaluation of protein—protein interactions but
also could serve as a training set for the predictions of protein
interactions in target organisms.
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Chapter 4

Prediction of Protein-Protein Interactions: A Study
of the Go-evolution Model

Itai Sharon, Jason V. Davis, and Golan Yona

Abstract

The concept of molecular co-evolution drew attention in recent years as the basis for several
algorithms for the prediction of protein—protein interactions. While being successful on specific
data, the concept has never been tested on a large set of proteins. In this chapter we analyze the
feasibility of the co-evolution principle for protein—protein interaction prediction through one of its
derivatives, the correlated divergence model. Given two proteins, the model compares the patterns of
divergence of their families and assigns a score based on the correlation between the two. The
working hypothesis of the model postulates that the stronger the correlation the more likely is that
the two proteins interact. Several novel variants of this model are considered, including algorithms
that attempt to identify the subset of the database proteins (the homologs of the query proteins) that
are more likely to interact. We test the models over a large set of protein interactions extracted from
several sources, including BIND, DIP, and HPRD.

Key words: Protein—protein interactions, co-evolution, mirror-tree.

1. Introduction

Protein—protein interactions are at the core of numerous basic
reactions that make up complex biological processes. The detec-
tion of these interactions can help to better understand the mole-
cular machinery of the cell and expose biological processes and
pathways that have not been characterized so far. Existing tech-
nologies enable researchers to detect interactions on a genomic
scale and have triggered studies that explore large networks of
known protein interactions in search of interesting subnetworks,
complexes, and regular patterns (I-4).
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1.1. Prediction
of Protein—Protein
Interactions: Survey

1.1.1. Protein Structure—
Based Approaches

Traditionally, protein—protein interactions have been deduced
via conventional wet-lab experimental methods, such as the yeast
two-hybrid (Y2H) system (5) and mass spectrometry (2). While
these are high-throughput technologies, they tend to be very expen-
sive and time-consuming. Moreover, their error rate is high, espe-
cially with the Y2H method, with many false negatives (due to the
cellular localization of the proteins, post-translational modifications,
misfolding of the recruited proteins, or steric hindrances) and high
percentage of false positives (6). Other experimental techniques
(such as affinity chromatography and co-immunoprecipitation) are
more accurate but are low-throughput methods.

In this view, there is a strong interest in tools that can reliably
predict the existence of protein—protein interactions. This problem
has received a considerable attention in the past several years, and
many methods to predict interactions were developed (see next
section for a survey). Here we focus on the co-evolution model and
test it extensively. As opposed to other methods that look for
recurring patterns in proteins that are known to interact, the co-
evolution model is based on a concrete biological hypothesis,
namely interacting proteins evolve in coordination. The goal of
our computational experiments is to test the validity and extent of
this hypothesis and to determine how successful it is in discerning
interacting from non-interacting proteins.

We start with a review of the computational methods that are
used to predict interactions. We then proceed to discuss the co-
evolution model in detail. To assess co-evolution and predict
protein—protein interactions, we test several variants of the
mirror-tree method and different strategies to identify the subset
of proteins within two given protein families that are more likely
to interact.

The field of protein—protein interaction prediction via computa-
tional methods is relatively new but very active. The methods can
be mainly classified into four different approaches: studies that use
structural information, relational data mining inference, co-evolu-
tion analysis, and hybrid approaches.

Methods using protein tertiary structure have had some success
(7, 8), but are relatively slow. Protein docking methods use known
tertiary structures to predict the most probable binding site
between two structures. As this problem is NP hard, conventional
methods rely on local search heuristics. For example, the method
of Espadaler etal. (9) uses residue patches that characterize protein
interfaces to search for proteins containing similar patches. The
interface patches are determined by analysis of residue contacts
in complexes whose structure is known. Other methods use
known hydrogen bond potentials, charge potentials, and
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interaction site energy minimization techniques. Most of these
approaches, however, do not take into consideration possible
protein deformations that can change the binding properties at
the time of interaction. Methods that do allow such flexible dock-
ing structures are sometimes computationally infeasible (10).
Furthermore, structure-based approaches fail to distinguish
between two proteins that have the biochemical potential of inter-
action, and two proteins that physiologically interact. Lastly, these
methods are limited to proteins of known structures, which
account for less than 5% of all known proteins and 30% of the
known protein families.

Protein threading methods can extend predictions to
sequences of unknown structures. Lu et al. use a multi-threading
approach in their “Multiprospector” algorithm (11). The method
threads sequences in a library of monomer structures that are
known to participate also as part of dimer structures. If two
sequences have significant signal with respect to two chains that
are part of the same complex, the sequences are re-aligned (con-
sidering the other sequence in the template structure), the energy
between the interacting residues is computed, and if the z-score of
the dimer is significant compared to that of the monomers, the
sequences are predicted to interact. One of the main advantages of
the method is that beyond predicting the interaction itself, it also
predicts the interaction site. However, it is limited to solved com-
plexes of interacting proteins, of which only a few are known in the
protein data bank.

These approaches are among the most successful in the field of
computational protein—protein interaction inference. Kini and
Evans’ earlier work showed a correlation between interaction
binding sites and proline residues: these residues are 2.5 times
more likely in these areas (12). Aytuna et al. (13) utilized informa-
tion about protein interfaces and hotspot residues in interacting
pairs (residues that contribute most of the binding energy for the
interaction (14)), for deducing possible interactions in other pairs
that share similarity with the interacting protein interfaces. It has
been suggested that the presence of a few hotspots may be a
characteristic of most interactions (15). Extending this analysis,
Sprinzak and Margalit (16) provided a framework for identifying
protein—protein interactions through the analysis of over-repre-
sented sequence signatures. Utilizing also the information on
known three-dimensional structures of interacting proteins, Inter-
PreTS characterizes possible interaction sites between two pro-
teins (17). Other algorithms attempt to detect protein—protein
interactions through the interactions between domains (18, 19).
In the algorithm described in (20), each protein is represented as a
vector in the domain space. Using a machine learning technique
known as random forests (21), in which many randomly generated
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1.1.3. Co-evolution Analysis

decision trees are combined through majority voting, the authors
classify each pair of proteins as either interacting or non-interacting.
Han et al. (22) propose an algorithm that uses information from
multiple domains to predict interactions.

Other relational methods trace evolutionary events that might
hint at the existence of interaction. Marcotte et al. (23) note the
relation between protein interaction and gene locality through a
technique termed “domain fusion prediction”. Enright et al. pre-
sent a refinement over typical domain fusion prediction methods,
suggesting that interacting proteins can also be the result of a
“composite” protein evolving into “component” proteins (24).

Relational methods have had some success, but mostly for
interactions of similar nature, either with the same signatures or
when there is an evidence of gene fusion/decomposition events in
sequence databases. Clearly, such evolutionary circumstances are
not the case for all protein—protein interactions.

Co-evolution approaches include gene preservation correlation,
phylogenetic tree topology comparison, and correlated mutation
approaches. Gene preservation approaches are very simple: if two
proteins interact to perform a vital biological function, then both
proteins will be passed on during speciation (24). Many interac-
tions are conserved across species, in particular interactions with
functions such as protein translation, ribosomal structure, DNA
binding, and ATP metabolism (25). This approach was used for
the prediction of potential protein—protein interactions in the
POINT database (26). Sun et al. (27) proposed the phyloge-
netic-profile method that is based on the assumption that inter-
acting proteins are inherited together during speciation events due
to strong selective pressure. Thus, these proteins are expected to
have similar phylogenetic profiles composed of those organisms
from a reference set in which their homologs are present. Other
gene preservation approaches consider locality constraints among
protein subdomains: subdomains will tend to have the same rela-
tive position in interacting proteins (28).

Phylogenetic tree topology methods compare homologs of
interacting proteins (i.e., protein families) and their phylogenetic
trees: if the two trees are very similar (termed mirror trees), then it
is assumed the proteins have co-evolved and possibly interact (29,
30). Mirror-tree-based methods gained popularity in recent years.
The reported results seem to be promising, and already led to the
development of tools and web servers (31, 32). However, while
there are several examples of interactions that follow this model, it
is unclear how successful it is in predicting interactions and distin-
guishing correlation due to interaction and co-evolution, from
correlation due to similar evolutionary trees in general. Moreover,
the approach may suffer from several drawbacks. One problem
occurs when the tested families contain proteins from close
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organisms. The distance matrices in that case are expected to
contain many small values, regardless of the mutation rates of the
tested families. When the Pearson correlation (or any other corre-
lation measure) is used in that case, the true signal is likely to be
disturbed by noise or a few outliers, which may produce mean-
ingless results. Another drawback lies in the assumption that all
members of both families interact, which may not be true in the
general case, in particular when considering several paralogs from
the same organism. In addition, the model depends on correct
construction of the phylogenetic tree, which is hard to guarantee.
These issues and others are addressed in this chapter.

A more localized position-specific approach is the correlated
mutations method introduced by Pazos and Valencia (33). This
approach searches for correlated, compensating mutations in spe-
cific positions between two candidate interacting proteins. Their
results presented on structural subdomains seem fairly strong (34).
They later extended this algorithm to detect interacting partners
based on the ratio between intra-protein correlations and inter-
protein correlations (35).

A natural progression over the previous approaches is of hybrid
methods that combine different sources of information. Jansen
et al. (36) propose an integrative approach that uses a Bayesian
network for deciding whether two proteins are interacting,
based on information from several sources including GO (37)
and MIPS (38) databases. Another integrative algorithm that is
based on Support Vector Machines (SVMs) has been proposed
in (39). Information sources for this method include sequence
similarity, homology to other interacting pairs, and relation in
the GO database. The model uses several kernel functions that
are constructed for the different information sources and used
in conjunction with each other, to train a classifier that sepa-
rates interacting from non-interacting proteins.

2. Methods | — The
Basic Model

In this chapter we test the co-evolution model for inferring pro-
tein—protein interactions and present several variants of this
model. Our basic assumption is similar to the co-evolution princi-
ple that was originally introduced in (40). Specifically, two pro-
teins that interact will tend to co-evolve in a coordinated manner,
resulting in a higher evolutionary correlation between their corre-
sponding homologs. The intuition behind this premise is fairly
simple; if one partner in a protein interaction pair mutates, then its
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counterpart will have to adapt in order to preserve the interaction.
Therefore, given two query proteins and their homologs, one can
theoretically predict an interaction if there is an evidence that the
groups co-evolve.

Correlated evolution approaches (such as mirror-tree) offer
several advantages over other methods. First, there are several
algorithms that can approximate a correlated evolution score and
also run in polynomial time. Second, the idea of correlated evolu-
tion is a priori and fits in with basic biological principles. Sequence
signatures represent an a posterior approach; consequently, they
can identify only the protein interactions similar to those found in
a training data set. Finally, co-evolution can detect proteins that
physiologically interact.

It is important to note that co-evolution does not necessarily
entail physical interaction. For example, two proteins can be part
of the same complex without interacting directly. However, even
if the proteins do not interact with each other directly, they
might still co-evolve to preserve the structural stability and func-
tionality of the complex. To determine if the proteins actually
interact, it is necessary to inspect the structure of the complex,
which is usually unknown. However, from biological (func-
tional) standpoint, proteins that are part of the same complex
are often considered as interacting proteins. Here too, we do not
make a distinction.

Any co-evolution method for protein—protein interaction pre-
diction relies on the knowledge of phylogenetic trees. However, in
practice, the exact evolutionary path of a specific protein is
unknown; therefore, one must infer a protein’s phylogeny via
careful examination of the differences between protein homologs
found in different organisms. An ideal solution to this problem
would be to reconstruct phylogenetic trees for each interacting
protein partner and its homologs (herein referred to as a protein
family) and then to compare their similarities. Unfortunately,
phylogenetic tree reconstruction is provably an NP-complete pro-
blem, and existing measures for assessing co-evolution (as the
Pearson correlation coefticient) attempt to avoid this problem by
considering all pairs of protein homologs. However, this clearly
affects the sensitivity of the method. That is one of the issues we
address in this study.

Mirror-tree co-evolution-based algorithms are usually com-
posed of the following three steps: Given two query proteins (1)
identify their homologs (family members) in a common set of n
organisms, (ii) construct distance matrices for the two families, and
(iii) measure the similarity between the two matrices using the
Pearson correlation. We start by presenting the general case (of
multiple paralogs in each organism) and then discuss methods to
reduce this set to a single protein from each organism, and elim-
inate non-interacting pairs.
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We are given two query proteins qy, q» and a multiple alignment of
each with other, related, database sequences. The groups of data-
base sequences are referred to as protein families F; and Fy. The
families consist of n; (ny) sequences originated from Ny (Nj)
organisms (note that usually N; < n;). Denote the organism sets
by O; and O,, respectively. We hypothesize that the query
sequences interact and therefore there is an evidence of co-evolution
among the two protein families.

The first step in the co-evolution algorithm is to select the
subset of organisms that are common to both protein families,
Ocommon = O1 N Oy. In each organism 0€O ommon, there exist at
least one protein in Fy and one protein in F,. Each such pair is a
candidate interacting pair. Initially, we assume that of all possible
candidate pairs in an organism, at least one interacts in a similar
way as the two query proteins; therefore, the core set of interacting
proteins consists of at least O¢ommon iNteracting pairs. Assuming
that all proteins from a family are involved in the hypothesized
interaction, the maximal size of the set may be larger. Both these
assumptions are revised later. With a little abuse of notation we
revise our definitions of Fy, n; and N; to the groups of proteins that
originate from the (smaller) organism set Ocommon- Denote N =
|Ocommon|- The set of proteins from family F; that is found in
organism o is denoted by F; ,,.

The assumption of co-evolution for interacting proteins holds
only for the interaction site; however, this information is clearly
an unknown parameter when the two query proteins are only
hypothesized to interact. Even for known interactions, the
binding box is usually unknown (Note 1). However, one
would expect interacting proteins to have similar divergence
patterns overall. Although not necessarily constrained in a cor-
related manner outside of the binding box, it is assumed that
both interacting proteins have similar rates of mutation. This is
not true for different protein families in general, as different
families have different molecular clocks, some exhibiting faster
mutation rates than others, where rapidly changing protein
might undergo significant changes in conformation. However,
since the general structure of the protein has to be preserved to
maintain a structurally and functionally active interaction site, it
is less likely that the two interacting proteins will evolve in
significantly different paces.

Our first measure attempts to detect signals of correlated
divergence and is similar to the mirror-tree approach (29). To
estimate the divergence rate, we compute the total number of
amino acid mutations between all protein pairs within a given
family. If two protein families co-evolve, these mutation levels
should correlate, indicating similar protein clocks. For each
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2.1.3. Data preparation

organism pair 01, 03 € Ocommon Within a protein family F;, we define
the mutation level D,(0;, 02) to be the average number of muta-
tions over all protein pairs in the cross product of F; o; and F; o

Zpl €F; 01, p2€F; d(Pl 7172)
| Fi o1 || Fi o] ’

D;(o1,02) =

where d(p;, p») is the average number of mutations between
proteins p; and p,, normalized per 100 residues to prevent biases
due to different lengths. The mutations are computed from
sequence alignments. The conservation level of p; and p, is defined
as 100 — d(pl,pz).

This measure was chosen as a starting point due to its simpli-
city and relative ease of implementation and computational speed.
Moreover, this measure qualifies as a distance metric, as it is sym-
metric, non-negative, and satisfies the triangle inequality. This
property is necessary to accurately estimate the distances between
entities that are evolutionarily more distant. It is also a necessary
condition for constructing a phylogenetic topology.

The correlated divergence is estimated by computing the
Pearson correlation coefficient 7 between the mutation levels of
organism pairs in family 1 and family 2:

. Z,]il ;iiﬂ[Dl(”iv 0j) — 1) (D2 (01, 0) — 113)]
\/Zfil Z}im [D1(0;, 05) — ﬂ1]2\/2i1i1 ijim (D1 (03, 0) — 5]

where p, =2 Zfil Z}iiﬂ Dy(0;,0;)/ N(N — 1). The correlation
coefficient is ranging in value from —1 (anti-correlation) to 1
(perfect correlation). Value of 0 indicates no correlation. In prac-
tice, this raw correlation score is not very robust and suffers
from several drawbacks as discussed in Section 2.1.5. An even
more stressing problem is that the method does not scale well, as
the number of pairs grows quadratically with the number of organ-
isms. If the actual subset of organisms with interacting pairs Oieract
is much smaller than the total number of organisms (i.c.,
Ointeract << O common ), then the ratio of interacting pairs to all pairs,

2
‘OL”“‘Z, will be close to zero, making it almost impossible to detect

[1]

| Ocomm()n

correlation signals. This problem will be addressed in Section 3.1.

Naturally, any two sets of homologous proteins over the same set
of organisms have the same true phylogenetic tree structure with
similar distance matrices. To test if the co-evolution signal (as
approximated by the correlated divergence score) is causally
related to protein—protein interaction and not the result of corre-
lation due to similar evolutionary trees in general, we compute the
distribution of correlated divergence scores for a set of interacting
proteins and a second set of non-interacting protein pairs and
compare the two distributions. Preparation of these data sets
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should be handled with care, in order to prevent statistical biases.
Here we took special measures to make sure that our data sets of
interacting and non-interacting proteins have similar properties
and are clean from certain statistical biases that may be caused by
erroneous construction.

Interacting proteins: Our data set of interacting proteins was
derived from the Biozon database (41) and processed to eliminate
redundancy and ensure high quality of data. We started with a set
ot'59,624 unique protein—protein interactions that were available
as of October 2004, gathered from BIND (42), DIP (43), and
HPRD. Many interactions were associated with multiple evidence
codes (e.g., yeast two-hybrid and immunoprecipitation). After
excluding interactions that were determined exclusively with the
yeast two-hybrid test, we were left with 13,767 unique interac-
tions that we consider to be of high quality (the break-up by
method is given in Table 4.1). The data set was further pruned
by excluding the following interactions from the initial set:

Table 4.1

Break-up of interactions by evidence codes. First column is
the number of interactions that were verified by each
method. The second is the number of interactions that were
determined only by that method

Method #interactions  #interactions (unique)
Immunoprecipitation 7717 5572
Tandem affinity purification 4108 3375
(tap)
Affinity chromatography 1645 842
X-ray diffraction 688 394
In vitro binding 646 238
Cross linking 363 159
Gel filtration chromatography 351 69
Copurification 327 112
Biochemical 217 95
Competition binding 214 87
In vivo kinase activity 198 176
Immunoblotting 189 51
Biophysical 188 79
Gel retardation assays 144 52

(continued)
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Table 4.1 (continued)

Method #interactions  #interactions (unique)

Alanine scanning 119 44

Native gel electrophoresis 114 78

Other 99 72

Experimental 71 54

Surface plasmon resonance 62 22

Filter overlay assay 58 11

Autoradiography 51 4

Lambda fusion 46 26

Transcription assay 30 21

Monoclonal antibody 22 11
blockade

Phage display 18 5

Transient coexpression 17 9

Fluorescence spectroscopy 9 2

Chemotaxis 8 7

(continued)
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Table 4.1 (continued)

Method #interactions  #interactions (unique)

Immunolocalization 7 0

X-ray scattering 6 0

Isothermal titration 6 0
calorimetry

Mass spectrometry 3 1

Peptide spot assay 3 0

Microtiter plate binding assay 3 0

Photon correlation 3 0
spectroscopy

Ion exchange chromatography 2 0

Sucrose gradient 2 2
sedimentation

Neutron scattering 1 0

e Interactions in which one or both proteins have less than 20
homologs. This is necessary to ensure that enough information is
available for the computation of the correlated divergence score.
We also excluded proteins with more than 700 homologs.

e Interactions between homologous proteins (including self-
interaction), since these bias the correlated divergence score.

e Interactions involving proteins whose homologs from other
organisms are identical. In this case the correlated divergence
score cannot be computed.

e Interactions between proteins whose families have less than
eight organisms in common.

Finally, to minimize redundancy we picked only one pair from
all pairs of homologous interactions. After applying these filtering
criteria we were left with a set of 3192 interactions.

Non-interacting proteins: The construction of a non-
interacting data set is a little more tricky, since no database
of such proteins exists. In fact, even if such database would exist,
it would have represented only a fraction of the space of protein
pairs, which is not necessarily similar to the subspace represented
by the data set of interacting proteins. In such cases it is impossible
to know whether the results obtained are reflective of a true signal
(correlated divergence in our case) or some other property that has
nothing to do with it (e.g., high frequency of outliers or different
number of entries in the distance matrices). Therefore, it is desir-
able to neutralize such irrelevant properties by choosing a data set
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composed of ingredients similar to those of the data set of interact-
ing pairs. In order to achieve this goal we constructed the data set of
non-interacting proteins so that the connectivity of proteins in this
set, namely the number of pairs in which each protein is involved,
will be similar to the connectivity of the interacting data set as much
as possible. Specifically, the pairs were constructed by pairing pro-
teins (from the same organism) that were chosen randomly from the
pool of interacting proteins according to their distribution in this
data set, and after applying the same filtering criteria that were
applied to the interacting set (Note 2). While this does not guar-
antee similar properties at the interaction /protein-pair level, it sig-
nificantly reduces statistical biases that might affect the results. This
has been verified by comparing some key properties of the interact-
ing and non-interacting data sets that can influence the Pearson
correlation, such as the distribution of | O.ommon| and the distribution
of the average number of paralogs for each organism in O.ommon (568
Fig. 4.1). This procedure left us with 3117 pairs of proteins that are
likely to be non-interacting (Note 3).

T T : : : : T T 0.35 T T T T T
interacting —— interacting ——
[ non-interacting ------- T 0.3} non-interacting ------- .
I i 0.25 E
- 18
e 02
[
L 1 >
g 0.15
i i 0.1
L ] 0.05
L L L L L M e 0
5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12
Ocommon size Average number of paralogs per organism
interacting ——
- non-interacting ------- E
0 20 40 60 80 100
ML scores

Fig. 4.1 Comparing statistics over interacting and non-interacting data sets. Size of 0,,mmon in interacting and non-
interacting pairs (/eft), average number of paralogs per organism in families (middle), and distribution of ML-scores
between pairs of organisms in interacting and non-interacting pairs (right). The distributions are almost identical,
indicating that the data sets indeed bear similar statistical characteristics.
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Family construction and multiple alignments: For each pair
the analysis starts by generating multiple sequence alignments. To
generate the alignments we collected aset ofhomologs for each protein
from Biozon (these were generated using BLAST with e-value thresh-
old of 0.01). Multiple sequence alignments were then constructed
using MAFFT (44, 45) version 5 with the default parameters (Note 4).

Our first experiment tests the plain correlated divergence model,
using all organisms in Oommon and all proteins from each organism.
This setup is similar to the one usually used in other mirror-tree
studies (49, 50). Figure 4.2 plots the distribution of correlated
divergence scores for our data sets. Both the density and the cumu-
lative functions are rather close to each other, with the interacting
pairs being assigned a slightly higher correlated divergence scores
than the non-interacting pairs, on average (se¢ Table 4.2). Figure 4.3
displays typical scatterplots of high- and low-scoring pairs. The cor-
relation (or lack thereof) can be easily seen in these examples.

Clearly, the distributions of Fig. 4.2 cannot be used for a
reliable separation of interacting pairs from non-interacting pairs.
In the next sections we discuss some of the model’s drawbacks and
suggest possible solutions.

035 -

03 -
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z 06 B
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02} b
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Fig. 4.2 Distribution of correlated divergence scores for interacting vs. non-interacting pairs. All organisms in
O.ommon With all their proteins are used. Behavior of both data sets seems to be similar, with a slight advantage for the
interacting over the non-interacting set.

Table 4.2
Simple correlated divergence statistical results

y7; o Score < 0.3  Score > 0.7
Interacting pairs 0.636 0.199 0.063 0.435

Non-interacting pairs ~ 0.612  0.199 0.077 0.372
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Fig. 4.3 Correlation plots for interacting pairs with strong and weak correlated divergence scores. Low correlated
divergence score (r= 0.03, left) is assigned to the interaction between n1003180002190 (TATA box binding protein) and
nni12300000009 (TBP-interacting protein 120A), while the interaction between n1002690000168 (60S ribosomal protein
L9, mitochondrial precursor YmL9) and n1002860000147 (60S ribosomal protein YmL6, mitochondrial precursor) shows
much stronger signs of correlated divergence (r = 0.90, right). To view the Biozon profile page of a protein with nr
identifier nrx, follow the URL biozon.org/Biozon/Profile/x.

2.1.5. Drawbacks of the
Pearson Correlation
Measure

Although widely used in mirror-tree-based algorithms, the Pearson
correlation coefficient is not a very robust test statistic and has
several properties that should be taken into consideration when
applying it for the specific task of detecting correlated divergence.
Uneven divergence rates. The Pearson correlation coeflicient
assigns high scores for data points with linear correlation, regardless of
the slope of the line. This may lead to undesirable situations as pre-
sented in Fig. 4.4, in which two families are assigned high correlated
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Fig. 4.4 High Pearson correlation coefficient does not necessarily indicate corre-
lated divergence. The interaction between nr/002140001532 (ribosomal protein L10)
and ni004670000093 (presenilin 1) is assigned a high Pearson score (r = 0.97), but
the divergence rates are different in the two families, with the second diverging twice as
fast as the first one. We would expect the data points of two families whose divergence
rates are in correlation due to the interaction (and not due to similar evolutionary trees in
general) to be concentrated around the y = x diagonal.
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divergence score despite the fact that the divergence rate of one family
is about twice as fast as the divergence rate of the other family. One
possible solution is to measure how well the data fits the line y = «.

Insensitivity to the size of the data set. The Pearson score is
insensitive to the number of data points used to compute the
correlation. In general, we would consider correlation detected
inalarger set of data points more reliable than the same correlation
patterns found in a smaller set. However, the Pearson correlation
measure assigns the same values for different sets showing similar
signs of correlation, regardless of their size.

To address this problem we normalized the Pearson score with
respect to a background distribution of correlation scores of non-
corresponding proteins. This is done by randomly permuting the
organism order of one of the families and recomputing 7as defined
above. From this distribution, the mean Pearson correlation score,
7, and standard deviation, o, are calculated. Along with the true
correlation score, 7", the normalized z-score is calculated as:

The z-score-based normalization mitigates the aforementioned
problem, as it assigns higher scores to larger sets. However, on
the other hand, we found that the size of the data set tends to
dominate this measure, thus creating a bias that can mask differ-
ences between signals of of correlation, either positive or negative,
between the two distance matrices. Therefore, we did not use this
normalization in the subsequent experiments.

The effect of outliers. Another issue with the Pearson score is
that it can be heavily influenced by a few outliers. Consider the
scatterplots of artificial datapoints given in Fig. 4.5. The plot on
the left shows signs of correlation, as the datapoints fit the linear
regression model quite well. The plot on the right, however, is
heavily influenced by five outliers marked by black squares. When
computing the Pearson correlation coefficient for both examples
the results are similar (» = 0.69 and » = 0.67 for the left and right
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Fig. 4.5 Instability of the Pearson correlation coefficient. Scatterplots of artificial data. Left: a data set showing
signs of a real correlation (r= 0:69). Right: a data set heavily influenced by a few outliers, marked with arrows (r= 0.67
with outliers, r= 0.17 without outliers).
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plots, respectively).When the five outliers are removed from the
right plot, however, the correlation coefficient decreases to an
insignificant score of » = 0.17. The case of a few outliers is
common when using the correlated divergence model, and is
usually caused by proteins that are either very similar (almost
identical) to the query proteins or by remote homologs that are
weakly similar to the query proteins.

There are several approaches one can take to handle these kind
of situations. One possibility is to weigh the entries based on their
relative similarity, to decrease the contributions of highly similar or
highly dissimilar proteins. There are quite a few weighting schemes
that are commonly used when constructing profiles or HMMs
from MSAs, for example (e.g., (51)). However, these methods
underweight either the most similar or the most dissimilar pro-
teins, but none of them is designed to underweight both. There-
fore, we left the Pearson correlation coefficient as is.

Another possibility is to exclude outliers (above a certain thresh-
old) from the distance matrices. Very high values in the distance
matrix of one family are usually the result of comparing two distant
organisms. In such cases the real co-evolution signal, if exists, is
likely to be masked by noise due to the large number of mutations
overall, making it almost impossible to detect signs of correlated
divergence. The opposite situation in which mutation levels are too
low is undesirable as well: the proteins of two close organisms
probably did not diverge much, again making it difficult to detect
co-evolution. In order to improve the signal, we tested a variant of
the correlated diverge algorithm where all proteins that are either
more than 90% or less than 30% identical to the query proteins are
excluded. However, this approach did not improve the separation
between the interacting and the non-interacting pairs.

3. Methods Il -
Improvements over
the Basic Model

Although the conceptual framework presented in the previous
section is clean and simple, in practice, many assumptions made
are in need of revision. For example, it is not uncommon to find in
a genome multiple genes that belong to the same protein family.
Even if one of them interacts with another protein, there is no
reason to assume that all its paralogs also interact with that protein
(or its paralogs, if they exist). Moreover, the interaction might
become inactive in some organisms, due to mutations after specia-
tion; such organisms may add far more noise than real data as will
be later explained. In an attempt to overcome these problems, we
considered two variations of the correlated divergence algorithm
that employ: (i) protein subset selection and (ii) organism subset
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selection. The first approach focuses on selecting a subset of pro-
teins from each family, which are more likely to interact, and the
second searches for those organisms in which the interaction is
more likely to be preserved. Next we discuss both approaches and
draw conclusions regarding the effectiveness of each one.

There are two evolutionary phenomena that can explain the pre-
sence of multiple “paralogous pairs”. In both cases the phenomena
are driven by duplication events. The difterence lies in the timing:
1. At the time of speciation of o, only one protein from each
family existed. Duplication events then took place in o, possi-
bly in coordination (e.g., when the interacting genes are
located physically close to each other), forming multiple para-
logous genes and possibly multiple interacting pairs.

2. These multiple paralogous genes were in existence before
speciation occurs for 0. When speciation occurred, these para-

logs were passed on to o.

Given two sets of proteins, F ,and F , from families F; and F,
in organism o, the basic method of Section 2.1.2 takes the average
over the |F, ,| X |F | protein pairs. However, even if one of these
gene pairs is known to interact, it is unclear it all homologous gene
pairs can form an interaction. Actually, it is unlikely that all para-
logs from one family interact with all paralogs of the other family.
Rather, it is more likely that each paralog is “tuned” to perform
different functions (3, 52). Moreover, after speciation an interact-
ing pair might mutate and become non-interacting. However,
without experimentation it is hard to determine in advance
which pairs interact and which are not.

We contend that this protein multiplicity will only weaken our
co-evolutionary signal as many of the pairs considered are not inter-
acting, and therefore are likely to evolve without explicit co-evolution
constraints. It should be noted that there is an overwhelming evi-
dence that biological systems employ fail-safe, redundancy-based
mechanisms, thus suggesting that many of these pairs are actually
interacting (53, 54). Nevertheless, the maximal number of expected
interactions is of the order of O () while the actual number of pairs
considered in this analysis is of the order of O(#?). Thus the majority
of pairs is only indirectly constrained. In this view it is clear that one
should consider only the truly interacting pairs in the analysis, exclud-
ing all other homologs, even those that are significantly similar.

The problem has been addressed to some extent in previous
studies. The algorithm presented in (30) works on families com-
posed of exactly one protein from each organism in the common set
(picking the closest protein to Escherichin coli proteins when para-
logs were available). Two studies (49, 50) independently proposed
algorithms in which more than one protein from a single organism
may be considered. This problem is harder, since it is necessary to
decide which pairs of proteins from the same organism are the most
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3.1.1. The Minimum
Distance Method

likely to interact. The problem is tackled by looking for the pair of
distance matrices that yields the highest correlation score. Assuming
that the distance matrix of the first family is set, these algorithms
explore the search space of all distance matrices which may be
constructed for the second family. The number of different matrices
is m!, where m is the number of proteins in each family and #!is the
number of permutations over these  proteins.

Since the search space becomes too big for large m, the algo-
rithm employs sampling algorithms to find a locally maximal solu-
tion. The problem of a huge search space was partially resolved in
(55), where only isomorphic permutations, namely permutations
that keep the tree topology, are considered. The method can
reduce the size of the search space significantly, but in the worst
case the search space remains of the order /.

In this section we test several methods that are primarily con-
cerned with determining the true interacting subset. The first
attempts to minimize the total distance between the selected
proteins, the second more restrictive approach attempts to identify
the set of orthologous proteins, and the third attempts to identify
the subset that maximizes the correlated divergence score.

The minimum distance method reduces the set of proteins from
each organism in O.ommon tO a single protein. This protein is
chosen such that the overall distance (approximated using the
sum of pairs (SOP) function (56)) between all protein pairs in
the family is minimal. The assumption behind this method is that
interacting proteins are likely to mutate less than their paralogs
which are not involved in the interaction, in order to preserve the
interaction. This method can be computationally intensive for
large families, containing many proteins or organisms, because of
the large number of possible combinations that have to be con-
sidered. To test this method we used smaller subsets of about 500
interacting and 500 non-interacting proteins that were con-
structed as described in Section 2.1.3, with the additional criter-
ion that the number of combinations does not exceed 10”7 (we
refer to these data sets as the reduced data sets). As before, we
compute the distributions of correlated divergence scores over the
interacting and the non-interacting sets, where the formula of
Eq. [1] is revised to consider only a single protein from each
organism selected using the minimum-distance criterion. The
results are presented in Fig. 4.6.

As the graphs show, the average score with the minimum
distance method increases (both for the interacting and the non-
interacting set) compared to the basic model, which suggests that
the method is effective in picking the relevant paralogs. The mini-
mum distance method also improves the separation between the
two sets. For example, 24.4% of the interacting set and 12.7% of
the non-interacting set are assigned a score > 0.9 when using all
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Fig. 4.6 Distribution of correlated divergence scores for interacting vs. non-interacting pairs over the reduced data
sets. Density functions generated when all proteins in O,ommon are used (/eft), one protein from each organism in Ocommon
is chosen by the minimum distance criterion (middle) and one protein from each organism is chosen at random (right).

paralogs. With the minimum-distance method, more than 43.5% of
the interacting set are assigned a score >0.9 while only 23.7% of the
non-interacting set exceed this threshold, thus decreasing
the overlap between the two distributions at the high end of correla-
tion scores. Indeed, the Jensen-Shannon (57) distance between the
two distributions increases from DLS[ = 0.064 to Dr]fim gie = 0.095.
Note that when one protein is selected at random from each organ-
ism (the Random test), the correlated divergence scores decrease and
the distributions get closer, with a Jensen-Shannon distance of
Dgan dom = 0.035 (see right panel of Fig. 4.6).

Interestingly, the basic correlated divergence model performs
better over the reduced set and the scores are usually higher
compared to the scores computed over the larger data sets (com-
pare the left panel of Fig. 4.6 to left panel of Fig. 4.2). This might
be attributed to more accurate assessment of the phylogenetic
distances rather than co-evolution, since the reduced data sets
contain fewer organisms and less homologs for each organism.
However, it seems that the co-evolution signal also improves when

the distant homologs are eliminated.
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3.1.2. The Orthologs-Based
Approach

Optimizing the minimum-distance method for large
families. In order to apply the minimum distance method to
large families with large search spaces, one can apply the following
optimization algorithm:

e Input: Protein family Fover a set of organisms O. The maximal
number of iterations MaxlIteration.
The set F, denotes the projection of F on o (the subset of
proteins in F from organism o0 € O).

e Initialize: The subset of minimum-distance proteins S= ¢
and Iteration = 0.
For each organism 0 €O

Pick one protein p at random from F,

§=S8Up (such that §,=p)
e Loop: Iteration = Iteration+1
For each organism oin O

Set p=§, (the projection of the current set S on 0)
Set 8= 8y
Pick one protein p’at random from F, s.t. p#p
It SOP(p’,8)>SOP(p,S’) then S= SUp
Until: Iteration == MaxIteration or if S converged.
e Output: The subset §

The algorithm attempts to improve the assignment of proteins
by iterating over all organisms, trying each of their proteins in
combination with the current best assignment of proteins from
other organisms, and picking the one that minimizes the distance.
The quality of the assignments is measured via the SOP score.
While this algorithm is much more computationally efficient
than exhaustive search over all possible assignments, it can still be
computationally demanding for large families and it is suggested to
stop it after a preset maximal number of iterations has reached.
It should be noted that the application of this algorithm to larger
data sets did not change the trends we observed with the
smaller sets.

Another variation we considered was to search for the group of
orthologous proteins, using the Reciprocal Best BLAST Hit
(RBH) algorithm (58, 59). This method was previously used
to construct the InParanoid database of eukaryotic orthologs
(60, 61) The RBH algorithm is stricter than the minimum
distance algorithm; given two proteomes A and B, the two
proteins #€A and b€B are considered orthologs if & is the
first hit in a BLAST search in which 2 is the query and B is
the database, and # is the first hit in the search of & against A.
The method suffers from a high rate of false negatives since
both proteins must be first in each other’s list in order to be
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Maximization approach
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considered as orthologs. While trying the method on our data
we were left with too few proteins, which did not allow us to
apply the correlated divergence model.

We also tested an EM-like algorithm for protein subset selection.
In our case the hidden variables are the indicator variables that
specify if a gene interacts with another gene or not. The maximiza-
tion step selects from one organism at a time the pair of proteins
that maximizes the co-evolution signal, given the existing set. The
expectation step is essentially the averaging over all pairs in all
other genomes (Note 5).

The algorithm consists of reducing the set of interacting
proteins in each organism to a single interaction, i.e., |F;,|=1
for both families and all organisms o. As discussed above, it is
very unlikely that all possible pairs interact; however, we antici-
pate that at least one pair interacts, and we target that gene
pair. Our algorithm (shown below) first iterates through all
protein organism sets and then continues these epochs until
the subset remains unchanged and the correlation scores stop
improving.

The EM Subset Selection Algorithm:
e Input: Two protein families F),F, over a set of common
organisms O.ommon- Lhe maximal number of iterations

MaxIteration.

e Initialize: The subsets of proteins that maximize the corre-
lated divergence score S; = Fy, S; = F,. Set Iteration=0

e Loop: Iteration = Iteration+1

Foreach organism o01in O,y,,05
Set SI/ = S]\Sl,o
Set SZ/ = 82\82)”
MuaxCorrelation=0
Foreach p,€F;,
Foreach p,eF,,

Correlation= Correlated Divergence (S{Up1,S;Up,)
If Correlation> MaxCorrelation then
SISI/UZ)1$ and S,= SZ/UPZ
MuaxCorrelation = Correlation
Until: §; and S, converged or if Iteration = = MaxIteration

e Qutput: The final subsets §; and S,.

The algorithm was implemented and tested over the interact-
ing and non-interacting data sets. However, the resulting distribu-
tions were very similar (results not shown). One deficiency of the
algorithm lies in its tendency to choose remote proteins that
maximize the Pearson correlation score (see discussion of outliers
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3.2. Organism Subset
Selection

3.2.1. Closest Organism
Criterion

3.2.2. The Reduced
Distance Matrices for
Correlated Divergence

in Section 2.1.5). That is, the algorithm chooses members of the
two families such that their distances from the other organisms are
most alike, even if this means choosing distant members when
closer alternatives exist. This is clearly undesirable as the selection
bears no biological significance in the context of correlated diver-
gence. This phenomenon emphasizes once again one of the major
deficiencies with the Pearson correlation coefticient.

Our assumption that Ocommon = Ointeract 18, 1IN practice, not always
true. After or during speciation, a pair of interacting proteins
might lose its ability to interact. In Section 2.1, we conclude
that it Oyeract << Ocommon, then co-evolution signals from inter-
acting proteins can quite easily be overwhelmed by data from the
numerous non-interacting pairs; therefore, we would like to mini-
mize this set to the smallest possible one, Oiyerace- Here we pro-
pose two simple methods for organism subset selection.

Assuming that the pair of tested proteins indeed interacts, it is
more likely that the interaction exists in organisms that are closer
to the query proteins’ organism rather than in distant organisms.
Under this assumption we remove distant organisms in Oommon-
Given the pair of query proteins py ;2 , €0,, the distance between
0, and any other organism 0, € Ocommon 18 estimated by

dist(o,, 04) = \/evalue(p 1.4) evalue(pa.a), 2]

where evalue (p; ) is the minimal e-value assigned by BLAST to the
most similar protein in o4, with p; , as the query.

Once all distances were estimated, we choose the closest N,
organisms and use these as our reduced set of common organisms,
Ol mon»> to compute the correlated divergence score as in Eq. [1].
We tested this method for N,=8. Our tests suggest that the exclu-
sion of remote organisms does not affect the separation. To the
contrary, the removal of the distant organisms resulted with almost
identical graphs for both the interacting and the non-interacting data
sets.

In the standard model of correlated mutations (as in Section 2.1),
all protein pairs are considered in Eq. [1] when evaluating co-
evolution. However, even with the minimal set of organisms and
proteins (as in Section 3.1), this model is contradictory to the
fundamental protein co-evolution assumptions. Given a phyloge-
netic tree topology representing Ojyeract, €ach organism o in this
set is closely related only to a small subset of organisms. Although
indirect relationships to all other organisms can be established by
transitivity, the correlated mutations signal decreases quickly with
the evolutionary distance between species, to practically undetect-
able levels for even relatively small distances. Therefore, when
analyzing co-evolution within a protein family, one has to adjust
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the model and compare only proteins whose organisms are phylo-
genetically closely related. Sato et al. (62) suggested a variant of
the mirror-tree method, which reduces the high rate of false
positives by subtracting information about the phylogenetic rela-
tions of the proteins represented in the distance matrix, so as to
isolate and amplify the co-evolution signal. However, this
approach presents another challenge. As discussed in the introduc-
tion, phylogenetic tree reconstruction is an extremely difficult
problem, and complete phylogenetic species trees that span across
higher-order domains (i.e., Eubacteria, Eukaryote, and Archea)
are largely unavailable. To approximately define the set of relation-
ships that are induced by the true phylogenetic tree, we use the
given set of proteins from the two interacting families. However,
we do not try to recover the complete topology of the tree, since
we are only interested in organism pairs that are closely related. To
assess co-evolution we consider only the $k$ most similar rela-
tions. Specifically, for each organism we compile the list of neigh-
boring organisms based on the average SOP score of the two
homologous proteins and pick the 2 most similar ones. Denote
by 2NN () as the set of & closest organisms to organism 7, then the
correlated mutation score under this reduced model is defined as

Zfil ZjekNN(i) [D1(0i, 0j) — ma][D2(0i, 07) — o]

r =
\/Zfil EjekNN(z‘) [D1(0i, 07) — ,“1]2\/2511 ZjekNN(i) [D2(0:, 07) — M2]2~

[3]

We refer to this algorithm as the kNN algorithm. We ran the kNN
algorithm on the data sets described in Section 2.1.3, with 2=8.
Our tests indicate that this method improves only slightly over the
basic correlated divergence algorithm and the minimum-distance
protein subset selection algorithm, suggesting that most interact-
ing protein pairs do not co-evolve more strongly than what is
expected in general for two sets of homologous proteins over the
same set of organisms; and if certain positions exhibit correlated
mutations, they are probably confined to the interaction site.

4. Conclusions

In this chapter we study methods to predict protein—protein inter-
actions based on the co-evolution model. The premise of co-
evolution methods was originally revealed in (29, 36, 40); how-
ever, without extensive assessment. Here we expand this model
and test different variants.

The underlying co-evolution model is very appealing at first: if
two proteins interact, one would expect to find some patterns of
constrained, correlated mutations. Detecting such patterns in
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protein pairs that have not been tested experimentally can suggest
that the proteins interact. As opposed to docking and binding site
identification methods, this method does not require knowledge
of the structure. Similar to the Rosetta stone method, it attempts
to predict interactions from sequence. Indeed, previous studies
that explored the potential of this method suggested that the co-
evolution model might be effective for the detection of novel
interactions. However, these studies focused only on a few specific
examples that appear to behave according to this model.

Motivated by this premise we tested this model and the variants
that attempt to improve the signal-to-noise ratio. However, despite
the extensions and enhancements we implemented, we were dis-
appointed to find out that it is difficult to discern co-evolution
signals due to interaction from the background evolutionary corre-
lation which exists between any two sets of homologous proteins
over the same set of organisms. A relatively small number of
interactions seem to follow the co-evolution model (under the
“mirror-tree” assumption), and only very few interactions can be
predicted with the correlated divergence measure or its variants.
There are several possible explanations. One possible reason could
be that the data set is biased or skewed. Actually, the choice of the
data set can greatly affect the results, and early experiments that we
ran with other data sets looked promising at first. However, we soon
realized that the too-good-to-be-true results were due to uneven
sampling and statistical differences between the interacting and the
non-interacting data sets. The final data sets we used in our tests are
fairly large, were obtained from high-quality databases, and have
similar statistical properties (see Section 2.1.3). Therefore, we think
it is unlikely that the conclusions are the result of biased data sets.
Another possible reason might be that the protein sets have too few
homologs, or the chosen organisms are too close or too far. How-
ever, we believe that the main reason is that the correlated diver-
gence measure is simply dominated by the background evolutionary
correlation. Furthermore, the Pearson correlation measure is insen-
sitive to weak correlation signals and has other drawbacks as dis-
cussed in Section 2.1.5. Other correlation measures (such as the
Spearman rank correlation) might be more effective. However, we
believe that if there was a signal of co-evolution, we would have
detected it with one of the many variations we tried. Therefore, even
if the signal exists, it ought to be very weak.

Clearly, if co-evolution occurs, it will be most pronounced
in the interaction site and the correlation might be limited to
the very few residues which are located in that interaction site.
The correlated mutations between these sites, even if exist,
might be overshadowed by other sites that are not constraint
to the same extent. Moreover, the selective pressure might have
climinated any other possible variations that could have sup-
ported this hypothesis. The assumption of the mirror-tree
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approach is that the whole protein evolves in a similar pace as
its interacting partner. However, it seems that this hypothesis
holds only in a very few cases, while in all other cases it is
essentially impossible to discern interactions from non-interac-
tions using the mirror-tree method and there is little evidence
of co-evolution pressure. Refinements of the correlated diver-
gence measure based on the minimum-distance method and the
EM algorithms improved the signal slightly. However, even
with these improvements the signal is too weak.

Our final conclusion is that the mirror-tree co-evolution
model is not powerful enough to predict protein—protein interac-
tions effectively in itself. Further enhancements, integration with
other sources of information and with other techniques, and larger
data sets with refined information about the binding site may
improve the performance in the future.

5. Notes

1. For example, out of over 10,000 protein interactions that
were available in the BIND database as of December 2003,
only about 100 have detailed binding site information.

2. In terms of graphs, the proteins are viewed as nodes and each
pair that is chosen determines an edge in the graph. The degree
of each node is the number of pairs this node participates in.
Our procedure results in two graphs (of interacting and of non-
interacting proteins) over the same set of nodes, where the
degree of each node is almost identical in both graphs.

3. It should be noted that even with a random choice of pairs,
there is a chance that some of the pairs selected are actually
interacting. If information on the subcellular locations of pro-
teins is available, the pairs can be chosen from different locations
to reduce this chance. However, subcellular location is available
for a relatively small number of proteins and the probability to
pick an interaction by chance is small to begin with; therefore,
we do not apply additional filters to the negative set.

4. Early experiments were done with ClustalW (46) and iterative
PSIBLAST (47). The correlated divergence measure can be
sensitive to the choice of the MSA algorithm and therefore we
opted for a more accurate MSA algorithm. MAFFT has been
shown to outperform ClustalW and PSIBLAST, and yet it is
relatively computationally efficient (48).

5. Formally, this procedure is not exactly an Expectation Max-
imization algorithm; however, it is inspired by the EM algo-
rithm and is therefore referred to as an EM-like procedure.
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Chapter 5

Computational Reconstruction of Protein—Protein
Interaction Networks: Algorithms and Issues

Eric Franzosa, Bolan Linghu, and Yu Xia

Abstract

Accurate mapping of protein—protein interaction networks in model organisms is a crucial first step toward
subsequent quantitative study of the organization and evolution of biological systems. Data quality of
experimental interactome maps can be assessed and improved by integrating multiple sources of evidence
using machine learning methods. Here we describe the commonly used algorithms for predicting protein—
protein interaction by genome data integration, and discuss several important yet often overlooked issues
in computational reconstruction of protein—protein interaction networks.

Key words: Protein—protein interaction, machine learning, protein network, data integration, Naive
Bayes, logistic regression.

1. Introduction

In the past few years, significant progress has been made in
genome-wide identification of protein—protein interactions,
especially in model organisms such as Saccharomyces cevevisine
(1-6) and Caenorbabditis elegans (7), and also recently in human
(8). With the availability of these experimental interactome maps,
it is now possible for the first time to quantitatively study the
organization and evolution of biological systems at the level of
protein—protein interaction networks, and develop theoretical
models that account for the observed statistical trends (%11).
This line of research depends crucially on the quality of the
reconstructed protein—protein interaction networks, as measured
by accuracy, completeness, and possible bias. The dependence of
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derived organizational and evolutionary hypotheses on data
quality is not always obvious; an excellent recent example is the
observation that power-law topology of the interactome map
depends on its completeness (12). Such studies underlie the
importance of rigorous assessment and subsequent improvement
of the quality of interactome maps by a combination of experi-
mental and computational methods.

Here we focus on computational reconstruction of protein—
protein interaction networks by integrating multiple sources of
evidence (13-15). Such sources of evidence can be the interactome
maps produced by different labs, other binary maps such as genetic
interaction maps, or other genomic features suggestive of protein—
protein interaction. The basic premise is simple: if multiple reliable
sources of evidence all suggest that two proteins interact, then
the probability that these two proteins interact is high. To make
this intuition precise, we need to quantify the reliability of each
source of evidence, taking into account data quality (as mentioned
above), as well as redundancy and similarity among different
sources of evidence. Machine learning methods provide a straight-
forward solution to this issue. In machine learning, we specify the
simplest possible model that, we believe, captures the dominant
structure in the data. In our case, the model relates multiple sources
of evidence to whether or not two proteins interact. We then fit the
model to a training set (selected from a small gold-standard data
set), adjusting the model parameters so as to maximize the agree-
ment between the model and the data. The performance of the
learned model on unseen data can be evaluated using a separate
testing set, again selected from the gold-standard data set. Finally,
we apply the model genome-wide to generate predictions. Here, the
complexity of the data is captured by the choice of the model. Linear
models and their variants have been widely used, because: (1) these
models often capture the dominant structure in the data: noise,
incompleteness, redundancy, and correlation; (2) many nonlinear
structures in the data can become linear after appropriate data
transformation; (3) these models are simple: efficient optimization
methods exist to fit such models to the data, and over-fitting
problem is usually minimal.

In Section 2, we describe the choice of gold-standard
positive and negative interaction data sets, genomic features
for predicting protein—protein interaction, machine learning
methods for predicting protein—protein interaction, and ways
to transform nonlinear structure in continuous and graph-
based data into linear structure. In Section 3, we describe
additional important issues in reconstructing the interactome:
the choice of the size of positive and negative examples, dealing
with features whose predictive power is difficult to quantify, and
the effect of size and bias in the experimental interactome
maps.
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2. Methods

2.1. Gold-Standard
Positive and Negative
Interaction Data Sets

2.2. Compiling a List
of Genomic Features

There are two different ways of defining protein—protein interac-
tions. The first definition is more specific: two proteins interact
when they share a physical binding interface. This is also called
binary interaction, and can be detected with yeast two-hybrid
experiments. The second definition is broader: two proteins inter-
act when they are subunits of the same complex. This is also called
co-complex memberships, and can be detected with pull-down
experiments. Here we focus on the prediction of co-complex
memberships in yeast, but the same framework also applies to the
prediction of binary interactions.

The gold-standard positive data set, a set of protein pairs that
are known to interact, is usually constructed from known protein
complexes annotated in MIPS (14, 16). Gold-standard positive
data sets constructed in this way, although highly useful, are not
perfect: they are biased toward important, well-behaved proteins
and protein complexes associated with pronounced phenotypes or
diseases. Unless explicitly modeled, standard machine learning
methods are not able to correct such biases.

The gold-standard negative data set, a set of protein pairs that
are known not to interact, is much harder to construct (17). This is
because negative results are typically neither published nor stored
in any database. One way to solve this problem is to assume that
proteins that localize in different cellular compartments do not
interact (14). An alternative approach is to construct an approx-
imate gold-standard negative data set as all protein pairs that
do not belong to the gold-standard positive data set and to use
co-localization information as one of the many features (18, 19).
There are several advantages of this approach. First, co-localization
information is treated in the same way as all other features. Second,
a protein is estimated to interact on average with at most 10-20
proteins out of ~6,000 proteins in yeast. As a result, the vast
majority (>99.5%) of the approximate gold-standard negative
data sets are in fact true negatives. Third, gold-standard data sets
do not need to be 100% accurate. A small amount of noise can be
tolerated as long as the gold-standard data sets contain strong
enough signals to guide the parameterization of the classifier.

Many protein pair features correlate with interaction. Such genomic
features can be collected for each of the ~18 million yeast protein
pairs. Here we list a representative subset of these features: (1)
experimental physical and genetic interaction maps from different
labs; (2) the mapping of'interologs (20), i.¢., conserved interactions
between two proteins or domains, from another organism to yeast;
(3) features based on comparative genomic evidence, such as



92 Franzosa, Linghu, and Xia

2.3. Naive Bayes

2.4. Logistic
Regression

similarity of phylogenetic profiles (21) and gene neighborhood (22),
co-evolution (23), belonging to the same gene cluster (24), and the
existence of domain fusion events in another organism (25, 26);
(4) pair protein features that are derived from single protein features
such as function (14), localization (14), mRNA expression (27, 28),
abundance (15, 18), regulation (29), and phenotype (14, 15, 30);
(5) features based on 3D structural analysis, such as multimeric
threading (31).

Missing data is a serious problem and needs to be treated
differently depending on the missing data mechanism. However,
in many cases, if feature X contains missing data, simply creating a
new binary variable “X-is-missing” will work well in practice.

Consider the following binary classification problem. Given a
training set of independently and identically distributed samples
T = {(x",yD;5=1,... m} of feature and binary class variables
from an unknown distribution D, estimate a classifier f(x) that
predicts the binary class variable y € {0,1} (whether or not the
protein pair interacts) from the features x. Without loss of general-
ity, suppose that we have two binary feature variables x = (%, x2),
where x1,2, € {0,1}. (We will discuss continuous feature vari-
ables later.) The goal here is to come up with a classifier f(x) that
minimizes the expected prediction error E(.,cpl{y # f(x)},
where 1{X} is equal to 1 when statement X is true, and 0
otherwise.

According to statistical decision theory, the optimal classifier
f(x) as defined above can be written in the following way:

e PO =1
PR ]
pen 2O =119
e =0 =

Now we make the Naive Bayes assumption that features are
conditionally independent: p(x1,x2|y) = p(x1|y)p(x2|y). Under
this assumption,

py=1lx) _ply=1)p(xaly=Dplnly=1) 2]
ply=0lx)  ply=0)p(xly = 0)p(x:]y = 0)

The five independent parameters in the above equation can be
casily estimated from the training set.

Equation [2] is equivalent to the following equation:

20 =1%)
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This equation relates linearly the posterior log-odds of an interac-
tion given the evidence with the presence or absence of each piece
of evidence.

Naive Bayes classifiers assume that features are conditionally
independent. Such assumptions are often incorrect. In logistic
regression, the linear model in Eq. [3] is fit to the data, without
the extra assumption of conditional independence (32). The
weights wg, wy, wy are obtained by maximizing the following
likelihood function: Le(wg, wi, wa) = T, p(y?|x1)).

The above maximum likelihood (ML) estimate of the weights wy,
w1, wy is equivalent to minimizing the following function:
S drr(eD), where o = (2y — 1)(wo + w11 + waxs) is called
the margin, and the loss function ¢y («) = In(1 + ¢~*) is a convex
surrogate for the 0-1 loss function ¢,_; () = I{e<0}. Let us
now relax the requirement for ML estimation and consider other
ways to estimate the weights. The different estimation
methods generally aim at minimizing the empirical classification
error =57 o4 (), with the 01 loss function surrogated by a
convex loss function so as to make efficient global optimization
possible. In the case of logistic regression, this convex surrogate
loss function is ¢y (o) = In(1 + ¢7*). But we are free to choose
other appropriate convex surrogate loss functions; in particular,
support vector machine (SVM) and AdaBoost use different loss
functions (33): ¢gyp(2) = max(1l — o, 0), and ¢y y.poos(®) = .
In some cases even the linear model in Eq. [3] is too complex and
causes over-fitting. For example, we usually have a small number of
annotated protein—protein interactions, and a large number of
genomic features most of which are irrelevant. In this case, we
want to make the linear model even simpler by imposing the addi-
tional constraint that only a small subset of all features has non-zero
weights. Such regularization can be done in several different ways.
For example, a feature selection step can be performed prior to
the model-fitting step. Alternatively, a regularization term can be
added to the model-fitting step to penalize complex models, as
done in SVM. Finally, AdaBoost uses greedy optimization coupled
with early stopping to control the complexity of the model.

We previously focused on binary features. A categorical feature
with » categories can be easily decomposed into 7 binary fea-
tures. What about continuous features, such as expression corre-
lation? In general, the posterior log-odds of interaction may
depend on these continuous features in a nonlinear way. How-
ever, we can convert a nonlinear continuous feature into several
linear binary features by binning the data. For example, we can
bin the expression correlation data into three binary features:
expression-correlation-high, expression-correlation-medium, and
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2.8. Decision Tree
and Random Forests

expression-correlation-low. We can then fit a linear model to the
transformed feature space, assigning three different weights to
protein pairs with high, medium, and low expression correlation.
Notice that even though the model is linear in the transformed
categorical feature space, it is actually nonlinear in the original
continuous feature space. This simple binning procedure allows
us to extend the linear model to many nonlinear cases. There
are also other more complex procedures, such as kernel-based
methods (34).

Some genomic features are based on graphs such as interac-
tome maps and genetic interaction maps. Several different metrics
have been proposed to measure the distance between a pair of
proteins in these graphs, such as diffusion distance (35), linear
kernel (36, 37), and congruence score (38). These metrics can
then be combined with the rest of the genomic features to predict
protein—protein interaction.

Sometimes the dependence of protein—protein interaction on
genomic features is so complex that the linear relationship in
Eq. [3] is no longer valid. The most common machine learning
method that deals with such irreducible nonlinearity is decision
tree and its variants, such as random forests. These methods have
been successfully applied to the prediction of protein—protein
interaction (39).

3. Notes

’ Q 1. How large should the gold-standard negative set be? We usually

fix the size of the gold-standard positive set to be a constant,
as determined by the MIPS complex catalog, but we are
free to vary the size of the gold-standard negative set. As the
gold-standard negative set gets bigger, the classifier applies a
stricter cut-off, and as a result predicts a smaller number of
positive interactions. For all classifiers except Naive Bayes,
individual evidence weights will also change.

What, then, is the right choice for the negative example
size? Shall we pick the same number of negative examples
as positive examples? Or to the other extreme, shall we pick
a lot more negative examples than positive examples to
approximately preserve the ratio of positive to negative
interactions in the entire proteome? The right choice depends
on the prediction task at hand. If our task is not to correctly
predict a/l interactions but rather to come up with a list of
predicted interactions that are accurate, then none of the
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above two methods are appropriate. Rather, we should
choose the appropriate negative example size so that there
are roughly equal numbers of true and false positives in the
predicted interactions (17).

Features whose predictive powers ave difficult to quantify. It is
sometimes difficult to assess in a quantitative way the predic-
tive powers of certain features, such as functional similarity
based on Gene Ontology annotations. Because a subset of the
Gene Ontology annotations are themselves derived from
interaction information, part of the observed correlation
between functional similarity and interaction is spurious.
One way to solve this problem is to exclude the subset of
the Gene Ontology annotations that are derived from inter-
action information (18).

Let us now consider a hypothetical situation where we
do not know which subset of the Gene Ontology annota-
tions are derived from interaction information. It then
becomes impossible to quantify the predictive power of
the functional similarity feature. However, this does not
mean that this feature is not useful at all for making new
predictions. Even without quantitative assessment, we can
infer the usefulness of this feature based on biological
common sense: interacting proteins should tend to share
common biological functions. We argue that the best way
to deal with this situation is to exclude the functional
similarity feature from training-testing so as to obtain a
conservative estimate of the prediction performance, but
then to include the functional similarity feature in the
integrated classifier for making final genome-wide
predictions.

Effect of size and bias in expervimental intevactome maps. 1t
is important to keep in mind that the statistical machine
learning approach outlined here can only be applied
straightforwardly to integrate large-scale, unbiased interac-
tome mapping experiments, where the overlap with gold-
standard data sets provides an accurate measurement of data
quality. However, a significant fraction (34%) of the physical
and genetic interactions contained in BioGRID (40) are from
small-scale experiments, each mapping 100 or less interac-
tions. It is difficult to assess individual small-scale data sets,
but we can assess different methods by pooling together
all data sets carried out using the same method. As shown
in Table 5.1, the predictive power for co-complex member-
ships decreases from affinity capture to two-hybrid to
genetic interaction, as expected. At the same time, co-com-
plexed proteins are significantly enriched for almost all
methods.



96

Franzosa, Linghu, and Xia

Table 5.1

The most popular methods for mapping physical and genetic
interactions, compiled from BioGRID (40). Methods are sorted by
decreasing number of interactions deposited in BioGRID, and only
methods with more than 1,500 interactions are shown. For each
method, we compute the fold enrichment, i.e., the fraction of
co-complexed protein pairs that are detected using this method,
divided by the fraction of all protein pairs that are detected using
this method. A fold enrichment larger than 1 indicates that the

method is predictive for co-complex memberships

Method Number of interactions Fold enrichment
Affinity capture — MS 18,747 166.7
Two-hybrid 9,642 75.4
Synthetic lethality 9,019 47.9
Synthetic growth defect 5,002 18.8
Affinity capture — western 3,523 354.8
Epistatic mini-array profile 3,416 7.5
Dosage rescue 2,442 138.4
Synthetic rescue 1,605 72.7
Phenotypic enhancement 1,425 80.8
Reconstituted complex 1,327 311.7

Many large-scale physical and genetic interaction mapping,
experiments are biased: these experiments are concerned with
a specific subset of genes that share a common biological
function or disease phenotype. Here, the use of a generic
gold-standard positive data set is questionable, as it will tend
to underestimate the data quality. For example, as shown in
Table 5.2, there are three data sets with apparently unusually
low prediction power for co-complex membership. However,
close examination reveals that they are all biased maps
that are concerned with a subset of the interactome. These
sub-networks usually involve a specific function that is not
previously well characterized and therefore underrepresented
in the gold-standard positives, such as the proteins involved in
DNA integrity and secretion, and membrane proteins. As a
result of this bias, the quality of these data sets is significantly
underestimated by standard machine learning methods. New
methods are needed to accurately assess the quality of such
biased interactome maps.



Table 5.2
Large-scale physical and genetic interaction data sets, compiled from BioGRID.
Data sets are sorted by decreasing number of interactions deposited in BioGRID,
and only data sets with more than 1,000 interactions are shown. For each data set,
we again compute the fold enrichment. A fold enrichment larger than 1 indicates
that the data set is predictive for co-complex memberships, if we assume no biases
in these data sets

Data set

Method

Predicting Protein—Protein Interactions 97

Number of interactions Fold enrichment

Krogan et al., 2006 (6)
Gavin et al., 2006 (5)

Pan et al., 2006 (41)

Ito et al., 2001 (2)

Ho etal., 2002 (3)
Schuldiner et al., 2005 (42)
Tong et al., 2004 (43)
Gavin et al., 2002 (4)
Miller et al., 2005 (44)

Two-hybrid

Synthetic lethality

Two-hybrid

Affinity capture — MS
Affinity capture — MS

Synthetic growth defect

Affinity capture — MS

Epistatic mini-array profile

Affinity capture — MS

7,076 275.8
6,531 287.2
4,533 0.3
3,959 43.6
3,596 82.2
3,416 7.5
3411 10.7
3,210 3248
1,941 9.4
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Chapter 6

Prediction and Integration of Regulatory
and Protein—Protein Interactions

Duangdao Wichadakul, Jason McDermott, and Ram Samudrala

Abstract

Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and
systems biology in any organism. While several results from genome-wide analysis of transcriptional regulatory
networks are available, they are limited to model organisms such as yeast (1) and worm (2). Beyond these
networks, experiments on TRIs study only individual genes and proteins of specific interest. In this chapter, we
present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse (3).
We describe how to compile and handle various formats and identifiers of data sets from different sources and
how to predict TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets
include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein
subcellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a
large number of organisms. The integration of experimentally verified and predicted TRIs with other known
protein—protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological
dynamics of an integrated network with gene expression under different conditions, essential for exploring
functional genomics and systems biology.

Key words: Regulog, interolog, protein—-DNA interaction prediction, transcriptional regulatory
interaction (TRI) prediction, protein—protein interaction (PPI) prediction, homology-based
approach, transferability of homologs.

1. Introduction

Transcriptional regulation controls the production of functional
gene products essential for determining cell structure and func-
tion. It controls the amount of gene product and replenishment of
degraded protein. This is fundamental for the differentiation,
morphogenesis, versatility, and adaptability of the cell. Expanding
the knowledge of gene regulation and understanding how it
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relates to protein—protein interactions and gene expression pro-
vides insight into gene function and the mapping from genotypes
to phenotypes. This knowledge is fundamental for advancing
the design and development of biotechnology and medical
treatments.

Though there have been several genome-wide studies of
transcriptional regulatory networks, they have been focused on
only a few model organisms (1, 4-7). Aside from those formed
by genome-wide studies, only networks comprising small, specific,
well-studied pathways are available (8-10). Based on publicly
accessible databases of genome-wide transcriptional data and
regulatory interactions with experimental verification (9, 11-13),
several computational studies have reported the building of
transcriptional regulatory networks (14-19), based upon the
prediction of binding sequences of DNA and binding sites of
transcription factors (20-26).

Among these approaches, the transferability of biological
functions between homologous genes, originally proposed by Yu
etal. (27), has been widely studied and deployed (3, 27~35). Thus,
this chapter explores the transferability of protein—-DNA interac-
tions between organisms, or regulogs. This approach presumes
that similarities in the sequence and structure of gene products
suggest similar function.

We predict TRIs for an organism based on the transfer-
ability of similar interactions from other source organisms (see
Fig. 6.1). In other words, we try to map the available TRIs in
a source organism onto the target organism to find similar
interactions.

The similarities of a predicted TRI (Itpy_rpry) transferred
from a source organism is defined as the geometric mean (the
square root) of sequence similarities between (1) a transcription
factor of an interaction in a source organism (TF) and its ortholog
(Note 1) in a target organism (TF’) defined as Itg gy, and (2) a
sequence of transcription factor target in the source organism
(TFT) and its ortholog in the target organism (TFT’) defined as
Itgr-TeTy. TO map a TRI from a source organism onto a target
organism, the interaction in the target organism needs to satisfy
the following three conditions (27):

i) TF and TF are orthologs.

ii) TFT and TFT are orthologs.

iii) The binding sites and binding sequences of TF appear in the
upstream region of the TFT'.

Corresponding to the above conditions, if a TF regulating a
TFT in a source organism has orthologs TF and TFT’ in a target
organism, the pair of the interactions TF — TFT and TF —
TFT’ are called regulogs (Note 2) (see Fig. 6.1). We can
improve the accuracy and coverage of the resulting predictions
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Fig. 6.1. Homology-based transcriptional regulatory interaction prediction.

by filtering out false-positive predictions using other data
sources such as gene expression in differing cell cycle stages,
protein localization, and membership in protein families. We
have used these methods to predict regulogs for all 54 organisms
in the Bioverse (3).

The major procedures involved in the prediction and integra-
tion of regulatory protein—-DNA and protein—protein interactions
include: (1) the preparation of essential data sets, including source
experimental TRIs, binding sites and binding sequences of the
experimentally verified transcription factors, the upstream regions
of genes in target organisms, and name mapping between different
identification systems; (2) the preparation of additional data sets,
such as protein localization and assignment to protein families, for
filtering and improving the accuracy of the predictions; (3) the
determination of similarity between two protein sequences;
(4) the prediction of the TRIs; and (5) the benchmarking of the
prediction (see Fig. 6.2).
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Fig. 6.2. Major steps in the prediction of transcriptional regulatory interactions.

While we present these steps in the context of TRI prediction,
the methods and problems of data preparation are common
steps in a large number of bioinformatics processes, especially in
large-scale systems covering the genomes of multiple organisms.
Specifically, the name mapping problem is ubiquitous; it makes all
bioinformatics of this type difficult and decreases the coverage and
certainty of predictions.

2. Methods

2.1. Preparing
Data Sets

2.1.1. Source Experimental
TRIs, Binding Sites, and
Binding Sequences

As homology-based approaches exploit the transferability of
TRIs available in a source organism onto a target organism, the
gathering of available interactions from different source organisms
is the first essential step. This step is complicated as multiple
sources provide different sets of non-comprehensive interactions
for specific organisms, with varied data formats. The collection of
data from several different sources, however, is essential for
expanding the coverage of source TRIs for the prediction and
construction of a gold-standard test set for the benchmarking.
Table 6.1 summarizes the sources of our experimental TRIs.

Source experimental TRIs, binding sites, and binding sequences
were compiled from two main sources: (1) public databases
TRANSFAC™ 7.0 (12), SCPD (36), BIND (37, 38), WormBase
(39) via WormMart (40), RegulonDB (13), and DBTBS (11),
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Table 6.1

Sources of experimental TRIs for source organisms

Source experimental TRIs

Source organisms Description

TRANSFAC" (1)
(+ binding sites and
binding sequences)

SCPD (36) (+binding
sequences)

BIND (37, 38)
WormBase (39, 40)

RegulonDB (13)

DBTBS (11)
(+ binding sites
and binding sequences)

Supplemental data from
literature (1)

S. cerevisine, A database of eukaryotic transcription factors,
H. sapiens, genomic binding sites, and DNA-binding
M. musculus, profiles

R. norvegicus,
D. melanogaster,

C. elegans,

A. thaliana,

O. sativa

S. cerevisine The promoter database of S. cerevisine

H. sapiens The biomolecular interaction network
database

C. elegans A database for genomics and biology of
C. elegans

E. coli A database of Escherichin coli K-12
transcriptional regulatory network, operon
organization, and growth conditions

B. subtilis A database of transcriptional regulation
in B.subtilis

S. cerevisine Transcriptional regulatory networks in

S. cerevisine

2.1.1.1. TRANSFAC™

and (2) supplemental data from experimentally determined TRIs
described in the literature (1). As methods for gathering and
transforming experimental TRIs, binding sites, and binding
sequences into a unified format vary among different sources
(Notes 3, 4, 5), we describe cach of them in the following
sections. To extend the compiled TRIs for the same organism
from different sources, see Note 6.

TRANFAC™ (12) is a database of transcription factors, their
genomic binding sites, and DNA-binding profiles for eukaryotes.
This database has two versions: (1) TRANSFAC™ Professional,
allowing bulk data downloads, and (2) TRANSFAC®™ Public
Database, for online query only. We describe how to compile the
experimental TRIs for each eukaryote in the Bioverse from the
TRANSFAC™ public database.
1. Go to the main searching page found at http://www.gene-
regulation.com/cgi-bin/pub /databases/transfac /search.cgi,
select “Factor” as the table to search.
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2.1.1.2. SCPD

2.1.1.3. BIND

2. On the page “searching in table Factor,” select “Organism
Species (OS)” as the table field to search, and specify a specific
organism name (e.g., Saccharomyces cevevisiae, Homo sapiens)
as the search item. Set the limit of hits per page to the highest
available (100), and then submit the search request. Save
the results and edit them to contain only a list of accession
numbers (one per line). These accession numbers correspond
to transcription factors of the specified species.

3. Use our Python script:run_queryWeb to query detailed
information about each transcription factor listed in the
results. The Python script programmatically specifies a
CGI search for a specific transcription factor, retrieves
the search result, and writes it into a new file with a
name matching the accession number. Following this,
use the script: run_extractInfoFrom TRANSFACTFHtml-
Files to extract the transcription factors and their (1)
target genes, (2) binding sites, and (3) synonyms, into
three separate files. To extract the binding sites to binding
sequences, use script: run_extractBindingSeq.

SCPD (36) is a database of promoters found within the S. cerevisine
genome. This database contains experimentally mapped transcrip-
tion factor binding sites and transcription start sites as main entries.
We manually compile the experimental TRIs from SCPD, using the
following steps:
1. Go to http://rulai.cshl.edu/cgi-bin/SCPD /getfactorlist,
click on the link for each transcription factor (e.g., ACEL,
ADRI1), and the corresponding page will appear.

2. Click on “Get regulated genes” button, and a list of genes
regulated by the transcription factor will appear. Click on each
of the regulated gene, a new window will appear. Save this
window into a local file with the name of the regulated gene.
Make this local file under a directory named by the transcrip-
tion factor.

3. Make a name list of the transcription factors as an input for the
script: run_parseSCPDToGetTRIs. Use this script to extract
the source experimental TRIs for S. cerevisine from SCPD into
a file. Append this file to the source experimental TRIs of
S. cerevisine from other sources.

BIND (37, 38) is a database of biomolecular interactions, reac-
tions, complexes, and pathway information. This database includes
imported experimental TRIs from published research. BIND now
becomes a component database of BOND (Biomolecular Object
Network Databank). In addition to TRANSFAC®™, we compile
the experimental TRIs of H. sapiens described in (41-43) from
BIND, using the following steps:
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1.

Go to BOND (Note 7) http://bond.unleashedinformatics.
com/Action? and register for a free account. Log in to
BOND after getting the account. A BOND search page will
appear.

Click on the “Identifier search”, a new window will appear.
Select “PubMed 1d” as the identifier from the list box on the
left, and input the PubMed identifiers (PMIDs, Note 8) of
the papers (41-43) one at a time into the text input on the
right. Then, click on the “Search” button. A search result
window will appear.

. Click on the “Interactions” tab, a new window will appear.

On the “Export Results:” list box, select “Cytoscape SIE”, a
pop-up window for saving the exported result will appear.
Save file into a local directory, edit it to have the format
ready for use by the system. Append this file to the source
experimental TRIs of human from other sources.

WormBase (39, 40) is a database of genomics and biology of
Caenorbabditis elegans and related nematodes. We compile the
experimental TRIs of C. elegans from the database using the
following steps:

1.

2.

Go to http://www.wormbase.org,/ and select a tab “Worm
Mart” at the top of the page. A martview window will appear.

In this window, select the latest release of WormBase (i.c.,
“WormBase Release WS198”) for the “Version:” list box, select
“Gene” for the “Dataset:” list box, and click on the “next”
button. A window for filtering the queried data set will appear.

Under the “Identification” section on this window, check box
“[Gene] Species” and select “Caenorhabditis elegans” in the list
box, which corresponds to the check box. Also, check box
“[Gene] Status,” and select “Live” in its corresponding list box.

Under the “Annotation” section, check box “Limit to Entries
Annotated with:,” select “[Function] Trans. Regulator Gene”
and “Only” in the corresponding list box, and radio box, respec-
tively. Leave all other boxes as defaults. Click on the “next”
button. A new page for formatting the output will appear.

Under the “IDs” section, uncheck boxes “Gene WB ID” and
“Gene Public Name”. Under the “Gene Regulation” section,
check boxes “Regulator Gene (Public Name)” and “Regulated
Gene (Public Name).” Under the “Select the output format:”
section, check radio box “Text, tab separated.” Under the “File
compression:” section, check the radio box “gzip (.gz).”
Under the “Enter a name for this result set:” section, enter a
file name for the exported result. Leave all other boxes as
defaults. Click on the “export” button. Save the exported file
to a local directory.
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2.1.1.5. RegulonDB

2.1.1.6. DBTBS

2.1.2. Upstream Regions

2.1.2.1. SGD
for S. cerevisiae

6. Use the script: run_parseWormBaseToGetTRIs to extract the
source experimental TRIs for C. elegans into a file. Append
this file to the source experimental TRIs of C. elegans from
other sources.

RegulonDB (13) is database of the regulatory network and operon
organization of Escherichin coli K-12. It is one of the two public
databases of prokaryotes from which we compile source experi-
mental TRIs. To compile experimental TRIs from RegulonDB,
use the following steps:
1. Go to http://regulondb.ccg.unam.mx/, follow the tab
“Downloads” and click on the “Data Sets” item.

2. On the page “Downloadable DataSets,” save “File 1. TF — gene
interactions” (for experimental TRIs) and “TF binding sites”
files (for binding sites and sequences) into a local directory. Edit
these two files to have the same format as of the files generated
for TRANSFAC.

DBTBS (11) is a database of transcriptional regulation of Bacillus
subtilis. It is the other public database of prokaryotes used in this
study. This database provides online access, but does not allow
bulk download or programmatic search via CGI interface. To get
the experimental TRIs of B. subtilis, we contacted the authors of
(11) and asked for the experimental TRIs. The authors kindly gave
us the requested data set in XML format. We wrote two scripts:
run_extract DBTBSForTFsAndBS and run_extract DBTBSForTRIs
that call our Python codes to parse and extract the (1) TRIs,
(2) binding sites, and (3) binding sequences from this XML file,
and write them to the experimental TRIs, binding sites, and binding
sequence files, respectively.

Upstream regions of transcription factor target genes were
compiled from (1) SGD (44) for S. cerevisine, (2) UCSC (45) for
H. sapiens (46), Mus musculus (47), Rattus norvegicus (48), and
Drosophila melanggaster (49), (3) WormBase (39) for C. elegans
(50), (4) TAIR (51) for Arabidopsis thaliana (52-55), (5) TIGR
Rice Genome Annotation database (56) for Oryza sativa (57),
and (6) NCBI for all prokaryotes, including E. colz, B. subtilis,
etc. As methods for gathering and extracting the upstream regions
and transforming them into a unified format vary among sources
(Notes 9, 10), we describe these methods as follows.

1. Go to http://www.yeastgenome.org/ (44).

2. On the left side of this main page, in section “Download
Data,” select “FTP.” A list of a directory in a new page will
appear. From here, go into the “sequence” directory, then
“genomic_sequence” directory, and then the “orf _dna”
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directory. Copy the file orf_genomic_1000_all. FASTA.gz
into a local directory. This file contains ORF sequences with
introns, untranslated regions 1,000 bp upstream of the initial
ATG and 1,000 bp downstream of the stop codon.

. Use our code script: run_extractUpstreamRegions_1000 bp_

saccharomyces_cerevisiae to parse and extract the saved file
into a mapping file between the ORFs and their correspond-
ing upstream regions.

See (Note 11) for an alternative way to get the upstream

regions for . cerevisine.

2.1.2.2. UCSC Genome 1.
Browser for H. sapiens, 2
M. musculus,

R. norvegicus,
and D. melanogaster

Go to http: / /hgdownload.cse.ucsc.edu/downloads.html (45).

. In the box “Sequence and Annotation Downloads,” search

for a specific organism. Select “Human,” for instance. This
jumps to the “Human Genome” box. In the box “Human
Genome,” select “Full data set,” which leads to a directory
page containing a list of finished human genome assemblies
with their descriptions.

Click on the upstream<xxx>.zip to download the files. These
files are zipped and are in FASTA format, with each upstream
sequence associated with an identifier system that is specific to
an organism (i.e., NM_xxxx RefSeq in case of human, mouse,
and rat, and FlyBase symbol in case of fly). The detailed
descriptions of these upstream files are described on the same
page. Basically, xxx in the name of an upstream region file
stands for 1,000, 2,000, and 5,000 to represent the number
of bases of each upstream region in each file (Note 12).

. After downloading these files, use script: run_extract_

NP_NM_homo_sapiens to parse and extract the mapping
between NCBI GenBank identifiers (GIs) of human proteins
to their corresponding RefSeq identifiers and use run_extract
UpstreamRegions_<xxx>bp_homo_sapiens to generate a
mapping file from GIs to upstream regions ready for use by
the system.

Repeat Steps 14 for “Mouse” and “Rat.”

. Use script: run_extractUpstreamRegions_<xxx>bp_drosophila_

melanogaster to extract the upstream region file of Drosophila into
a mapping file between FlyBase symbols and their corresponding
upstream regions.
See Note 13 for an alternative way to get the upstream regions

for H. sapiens.

2.1.2.3. WormBase 1.

for C. elegans

2.

Go to http://www.wormbase.org,/db/searches /advanced /
dumper (39).

In the “1. Input Options” box, type in “I II IIT IV V X XX
XO.” These correspond to the chromosomes of C. elegans. In
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2.1.2.4. TAIR for A. thaliana

2.1.2.5. TIGR for 0. sativa

2.1.2.6. NCBI for
Prokaryotes

the “2. Select one feature to retrieve,” click on “5 UTRs.” In
the “3. Output options,” check box “flanking sequences
only,” specify the flanking sequence lengths (i.e., 1,000 bp
5 flank, 0 bp 3’ flank), leave the coordinates relative to
“Chromosome,” select the sequence orientation as “Always
on canonical strand,” select the output format “Save to disk
(Plain TEXT),” then click “DUMP?” button. The saved file is
in FASTA format in which each upstream region is associated
with a sequence name (gene model) and genetic nomencla-
ture for C. elegans.

. Use script: run_extractUpstreamRegions_1000 bp_caenor

habditis_elegans to parse, extract, and transform the saved
file into a mapping file from GIs to upstream regions ready for
use by the system.

. Go to ftp://ftp.arabidopsis.org/home/tair/Sequences/

blast_datasets/ (51).

. Save files TAIR upstream_xxx_yyyymmdd, where xxx repre-

sents the number of base pairs, and yyyymmdd represents
the date the files are generated. These files are in FASTA
format, with each upstream sequence associated with an
Arabidopsis Genome Initiative locus identifier (AGI 1D)
(e.g., Atlg01120).

. Use script: run_extractUpstreamRegions_1000 bp_arabidopsis_

thaliana to parse, extract, and transform the saved files into a
mapping file from AGI IDs to their corresponding upstream
regions.

. Go to ftp://fip.tigr.org/pub/data/Eukaryotic_Projects/

o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory “version_x.x,” where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory “all_chrs.”
Under this directory, save file “all.1kUpstream” into a local
directory (Note 14).

. Use our script: run_extractUpstreamRegions_1000 bp_TIGRRice

to parse, extract, and transform the saved file into a mapping
file from TIGR_LOCUS IDs (e.g. LOC_Os01g01030.1) to
their corresponding upstream regions.

. For E. coli K-12, go to ftp://ftp.ncbi.nlm.nih.gov/genomes/

Bacteria, and enter the “Escherichia_coli_K12” directory.

. Save files “xxx.fna” and “xxx.ptt” into <organism>_Genome.fha

and <organism>_ProteinMap.ptt, respectively, where file with
fna extension contains complete genome sequence, and file
with ptt extension contains locations, the start and stop positions,
for each gene on the genome sequence. For genomes that
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2.1.3. Name Mapping

2.1.3.1. Name Mapping
from TFs, TFTs to Protein
IDs in the Bioverse

have only sequences for chromosomes such as Plasmodium
falciparum, save “xxx.fna” and “xxx.ptt” into <organism>_
chr<n>.fna and  <organism>_chr<n>_ProteinMap.ptt,
respectively.

3. Repeat Steps 1 and 2 for all bacteria and other prokaryotes.

4. Use script: run_extractGIsToUpstreamRegionsFromGenome
SeqAnd ProteinMap to parse, extract, and transform the saved
files into a mapping file from GIs to upstream regions for the
organisms.

Name mapping is another essential part of data preparation. Data
sets such as transcription factors and transcription factor targets in
the experimental TRIs and the upstream regions of gene sequences
from several sources are associated with their own identifiers (e.g.,
common names of TFs and TFTs in TRANSFAC®™, ORFs from
SGD, GenBank Identifiers at NCBI (Gls), gene IDs from Entrez
Gene, WormBase 1Ds, FlyBase symbols, and AGI IDs for worm,
fly, and Arabidopsis, and Refseq for upstream regions). Therefore,
we map these identifiers to protein identifiers in the Bioverse
(Note 15) for the prediction of protein—-DNA interactions and
the integration of protein—-DNA and protein—protein interaction
networks. In the following text we describe various name map-
pings required by the system.

To integrate the regulatory and protein—protein interactions,
the TFs and TFTs from source experimental TRIs described in
Section 2.1.1 map to protein IDs in the Bioverse. While the
Bioverse provides an ID-mapping file consisting of different ID
systems (i.e., GIs from NCBI, ORFs from SGD, AGI IDs from
TAIR) to protein IDs in the Bioverse, what we mainly have for the
TFs and TFTs from source experimental TRIs are their common
names. Hence, we establish an intermediate mapping that links
these common names to protein IDs in the Bioverse (Notes 16, 17).
The building process of an intermediate mapping file varies
according to the ID system that will be used as the intermediate.
We describe how to handle name mapping from the common
names of TFs and TFTs in source experimental TRIs to protein
IDs in the Bioverse, according to the formats for respective
organisms.

Saccharomyces cerevisiae
1. Go to http://www.yeastgenome.org/gene_list.shtml (44).
2. Save file SGD_features.tab into a local directory.
3. Use script: run_extractNameMappingFromSGD to extract

SGD_features.tab into a mapping file between the systematic
ORF names and their common names.
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Prokaryotes and Other Eukaryotes
1. Go to http://www.ncbi.nlm.nih.gov/entrez/query.fcgizdb=
gene, on the left side, click on “Downloads (FIP).” A new page
of directories will appear. Go into directory “DATA” and save the
files gene2refseq.gz and gene_info.gz into a local directory.

2. Use scriptsirun_extract_gi_to_gene_id and run_extract_
gene _id_to_names to extract the gene2refseq and gene_info,
respectively, and then use run_buildGIToNames to generate
a mapping file from GIs to names for the organisms listed as
an input of the script. For eukaryotes, we can improve the GI
to name mapping with additional synonyms extracted from
TRANSFAC".

Homo sapiens

Human genes do not have well-defined gene names as do genes in
organisms such as yeast (Note 18). As the ID-mapping file for
human in the Bioverse largely contains GI records, we decided to
use GIs as intermediate ID mapping from a common name to a
protein ID in the Bioverse. The original mapping file from GIs to
common names is generated from gene2refseq and gene_info in
Entrez Gene as described above. To refine the name mapping file,
we combine synonyms (aliases) from additional sources such as
TRANSFAC, HUGO (58), and OMIM (59), using methods
listed as follows (Note 19).

o Method to compile and extract synonyms from TRANSFAC®

The synonyms of transcription factors are a part of the source
TRIs compiled from TRANSFAC™. Hence, we do not need a separate
compilation. As the script: run_extractinfoFromTRANSFACTF
HtmlFiles_homo_sapiens also extracts the synonyms for each human
transcription factor, we only need to combine the resulting file to the
original GI-to-name mapping file from Entrez Gene using the script:
run_addSynonyms.

o Method to compile and extract synonyms from HUGO Gene
Nomenclature Committee (HGNC)

We compile and extract synonyms from HGNC using the
following steps:

o Go to http://www.genenames.org,/ and click on the
“Downloads” button at the top. The new page of data-
base downloads will appear. Click on “Custom Down-
load” listed in a box at the top of the page. A “Custom
Downloads” page will appear.

o Check boxes: “Approved Symbol,” “Approved Name,”
“Previous Symbols,” “Previous Names,” and “Aliases.”
Check boxes “Approved” for the select status, and “Select
all Chromosomes.” Scroll down and select the “ORDER
BY” to change to the “Approved Symbol,” and the
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“Output format” to be “Text.” Then, click the “submit”
button. The result of the customized query will pop up in
a new window. Save the result into a local file.

o Use script:  run_extracHumanGeneSynonymsFrom-
HUGQO. This script extracts approved symbols, approved
names, previous symbols, previous names, and aliases from
all approved human genes into a file that will be used by
script: run_addSynonyms to combine these names into the
human GI-to-name mapping file.

o Method to compile and extract synonyms from OMIM

o Go to http://www.ncbi.nlm.nih.gov/entrez/query.
tcgi?db=OMIM. On the left side, under the FAQ section,
click “Download.” A new OMIM FAQs page will appear.
Under “Downloading OMIM?” section in item 1, click on
“omim.txt.Z” to download the complete text of OMIM
and save it into a local directory.

o Use script: run_extracHumanGeneSynonysFromOMIM
to extract the gene_ symbols and their synonyms from
file omim.txt and write these extracted names into an
output file. The script: run_addSynonyms combines
these names into the human GI-to- name mapping file.

Caenorhabditis elegans

To extend the mapping from GIs to names for C. elegans generated
by run_buildGIToNames, we compile gene aliases of C. elegans
from WormBase via WormMart using the following steps:

1.

2.

Go to http: / /www.wormbase.org,/ and select a tab “WormMart”
at the top of the page. A martview window will appear.

In this window, select the latest release of WormBase (i.c.,
“WormBase Release WS198”) for the “Version:” list box, select
“Gene” for the “Dataset:” list box, and click on the “next”
button. A window for filtering the queried data set will appear.

Under the “Identification” section on this window, check box
“[Gene] Species” and select “Caenorhabditis elegans” in the
list box, which corresponds to the check box. Also, check box
“[Gene] Status,” and select “Live” in its corresponding list
box. Leave all other boxes as defaults. Click on the “next”
button. A new page for formatting the output will appear.

. Under the “IDs” section, check box “Gene Names (merged).”

Under the “Proteins” section, check box “NCBI Protein GI.”
Under the “Select the output format:” section, check radio box
“Text, tab separated.” Under the “File compression:” section,
check the radio box “gzip (.gz).” Under the “Enter a name for
this result set:” section, enter a file name for the exported
result. Leave all other boxes as defaults. Click on the “export”
button. Save the exported file to a local directory.
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2.1.3.2. Name Mapping

of an ID System Associated
with the Upstream
Sequences from Different
Sources to Protein IDs in the
Bioverse

5. Use the script: run_addSynonymsForC_elegans to append
these aliases into the available name mapping file for C. elegans.

Arabidopsis Thaliana
1. Go to ftp:/ /ttp.arabidopsis.org/home /tair/Genes/.

2. Save file gene_aliases.20080716 into a local directory. This
file contains the mapping from AGI IDs to gene aliases in the
format “AGI ID namel name2” which is ready for use by the
system.

Oryza Sativa

The ID name mapping file provided by the Bioverse for O. sativa
does not include any intermediate ID that could be linked to
the common names of transcription factors and their targets in
the source experimental TRIs of rice, so we use the following steps
to build a mapping file from the common names of rice proteins to
the protein IDs in the Bioverse.

1. Go to ftp://fip.tigr.org/pub/data/Eukaryotic_Projects/
o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory “version_x.x,” where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory “all_chrs.”
Under this directory, save file “all.pep” into a local directory.

2. Perform BLASTP from rice protein sequences retrieved from
the Bioverse to protein sequences in all.pep using script: run_
blastp_bioverse_<rice species>_to_TIGR-rice, where rice
species could be “oryza_sativa_japonica_fl,” “oryza_sativa_
japonica_syngenta,” and “oryza_sativa_indica_9311.”

3. Use scripts: run_extractBLASTPSimilarity and run_extract
TIGRLOCUSTo Bioverseld to extract the BLASTP result
and then transform them into a mapping file from
TIGR_LOCUS IDs to Bioverse IDs.

4. Use script: run_buildTIGRRiceCommonNamesToBid to
extract all.pep file into a mapping file from TIGR_LOCUS
to names.

In this section, we describe how we build a mapping from a specific
ID system associated with the upstream sequences of a specific
organism to their corresponding protein IDs in the Bioverse.

Saccahromyces cerevisiae

The upstream regions of S. cerevisiae are annotated with the same
sets of ORFs from SGD. Hence, we do not have the problem of
mapping from these ORFs to protein IDs in the Bioverse.
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Homo sapiens, Mus musculus, and Rattus norvegicus

The upstream regions of human, mouse, and rat compiled from
UCSC Genome Browser (45) are annotated with NM_xxxx,
which are the RefSeq accession numbers for nucleotide sequences.
However, the name mapping from common names to protein IDs
in the Bioverse is via NCBI GenBank Identifiers (GIs). Hence,
these RefSeq numbers are not directly usable by the system. To
handle this mapping issue, we use the following steps to transform
the RefSeq accession numbers to protein Gls.

1. Goto ftp:/ /fip.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/
and save file human.protein.gpft.gz into a local directory. This
file contains GenBank records of NP_xxxx, which are the RefSeq
accession numbers for protein sequences in human that are
associated with GIs and NM_xxxx.

2. Extract the mapping between NP_xxxx, NM_xxxx RefSeq
numbers and protein Gls using our script: run_extract_
NP_NM_homo_sapiens. This code will result in a mapping
file of GIs, NP_xxxx and NM_xxxx. The extracted mapping
will be used as an input of script: run_extractUpstream
Regions_1000bp_homo_sapiens for extracting the upstream
regions mentioned in Section 2.1.2 for human.

3. Repeat Steps 1 and 2 for mouse and rat by accessing:
ftp:/ /ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot,
and ftp://ftp.ncbi.nih.gov/refseq/R_norvegicus/mRNA_
Prot, respectively.

Oryza sativa

The compiled upstream sequences of O. sativa (cultivar Nipponbare
of Oryza sativa L. ssp. japonica) are associated with TIGR_LOCUS
IDs. As we have built a mapping file from TIGR_LOCUS IDs to
protein IDs in the Bioverse, we do not encounter the mapping
problem for this genome.

Arabidopsis thaliana

The compiled upstream sequences of A. thaliana are associated
with AGI IDs that are also available in the ID-mapping file provided
by the Bioverse, so we do not encounter the mapping problem for
this genome.

Drosophila melanogaster

While we compiled the upstream region files of D. melanogaster
from UCSC as of human, mouse, and rat, the upstream sequences
of the fly are not associated with RefSeq numbers. Instead, they
are associated with FlyBase symbols that are also available in the
ID-mapping file provided by the Bioverse. So, in case of fly, to
extract the upstream regions, we use a script similar to the script of
extracting the upstream region from FASTA format for yeast and
Arabidopsis.



116 Wichadakul, McDermott, and Samudrala

2.2. Preparing
Additional Data Sets

2.2.1. Preparing
Protein Localization

2.2.1.1. TRIPLES

2.2.1.2. Yeast GFP Function
Localization Database

2.2.2. Preparing
Protein Families

Prokaryotes

As we compile and extract the upstream regions of prokaryotes
from NCBI, where genes and proteins are already associated with
nucleotide and protein Gls, we do not have a mapping problem
from an ID system associated with the upstream sequences to
protein IDs in the Bioverse.

This section describes the preparation of additional data sets
utilized for improving the accuracy of TRI predictions.

Protein localization is employed as a filter for improving the
accuracy of the predicted TRIs. It strongly correlates with
mRNA co-expression, as well as physical and functional interac-
tions (60, 61). We compile protein localization data for S. cerevisine
from the TRIPLES database (62, 63) and Yeast GFP Fusion
Localization database (60) (Notes 20, 21). To retrieve the protein
localization data from these databases, use the following steps.

1. Go to ftp://ygac.med.yale.edu/ygac_pub_ftp/.

2. Save the file localization_pub_data_9_4_01.tab into a local
directory and use script: run_extractPLOCFromTRIPLES to
extract the ORFs and their localizations into a file ready for
use by the system.

1. Go to http:/ /yeastgfp.ucsf.edu/.

2. Within the banner at the top of the page, click on “Go” for the
advanced query. A new page will appear. In this page, leave
“Search Criteria” as default, where the inputs of all search criteria
including of the “Subcellular Localization” will be wildcards (*).
For the “Display Options,” check the box “Download the
selected dataset as a tab-delimited file” and box “include locali-
zation table.” Press the “submit” button. The system will write
the query result into a file “downloadxxxxxxxx.txt” and put it in
the “Search Results” section.

3. Save the result file into a local directory and use script: run_
extract PLOCFromYeastGFP to extract the ORFs and their
localizations into a file and use script: run_combine PLOCs to
combine the results from both TRIPLES and Yeast GEP into
a single file ready for use by the system.

The protein family is considered as another filter for improving the
accuracy of the predicted TRIs. We hypothesize that a predicted
transcription factor should share protein domains with its source
transcription factor. At present, all protein families are compiled
trom TRANFAC (12) (Note 22), using the following steps:
1. Go to http://www.gene-regulation.com/cgi-bin/pub/
databases/transfac /search.cgi?.
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2.3. Finding Similarity
Among Protein
Sequences

2.3.1. Preparing Protein
Sequences

2.3.2. Finding Similarity
Among Protein Sequences

2.3.2.1. Alignment
Methods

2. On this page, click on the “Class” button. The new page for
searching the Class table will appear. Input a wildcard (*) in
the “Search term” text field. Select “Class (CL)” as the field to
search in the table, and “100” as number of hits per page.
Then, click the “Submit” button. The new page of protein
classes will appear.

3. Save this page into the local directory as a mapping file
between class accession numbers and their descriptions.
Then, click on each accession number in this page to save as
a file on a local directory. These saved files will be used by
the prediction method for filtering the predicted TRIs.
A predicted TRI will be filtered out if its TF has no sharing
of any protein families with the source TF (Notes 23, 24).

As we use homology-based approaches for TRI prediction, the
determination of similarity among protein sequences is an essential
step. In the following section, we describe the preparation of
protein sequences and the use of alignment methods for finding
sequence similarity.

We compile protein sequences for a specific organism from the
Bioverse (3), using the following steps:

1. Prepare a text file that lists the names of the organisms

(one per line), which will be queried for all protein sequences.

2. Use script: run_getMoleculeSeqsViaRPC to retrieve the
protein sequences for the organisms listed in the prepared
text file in Step 1 from the Bioverse via XML RPC server (see
Chapter 22) (Note 25).

Similarities between protein sequences can be determined using
several alternative alignment methods. We summarize each
method and discuss their effect on the results.

1. BL2SEQ (64) is a BLAST-based tool for aligning two pro-
tein or nucleotide sequences that are presumably known to be
homologous. It utilizes the BLAST (Note 26) engine (65)
for local alignment. The main purpose of BL2SEQ is to
compare the similarity between two sequences and reduce
the processing time of using the standard BLAST program;
BL2SEQ is the fastest, but least sensitive, method compared
with the other alignment methods described here.

2. PSI-BLAST (Note 27) (Position-specific iterative BLAST)
(66) is a feature of BLAST 2.0. It improves the sensitivity of
protein—protein BLAST (BLASTP) using a position-specific
scoring matrix (PSSM) constructed from a multiple sequence
alignment of the best hits in each of the most recent iteration,
such that it refines the PSSM over sequential iterations. Each
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2.3.2.2. Similarity
Assessment

position in the PSSM will contain varied scores according to
the conservation of the position. A position that is highly
conserved will get a higher score. PSI-BLAST is much more
sensitive than the standard BLAST program in capturing the
distant evolutionary relationships or weak relationships
between protein sequences.

3. SSearch implements the Smith-Waterman algorithm (67, 68)
for local sequence alignment. Its main purpose is to avoid
misalignment due to high noise levels in the low similarity
regions of the distantly related sequences. Hence, it ignores
all these regions and focuses only on regions that have highly
conserved signals with positive scores. The Smith-Waterman
algorithm guarantees optimal local alignment with the trade-
off of moderately demanding computing resources. Hence, it
is too slow for searching a large genomic database such as
GenBank.

4. ClustalW (69) is a progressive global multiple alignment
method that improves the sensitivity of highly divergent
sequence alignment. It incorporates (1) an individual weight
for each sequence, (2) varied amino acid substitution matrices
at different stages of the alignment, (3) residue-specific gap
penalties, and (4) position-specific gap penalties. ClustalW
consists of three main steps: (1) performing pairwise align-
ments for all pairs of sequences in order to generate the
distance matrix, (2) building a guide tree from the calculated
distance matrix, and (3) carrying out a multiple alignment
guided by the tree.

In our benchmarking process, we search for similar protein
sequences of a source transcription factor (TF) or a source tran-
scription factor target (TFT) in a target organism using PSI-
BLAST. Then, we use ClustalW to create multiple alignments of

the source protein sequence and the similar protein sequences
found with PSI-BLAST.

BLASTP and PSI-BLAST assess the similarity between query and
protein sequences in a database by creating a bit score, an E value
(expectation value), and match types with identities, positives, and
gaps. The “bit score” is the normalized raw score (Note 28)
according to the statistical variables defined in the scoring system.
This score allows the comparison between different alignments
with different scoring matrices. The “E value” is the probability
that the similarity found in this alignment might happen by
chance, with a lower E value corresponding to a more significant
score. The “identity” is the ratio of the number of identical
residues over the total number of aligned residues and gaps
between a query and a target protein sequence. The “positive” is
the ratio of the number of identical plus the non-identical but



Prediction and Integration of Regulatory and Protein—Protein Interactions 119

conserved residues (represented by a minus sign in the alignment
section of the blast result) over the total number of aligned resi-
dues and gaps between a query and a target protein sequence. The
“gap” is the number of gaps (represented by a dash symbol), either
in the query or in the target protein sequence, over the total
number of aligned residues and gaps between a query and a target
protein sequence.

SSearch assesses the similarity between two sequences via the
Z-score, Smith-Waterman score, E() value, percentage identity,
and percentage similarity. The Smith-Waterman score is calculated
from a scoring matrix that includes the match and mismatch
scores, a gap creation penalty, and a gap extension penalty. The
Z-score is a normalized score calculated from a linear regression
performed on the natural log of the sequence length of the search
set. SSearch uses the distribution of Z-scores to estimate the
expected number of sequences (represented by E() value) pro-
duced by chance with equal or greater Z-score than that attained
from the search. The greater the Z-score, the lower the E() value.
The percentage identity and percentage similarity represent the
number of identical (represented by two vertical dots in the align-
ment section of the SSearch result) and the number of conserved
but not identical (represented by a single dot) residues over the
number of overlapping amino acids, respectively.

While higher scores and lower E values imply a better hit
(such that two sequences are significantly similar), these values
are calculated based on local alignment. Likewise, the percentage
identity and percentage similarity are calculated only from aligned
segments. Hence, in the case of two sequences with distant evolu-
tionary relationships or weak relationships, these values are not
directly representative of the similarity between them. Therefore,
in our benchmarking, we assess the similarity between two
sequences using the following steps:

1. For each protein (either TF or TFT) in the test set, we use
PSI-BLAST to (i) find its top hits from all other proteins in
the test set, and (ii) find its top hits from proteins in the
Uniprot (again, we need to handle name mapping from the
Uniprot protein identifier to the protein ID in the Bioverse),
and then (iii) put these two sets of protein sequences into a file
(including the query protein sequence). The number of files
will be equal to the number of proteins in the test set (all
distinct TFs and TFTs).

2. We use ClustalW to create multiple alignments for the set of
sequences in each file. Based on the global multiple alignment
results, we assess the similarity between the query protein
sequences to every other hit sequence in the resulting file, as
the number of identical residues over the total number of
residues of the hit sequence. We call this ratio the fraction
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tdentity (F1). Identical protein sequences will have FI = 1.0,
while the FI between two proteins with no similar sequences
is equal to 0.0.

2.4. Predicting TRIs To predict TRIs, we developed a Python script following the
homology-based approach described in the introduction. This
code implements the following steps (as shown in Fig. 6.3).

1. For each source experimental TRI compiled in Section 2.1,
find the orthologous proteins TFx” and TFTy’ of TF and TFT
in a target organism, from the similarity values (i.e., Irg 1ge
and Itgr.rery in Fig. 6.3) generated in Section 2.3. The
numbers of orthologous proteins are limited by the cutoffs of
similarity values (i.e., E-values, bit score, Z-scores, percentage
identity, percentage similarity; with each varied according to
the alignment methods). The predicted TRIs stem from all
combinations of homologous TFx” and TFTy’ in the target
organism. Each is assigned a similarity of interaction
Itge—ETy, Where

Itey—1rry = SqQrt(Irp—1Ev *ITET-TETY)

Source organism .
source experimental TRI

Transcription Factor (TF) ity Transcription Factor Target (TFT)

Finding orthologs 1

ety TFL-TFTy'

regulates > Protein? (TFTI')

Protein] (TF17) -2:2770

“*o:22 Protein2 (TFT2)

-2 Protein3 (TFT3")
Pec>1F1y = SQRT(ypppe * Ipprppry)
The source experimental TRI predicts 6 alternative TRIs in the target organism

Target organism

v

Filtering the predicted TRIs using binding sites and binding sequences,
functional annotation of the transcription factor, protein localization,
and protein families

IrETE : similarity value between TF and its orthologs TFx’

ITFT-TFTy‘
]‘rFx‘+TF1}r' : similarity value of the predicted TRI in the target organism to the source experimental TRI

: similarity value between TFT and its orthologs TFTy"

Fig. 6.3. Predicting TRIs.
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2.5. Benchmarking

2.5.1. TP and Test Set

The following steps are optionally used for improving the
accuracy of TRI prediction.

1. Filter out the predicted TRIs for which functional annotation
does not include “transcription factor.” Note that the
annotation of a predicted TF (TF) is queried from XML
RPC server in the Bioverse.

2. Filter out the predicted TRIs for which an upstream region
(prepared in Section 2.1.2) of their TFTs is not found
with any binding sites and binding sequences (prepared in
Section 2.1.1) of the TF of source experimental TRI
(prepared in Section 2.1.1).

3. Filter out the predicted TRIs for which the TF and TFT do
not share any protein localization (prepare in Section 2.2.1).

4. Filter out the predicted TRIs for which the protein families
(prepared in Section 2.2.2) of its TF and of the TF of the
source experimental TRI do not overlap.

One of the important issues for a prediction method is its accuracy
and coverage. In this section, we describe a design experiment for
measuring accuracy and coverage for this prediction method.

Accuracy and coverage are defined as follows.
Accuracy, = A« 100/(A+ B)
Coverage, = A x100/|TP|

for which:

x = a similarity value cutoff of E-values, Z-scores, percentage
identity, or fraction identity used for discarding the predicted
TRIs.

A = the number of predicted TRIs in the true positive set (TP) at
cutoft x.

B = the number of predicted TRIs not in TP at cutoff x.
|TP| = the number of source experimental TRIs in TP.

The true positive set (TP) of a target organism contains all experi-
mental TRIs of the organism. If TRIs in the true positive set
contain N distinct transcription factors (TFs) and M distinct
transcription factor targets (TFTs), the test set will contain N x
M TRIs, which result from all-against-all combinations between
TFs and TFTs in the TP (Note 29). We define accuracy as the
fraction of TRIs predicted by the system that are in TP out of all
the predicted TRIs (either in TP or not in TP) at a specific cutoft.
We define the coverage as the fraction of TRIs predicted by the
system that are in TP at a specific cutoft over all TRIs in TP. Higher
FI threshold cutoffs correspond to higher accuracy and lower
coverage.
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2.5.2. Measuring Accuracy
and Coverage

In general, if the system is optimized, the cross-point between
the accuracy and the coverage plots represents an appropriate
cutoft for the system to include or exclude predicted TRIs.

To benchmark the predicted TRIs, we measure the accuracy and
coverage of the predicted TRIs at specific cutoffs, we use the script:
run_regulogBenchmarking_<organism>_sprot, where organism
could be human, mouse, rat, yeast, and fly. This script calls our
Python code that implements the following steps:

1. For each TRI in the test set, find the source experimental
TRIs that give the TRI from the test set with the highest
geometric mean of the FI product (Note 30). Assign this
source experimental TRI and the geometric mean of the FI
product to the TRI from the test set.

2. For each FI threshold cutoff ranging from 0.0 to 0.95, count
the number of TRIs in the test set that are in TP and not in
TP, and the FIs between the source TF and target TF and the
source TFT and target TFTs at or above the cutoft.

3. Calculate the accuracy and coverage for each cutoff using the
results from Step 2 and write the results into output files.
We use the above code to benchmark the accuracy and
coverage of predicted TRIs for five organisms: human, mouse,
rat, fly, and yeast. Table 6.2 shows the numbers of pairs in
the TP, TFs in TP, TFTs in TP, and TRIs in the test set of the
five organisms. The source experimental TRIs came from the
combination of all TRIs in TP from these organisms plus the
experimental TRIs of E. cols and B. subtilis that had protein
IDs in the Bioverse. For the benchmarking, we exclude TRIs
in TP of the target organism from the source experimental
TRIs. To obtain numbers for Table 6.2 and generate the test

Table 6.2
Numbers of TP, TFs in TP, TFTs in TP, and TRls in the test set
of human, mouse, rat, fly, and yeast used for benchmarking

Organisms TP  TFsin TFTs in TRIs in the test set
TP TP (TFsin TP x TFTsin
TP)
S. cerevisine 136 38 104 3,952
D. melanogaster 171 72 65 4,680
M. musculus 309 109 159 17,331
R. norvegicus 46 18 36 648

H. sapiens 900 118 553 65,254
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sets for the benchmarking, we use the script: run_generate-
TestsetForBenchmarking. Figure 6.4 shows the accuracy and
coverage without any filtering for the test sets of human,
mouse, rat, fly, and yeast. In general, the cross-point between
the accuracy and coverage lines could be an appropriate cutoft.
In this figure, the cross-points of the plots vary according to
the available TRIs in TP of the target organisms.

To measure the errors of the method, we generate new test
sets comprising randomly selected sets of 80% of the TRIs in TP.
We repeat this benchmarking process 50 times. Figure 6.5 shows
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Fig. 6.4. Accuracy and coverage without any filtering for the test sets of yeast, fly, mouse, rat, and human.
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Fig. 6.5. Accuracy with error bars of the TRI prediction method without any filtering for the test sets of yeast, fly, mouse,
rat, and human. Data point represents the mean of 50 bootstrapped data sets (randomly selected 80% of TRIs in TP) and
error bars indicate the standard deviations above and below the mean.

2.5.3. Correctness of
Benchmarking Method

the mean accuracy without any filters and the standard deviations
below and above the mean at each FI threshold. Results from
human, mouse, and yeast do not vary substantially among 50
tries. The method does not work well with fly data sets due to a
low number of significant homologs within the available source
experimental TRIs. It is likely that this also explains the results
trom fly in Fig. 6.4. The high standard deviations in the case of
rat indicate heterogeneity for the rat TP. As we do not have a
complete set of TRIs in TP for any target organism, the accuracy
and coverage of predictions can only be evaluated as minimum
accuracy and coverage.

We perform a sanity check to measure the correctness of the
benchmarking method by including TRIs in the TP of the
target organism as part of the source experimental TRIs and
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2.5.4. Effects of Filters

calculate the accuracy and coverage using high threshold cut-
offs ranging from 0.95 to 1.0. If the method is correct, then
the predicted TRIs in TP should be the same as their source
experimental TRIs and both accuracy and coverage will be
100%.

In the case of mouse TRI prediction, there is one predicted
TRI (SP1—TTEF-1) that is not a TRI in TP at the FI threshold
cutoft >= 0.95. This TRI is transferred from the SP1—TTF-1 in
the source experimental TRIs of human. While this TRI is not in
the source experimental TRIs of mouse, it is highly likely to be a
real but not yet experimentally validated TRI.

In case of human TRI prediction, there are two predicted TRIs
(ATF-2—HIST3H2A and HOXA5—HOZXA5) not in the human
TP at the FI threshold cutoft >= 0.95. These TRIs are transferred
from the ATF-2 — HISTIH2AC and the HOXA5—HOZXAS5 in
the source experimental TRIs of human and mouse, respectively.
HIST1H2AC is transferred to HIST3H2A with the very high
cutoft value, as they are isoforms, but at the FI threshold cutoft
>= 0.98, only ATF-2—HIST3H2A remains (Note 31). While
HOXA5—HOXAS is not in the source experimental TRIs of
human, it is also likely to be a real but not yet experimentally
validated TRI.

The predicted TRI of yeast (ARS—ENO1), which is not in TP
at the FI threshold >= 0.95, is transferred from the ARS—ENO2
in the source experimental TRIs of yeast, where ENO2 and ENO1
are isoforms.

Overall, the results of our sanity check (shown in Table 6.3)
for the five organisms confirm that the method is correct.

Figure 6.6 shows how different filters affect the accuracy of TRI
prediction (Note 32). Judging from our results, the use of binding
sites for filtering predictions improves the accuracy of TRI predic-
tion for all organisms (except fly, due to the limited number of
source experimental TRIs) (Notes 33, 34). The use of the func-
tional annotation of “transcription factor” from the Bioverse as a
filter slightly improves the prediction accuracy for all organisms
except human, which might be caused by too narrow a search with
the Bioverse options limited to “transcription factor” or unavail-
able. In the case of yeast, the use of protein localization as a filter
slightly improves the accuracy of prediction at low-to-medium FI
threshold cutoffs. Table 6.4 shows the numbers of predicted TRIs
of different filters for the five target organisms at the FI threshold
cutoft >=0.3.

We investigate how protein families relate to the pre-
dicted TRIs by counting the number of TRIs for which TFs
are sharing or not sharing protein families with their corre-
sponding source TFs. Table 6.5 lists the counting results for
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Table 6.3
Results of the sanity checks for human, mouse, rat, fly, and yeast

Fl threshold TRIsinTPs TRIsnotinTPs % accuracy % coverage

D. melanogaster  0.95 171 0 100 100
0.96 171 0 100 100
0.97 171 0 100 100
0.98 171 0 100 100
0.99 171 0 100 100
1 171 0 100 100
H. sapiens 0.95 900 2 99.778 100
0.96 900 2 99.778 100
0.97 900 2 99.778 100
0.98 900 1 99.889 100
0.99 900 1 99.889 100
1 900 0 100 100
M. musculus 0.95 309 1 99.677 100
0.96 309 0 100 100
0.97 309 0 100 100
0.98 309 0 100 100
0.99 309 0 100 100
1 309 0 100 100
R. norvegicus 0.95 46 0 100 100
0.96 46 0 100 100
0.97 46 0 100 100
0.98 46 0 100 100
0.99 46 0 100 100
1 46 0 100 100
S. cerevisine 0.95 136 1 99.27 100
0.96 136 0 100 100
0.97 136 0 100 100
0.98 136 0 100 100
0.99 136 0 100 100
1 136 0 100 100
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Fig. 6.6. Accuracy with no filters, accuracy with TF function filter, accuracy with binding site filter, accuracy with
localization filter (in yeast only), accuracy with all filters for the test sets of yeast, fly, mouse, rat, and human.

the five organisms at the FI threshold cutoft >= 0.3. The
numbers of predicted TRIs that display sharing are the lar-
gest compared to the numbers of predicted TRIs not sharing
or not having protein family information, for all FI threshold
cutoffs for all organisms except yeast (data not shown here).
In case of yeast, most of the predicted TRIs are the TRIs for
which TFs or their source TFs do not have protein family

information.
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Numbers of predicted TRIs (in TP, not in TP) with different filters at the Fl threshold
cutoff >= 0.3 of yeast, fly, mouse, rat, and human from the benchmarking process

Organisms No filter W/TF function filter W/binding site filter W/all filters
S. cerevisine 18,111 11,58 11,7 1,3

D. melanogaster 0,1 0,1 0,0 0,0

M. musculus 21,126 13,73 7,44 5,22

R. norvegicus 6,5 6,3 2,0 2,0

H. sapiens 13,117 7,70 1,9 1,7

Table 6.5

Numbers of predicted TRIs of TP and not in TP for which TFs (1) share protein
families with their corresponding source TFs, (2) have no overlapped protein
families with their source TFs, and (3) have no information of protein families, with
no filters, at the Fl threshold cutoff >= 0.3

TRIs
TRIsin TRIsin  TRIsin TRIsnot TRIsnot notin
TP, TP, no TP, no in TP, inTP,no TP, no
sharing sharing protein TRIs sharing sharing protein
TRIs  protein protein  family not protein  protein family
Organisms inTP family  family info. in TP family family info.
S. cerevisine 18 3 0 15 111 32 0 79
D. melanogaster 0 0 0 0 1 0 0 1
M. musculus 21 15 3 3 126 93 13 20
R. norvegicus 6 5 0 1 5 4 0 1
H. sapiens 13 10 0 3 117 100 3 14
3. Notes
’ Q 1. Orthologs are defined as best-matching homologs between a

source and a target organism.

. Similarly, an interolog is defined as the pair of interacting

proteins A «+—— B in a source organism and its orthologous
proteins A’——DB’ in a target organism (29).
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3. The sources of experimental TRIs are limited, and the ways
to access and gather them are varied. Among our source
databases, RegulonDB is the only database that provides a
way to download the TF to gene interactions in bulk. In the
case of TRANSFAC™, we needed to write a script using the
urllib module in Python to fetch data from the http server of
TRANFAC®. In case of DBTBS, we resorted to a personal
communication requesting the experimental TRIs from the
authors.

4. The formats of the experimental TRIs differ from source
to source. For instance, TRANSFAC®™ provides the
experimental TRIs of eukaryotes via the records of tran-
scription factors in html files, where each record will
contain various information of the transcription factor
and its regulating genes. DBTBS provides all experimental
TRIs of B. subtilis in a single xml file. To handle these
various formats, we wrote code for extracting the experi-
mental TRIs from each specific source as described in
Section 2.1.1.

5. We encountered the same problems for gathering and pre-
paring the binding sites and binding sequences. The binding
sites in TRANSFAC™ came as a part of the transcription
factor records and linked to their own records of specific
binding sequences. Hence, we wrote code to extract the
binding site accession numbers. Then we fetched the binding
site records from the TRANFAC™ http server and parsed
these records for the binding sequences. In case of DBTRBS,
the binding sites and binding sequences appeared in specific
xml tags. Hence, we developed code to parse and extract
them. As RegulonDB provides bulk download of the TF
binding sites, we only needed to edit the format of the down-
loaded file.

6. Toextendasetof experimental TRIs for an organism from differ-
ent sources, we use the script: run_appendTRIs_<organism>,
where examples of organisms are “caenorhabditis_ elegans,”
“homo_sapiens,” and “saccharomyces_cerevisiae.” This script
calls a code that appends additional TRIs compiled from other
sources listed in an input file (e.g., . /inputs /TRIs /caenorhabdi-
tis_elegans_tris_fileList.txt, for C. elegans)totheavailable TRIfile.
For instance, the run_appendTRIs_caenorhabditis_elegans
appends the TRIs compiled from WormBase (in file ../inputs/
TRIs/WormBaseTRIs.csv) to the compiled TRIs from
TRANSFAC.

7. BIND becomes a component of BOND (Biomolecular
Object Network Databank), which contains not only BIND
but also GenBank data and related tools.
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8.

10.

11.

12.

We get a PubMed identifier for a paper by searching the paper
at Entrez PubMed http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?DB=pubmed.

. The lengths of the upstream regions are specific and limited

for different sources. For instance, the UCSC Genome Brow-
ser provides the upstream regions of human, rat, mouse, and
fly with lengths 1,000, 2,000, and 5,000 bps whereas SGD
provides only 1,000 bps upstream regions. In the case of
prokaryotes, we extracted the upstream regions of each
organism from their complete genome sequences, with the
length of 500 bps (Notes 35, 36).

In this work, we do not take the directions (i.e., forward,
reverse) of the strand of the upstream regions into account.
Also, we do not consider the possible binding sites at the
downstream region. At present, we are interested only in
predicting the transcriptional regulatory interactions for
which transcription factors bind to specific sequences in the
upstream regions of a target gene. Nevertheless, the overall
methods described for TRI prediction should be usable for
these extensions as these affect only the scanning of the bind-
ing sequences during the filtering process. The data prepara-
tion should be extended for the downstream regions, and the
scanning of binding sites should evaluate the reverse strand
and downstream regions.

In the case of S. cerevisine, instead of getting the upstream
regions via the ftp server as described in Section 2.1.2, you
might follow the following steps:

e Qo to http://www.yeastgenome.org/ (44).

e On the left side of this main page, in section “Download
Data,” select “Batch Download.” A page “SGD Batch
Download Tool” will appear. Specity the input chromo-
some on the right-hand side of Step 1, and then specify the
type of data that you would like to retrieve in Step 2. Under
the “Sequence data” section, check box “Genomic DNA +
1 kb upstream and 1 kb downstream of flanking sequence,”
and click the submit button.

e After getting the result file for each chromosome, concate-
nate these files together for the upstream regions of all
genes in the complete genome. Then, use the same script:
run_extractUpstreamRegions_1000bp_saccharomyces_ce-
revisiae to parse, extract, and transform this file into the
upstream region file from §. cerevisiae, ready for use by the
system.

The upstream region files downloaded from UCSC Genome
Browser contain only the upstream regions from transcription
starts annotated separately from the coding initiation region.



Prediction and Integration of Regulatory and Protein—Protein Interactions 131

13.

14.

15.

So, they are not the complete sets of upstream regions. An
alternative way to compile the upstream regions of genes in an
organism is to find the location of the genes in the complete
genome sequence and extract the sequence in front of the
genes starting from their transcription start sites as the
upstream regions.

In the case of H. sapiens, M. musculus, R. norvegicus, and D.
melanogaster, one might use the ftp server instead of the http
server:

¢ Qo to ftp://hgdownload.cse.ucsc.edu/goldenPath /.

e Use the code in parentheses at the first line of a specific
genome box at http: //hgdownload.cse.ucsc.edu/down-
loads.html (e.g., hgl8 for human genome) to select the
directory under the ftp://hgdownload.cse.ucsc.edu/
goldenPath/. Under this directory, select “bigZips”
directory and save files upstreamxxx.zip into a local
directory. The xxx represents the number of base pairs
of each upstream region. Use our script: run_extract
UpstreamRegions_1000 bp_homo_sapiens to parse,
extract, and transform the saved files into the format
ready for use by the system.

TIGR uses the results from IRGSP. Hence, the upstream

regions of rice downloaded from TIGR are of the cultivar

Nipponbare of Oryza sativa L. ssp. japonica (57). The first

draft sequence of O. sativa L. ssp. indica was also available

and published in the same journal (70).

The naming systems of the upstream regions of organ-
isms are different from source to source. We needed to
tind the appropriate mapping from a specific ID system
to the protein IDs in the Bioverse. The complexity in
finding the mapping varied according to different
sources. For instance, the upstream regions of eukaryotes
(i.e., human, mouse, rat) downloaded from the UCSC
Genome Browser were identified by RefSeq accession
numbers for nucleotide sequences. However, we only
had the mapping of NCBI GenBank Identifiers (GIs)
to protein IDs in the Bioverse for these organisms.
Hence, we needed to find the mapping from these
RefSeq numbers to the GIs. On the other hand, the
upstream regions of yeast, fly, worm, and Arabidopsis
had been annotated by their specific ID systems already
in the Bioverse. Hence, finding the mapping for these
organisms was less complex. In case of rice, as TIGR
uses TIGR_LOCUS as the main identifier for the rice
genome to refer to the upstream regions, genes, and
proteins, we needed to find the mapping from TIGR_-
LOCUS IDs to protein IDs in the Bioverse.
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16.

Several names of TFs and TFTs in the source experimental
TRIs are not mapped with any intermediate ID system.
Hence, the TRIs with these TFs and/or TFTs will be dis-
carded, such that several source TRIs are lost during the
mapping process.

17. We could improve the quality of the name mappings by

18.

19.

20.

finding and adding the synonyms of the common names
from different sources to the name ID mapping file.

Building name mapping from TFs, TFTs to protein IDs in the
Bioverse for H. sapiensis the most complicated. We encoun-
tered the following problems and limitations during the pro-
cess of building the name mapping:

e The naming of human genes is still not well defined. Even
though several sources of human genes with common
names are available, some of them are not updated and
some others are obsolete. Sources of common names for
H. sapiens are GenBank, the synonyms field associated with
each transcription factor information files compiled from
TRANSFAC"™, OMIM (59), Entrez Genes (71), and
HUGO (58).

e Human genes are much more complex than yeast. Several
of them have the same common names but different protein
products according to different isoforms. Hence, a straight-
forward many-to-one mapping of a common name and its
synonyms to a specific intermediate 1D (i.e., systematic
ORF name from SGD) and to a protein ID in the Bioverse
as in case of yeast is not always true in human.

Even though the name mapping could be refined with the
synonyms of common genes from different sources, in gen-
eral, these will not be complete. The better and more reliable
mapping from the common names of TF and TFT in the
experimental TRIs to protein IDs in the Bioverse uses
sequence mapping. However, this is not applicable because
this method involves protein sequences of all TFs and TFTs in
all experimental TRIs. Nevertheless, TRANSFAC™ provides
only the protein sequences of TFs but not of TFTs, while
other sources of experimental TRIs do not provide protein
sequences. To get protein sequences for these TFs and TFTs,
we return to the name mapping problem.

At present, we have only the protein localization of S.
cerevisine from two public data