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Introduction

This guide is meant to offer an easy to follow guide to the analysis of RNA-seq data, aimed at those without any prior experience analyzing next-gen
data. However, a basic level of familiarity with R, the next-gen sequencing procedures and using the unix shell are assumed. It was primarily written by
Matthew Young (myoung@wehi.edu.au) and is a work in progress. Most of the steps described here are outlined in our review article [5] which can be
cited if people are using this guide in their work... The pathogen example was provided by B. Usadel and makes use of a different set of tools.

What does the data look like?

For every sample on which RNA-seq is run, the output you will receive is a file containing millions of short (25-300bp) DNA sequences, called reads, and
quality scores indicating the confidence of each base call. However, there are some important common variations on this which depend on the platform
and protocol used. These include, but are not limited to:



Base space or Colour Space

Paired end/mate pair or Single end/unpaired

Stranded or Unstranded

Base space vs Colour space

The two main platforms for second-generation sequencing of RNA are produced by Illumina and ABI Solid. While both produce millions of short reads,
they are sequenced and reported in slightly different ways. The Solid platform uses a sequencing technique which generates the read information by
attaching two base pairs at a time. Each base pair of a read is sequenced twice, by two (potentially different) di-nucleotides. To take advantage of this
sequencing chemistry, Solid reports its reads not as a sequence of nucleotides, but as a sequence of 4 colours, where each colour represents a
transition between bases, known as "colour space encoding"
(http://marketing.appliedbiosystems.com/images/Product_Microsites/Solid_Knowledge_MS/pdf/SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf
). On the other hand, the Illumina platform reads one base at a time along a fragment until the desired read length is reached. The observed bases are
then reported as the output.

The consequence of this is that the tools for analyzing RNA-seq data depend on the platform used to produce the short read data. While it is possible
to convert colour space reads to base space (and visa versa), doing so introduces severe biases into the data which should be avoided at all costs.
Therefore, reads should be kept in their native format and the appropriate tools should be used to analyze them.

Paired end/Mate pair reads

The standard RNA-seq protocol involves random shearing of reverse transcribed mRNA (cDNA), followed by sequencing a short "read" from one end of
the fragment. This means that only the first 25-300bp of a fragment are known (depending on the length of the reads) with the rest of the fragment
remaining unsequenced. In fact, because fragmentation is random, the length of each fragment is also unknown, although a size selection step is
usually applied.

Although the chemistry is not sufficiently precise to allow the entire fragment to be sequenced, a clever trick can be applied whereby a short read is
taken from both ends of the fragment resulting in a pair of short reads one from each end of the fragment. Reads where this has been performed are
known as paired end or mate pair reads. Paired end reads allow additional information to be inferred about the intervening sequence and are
particularly useful for de novo transcriptome construction and detecting structural variants, such as indels.

Stranded reads

RNA-seq data can come in either stranded or unstranded varieties. If the data is unstranded, the strand from which the fragment was transcribed
cannot be identified directly from the sequence. Furthermore, because the RNA-seq protocol usually involves forming double stranded cDNA for ease of
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sequencing, the returned sequence is just as likely to be that of the reverse complement of the source DNA sequence as the original DNA sequence. In
practical terms, this means that while half the reads map to the forward strand and half the reverse, this mapping does not contain any information
about which strand the RNA was transcribed from.

Stranded RNA-seq data on the other hand preserves strand information, making it possible to identify which strand the RNA was transcribed from.

What can be done with RNASeq data

In order to analyze your RNASeq data, there are different aims which require different preprocessing steps.

Calling DE genes

If you want to call differentially expressed genes it is mandatory for many BioConductor packages that you do not convert your read count to e.g. rpkm
but use the raw read count. The reason is that the statistical model uses the original read count data. (Less reads mean more short noise, whereas a
lower rpkm value could still be associated to many reads e.g. in the case of a very long gene). Please also bear in mind that even if you use RNASeq
data you still need biological replicates.

Also you will want to use software packages that are made for RNAseq (i.e count data) such as DESeq, bayseq, NBPSeq or edgeR, which all use a
negative binomial model.

A typical workflow might look like this

1. quality control your data
2. Mapping Reads (see the howto (http://seqanswers.com/wiki/How-to/short_read_aligners) )
3. Counting Reads per feature
4. statistical analysis

Counting/summarizing reads

After having aligned reads to your genome you need to summarize the reads. This might be a crucial step, as there are many different way for
summarization. One way could be to be very stringent and only count completely unambigous reads, however in downstream analyses this needs to be
taken into account. One could summarize the data by using e.g. [HTSeq count http://www-huber.embl.de/users/anders/HTSeq/doc/count.html] or the
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Bioconductor Iranges module

Statistical Analysis

When testing for differential expression, one should likely take a package modelling count data. In Bioconductor, options include [DESeq
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html], edgeR and bayseq.

Differential exon usage

Besides overall changes in expression of a gene, there can be differentially abundant of isoforms or specific exons. Testing for differentially abundant
exons can be done using [DEXSeq http://bioconductor.org/packages/release/bioc/html/DEXSeq.html], see also the Genome Research paper [1]
(http://genome.cshlp.org/content/early/2012/06/21/gr.133744.111.long) .

Category enrichment (e.g. GO enrichment)

As with all enrichment analyses, the categories that you find might be confounded by detection power. With RNASeq, the power for detecting
differential expression (at the same type-I error, e.g. the same adjusted p-value) is higher for genes with more counts. For example, if all
photosynthesis genes were highly expressed, you would have a higher chance to find any of these to be differentially expressed than other genes. Now,
if you found photosynthesis genes enriched in your list of differentially expressed genes, that might be just because they were easier to find.

The authors of the Goseq package in Bioconductor noted that longer genes tend to generate more counts, and they provide software for doing GO
category enrichment analysis that is able to adjust either for gene length, or directly for expression strength.

Estimating expression height

A typical workflow might look like this

1. Mapping Reads
2. Counting Reads per feature
3. normalizing for gene length

Finding novel genes or splice variants

Quality Control (QC)

There are many possible avenues for performing checks for quality on sequencing data. Some popular options are: FastQC

http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://genome.cshlp.org/content/early/2012/06/21/gr.133744.111.long
http://seqanswers.com/wiki/Goseq
http://seqanswers.com/wiki/FastQC


(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/), DNAA (http://seqanswers.com/wiki/DNAA) or you can do it in R or use HTSeq

Although more complex quality metrics can be used, a basic check that the sequence composition doesn't vary too greatly along the length of the reads
and the quality scores do not dip too low are a good place to start. These checks (as well as several others) can be performed by loading the fastq files
into the fastQC program.

Mapping the reads

Unless your aim is to do de novo transcriptome assembly, the first step of any analysis will be to align your millions of short reads to a reference of
some kind. This is usually the reference genome for the species from which the RNA was extracted. There are many different aligners for performing
short-read alignment to a reference (lists are available here (http://en.wikipedia.org/wiki/List_of_sequence_alignment_software) and here
(http://seqanswers.com/wiki/Special:BrowseData/Bioinformatics%20application?Bioinformatics_method=Mapping) ). Each has specific advantages and
disadvantages, usually involving a trade-off between speed and sensitivity. For the purposes of this guide we will use the aligner BOWTIE because it is
actively developed, fast, widely used and supports both base space and colour space reads.

As a starting point, I will assume you have the following files:

For single end reads:

sample.fa or sample.cfa (cfa for colour space, fa for base space)

For paired end reads:

sample_pair1.fa and sample_pair2.fa or sample_pair1.cfa and sample_pair2.cfa (cfa for colour space, fa for base space)

Obtaining the reference

In order to map the short reads to a reference genome, that genome has to be turned into an index which can be used by BOWTIE. A number of
prebuilt indexes for common genomes can be downloaded from the BOWTIE website (http://bowtie-bio.sourceforge.net/index.shtml) . If your genome
is not available you will have to construct the index yourself from a fasta file containing your reference genome, these can be obtained from UCSC
(ftp://hgdownload.cse.ucsc.edu/goldenPath/) . This is accomplished using the command:

The argument "reference_name" is a unique identifier that will be used to refer to this reference genome from now on. If your reads are colour space,
construct a colour space index by adding the -C command:

   bowtie-build reference.fa reference_name
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This command will output 6 files named reference_name.1.ebwt, reference_name.2.ebwt, reference_name.3.ebwt, reference_name.4.ebwt,
reference_name.rev.1.ebwt, and reference_name.rev.2.ebwt.

Irrespective of how you obtain the index, in order for BOWTIE to use it, the six files mentioned above need to be placed in the BOWTIE indexes
directory. If you're not sure what your indexes directory is, it is pointed to by the environmental variable BOWTIE_INDEXES, so:

will display the path where you should put the index files.

If you wish to use an aligner other than BOWTIE, you will also have to build an index from the reference genome. Refer to the documentation for your
preferred aligner for more information.

Aligning reads to the reference

Having constructed the reference into an index that BOWTIE can use, we now want to align our data to this index. BOWTIE offers a wealth of
command line options that can be used to adjust the alignment algorithm and how it handles input/output. These command line options are described
in detail in the BOWTIE manual (http://bowtie-bio.sourceforge.net/manual.shtml) , but there are a few flags that are commonly used in the analysis of
RNA-seq and bear mentioning here.

The --sam or -S tells BOWTIE to output the results of the alignment in SAM format instead of the BOWTIE format. SAM
(http://samtools.sourceforge.net/) is rapidly becoming the standard for reporting short read alignment and is supported by a wide range of downstream
analysis tools. Unless you have a very good reason not to, this flag should always be specified.

The --best flag tells BOWTIE to guarantee that the alignment that it reports has the fewest number of mismatches to the reference out of all matches
found. It also performs a few other desirable functions such as removing strand bias (see BOWTIE manual (http://bowtie-
bio.sourceforge.net/manual.shtml#thebowtie-aligner) ). The trade-off for these benefits is that --best is slightly slower, but this difference is negligible
in almost all instances. Note that --best does not apply to paired-end reads. This flag should be enabled unless speed is a major consideration.

Each base has a quality score associated with it which is reported on the PHRED scale (http://en.wikipedia.org/wiki/Phred_quality_score) where lower
scores mean less confidence in the accuracy of the base call. For each candidate alignment, BOWTIE adds up the quality scores at bases which don't
match the reference. Any match location that has a sum of mismatch quality scores greater than -e is deemed invalid and not reported. The default
value of -e of 70 was optimized when read lengths tended to be shorter (~30bp), but is not appropriate for longer read lengths commonly used today.
Furthermore, any true biological variation from the reference (such as SNPs) will in theory have a high quality score. Therefore, reads with SNPs will
score very poorly on the sum of mismatching quality scores metric. For all these reasons, it is advised that the user increase -e beyond the default

   bowtie-build -C reference.fa reference_name

   echo $BOWTIE_INDEXES

http://bowtie-bio.sourceforge.net/manual.shtml
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unless the reference is known to be an excellent representation of the biological source of RNA and the number of errors in the read is small.

The -p flag sets the number of simultaneous threads to use. As short read alignment is effectively infinitely parallelizable, set this to the number of CPU
cores available.

With these considerations in mind, we map our short read data to our reference using the command

If using colour space, the -C flag needs to be added.

If your data is paired end the two paired files need to be specified using the -1 and -2 flags

More complex alignment

The fragments of cDNA that are being sequenced originate not from the genome, but from the transcriptome. The transcriptome is formed by
combining exons from the genome, which is why mapping to the genome is a good approximation. However, in doing so the ability to map any read
that crosses exon-exon boundaries is lost. The longer the reads, the more this becomes an issue as a read is more likely to cross a boundary and be
rendered unmappable. Depending on the desired downstream analysis, this lost coverage at exon boundaries may or may not be a problem.

Exon Junction libraries

It is possible to build exon junction libraries from known annotated exons and then try and map those reads that fail to map against this sequence.
Such an approach is only capable of capturing reads that span known annotations, limiting its utility and biasing the results towards well annotated
genes/genomes. In order to do this, a new reference needs to be constructed that contains both the reference genome, as well as the new exon-
junction sequence. It is important that the original genomic reference still be included in the reference, even if you are only mapping those reads that
failed to align to the genome, so as the reads can compete amongst all possible mapping locations when determining alignment. You also need to
decide how much sequence to take from either side of the exon-exon boundary. The amount of sequence from each exon must be less than the read
length, otherwise any read which falls near an exon boundary, but not over it, will map to two locations, the exon junction library and the genome
itself. This means that if you intend to trim your reads, the amount of sequence you take from each side of the exon junction must me less than the
length of the trimmed read. Finally, you need to decide what combinations of exon-exon joinings you are going to consider. Do you only consider
splicing within genes, within chromosomes, without exon reorientation? All of these things occur with different frequencies in different samples and the

   bowtie -p 8 --sam --best reference_name sample.fa aligned_reads.sam

   bowtie -p 8 --sam -C --best reference_name sample.cfa aligned_reads.sam

   bowtie -p 8 --sam reference_name -1 sample_pair1.fa -2 sample_pair2.fa aligned_reads.sam



more possibilities you consider the greater the computational complexity.

To construct the junction library you first need a genome annotation. These can be downloaded from the UCSC table browser
[1](http://genome.ucsc.edu/cgi-bin/hgTables) . You can then either write your own tools to create a fasta file with all the exon junctions, or use an
existing tool, such as the "Make Splice Junction Fasta" application included in the USeq software package [2]
(http://useq.sourceforge.net/applications.html) . Once you have a fasta file containing your exon-junction libarary you need to combine it with the fasta
file for your reference genome.

Then build a new bowtie index as descibed above

Finally, you map the reads in the same way as to the reference genome. For example,

Further options

If this approach still does not map a reasonable number of reads, there are other alternative approaches that can be explored, at even greater
computation cost. For example, you may try to estimate splice junctions from the data itself, using "De-novo" splice junction finders. There are many
tools that attempt to do this, some examples include TopHat (http://tophat.cbcb.umd.edu/) , SplitSeek
(http://solidsoftwaretools.com/gf/project/splitseek/) , PerM (http://code.google.com/p/perm/) , soapAls (http://soap.genomics.org.cn/soapals.html) .
Full de novo assembly of the transcriptome is also a possibility, although very high coverage is required for this to work well. Paired end data is of huge
benefit to this task as either end of a fragment mapping to a different exon is very strong evidence for a splice junction. A list of such tools can be
found in table 1 of the review article here [5].

Differential Expression

A common use of expression assays is to look for differences in expression levels of genes or other objects of interest between two experimental
conditions, such as a wildtype vs knockout. In order to do this we need to transform the data from a list of reads mapping to genomic coordinates into
a table of counts. The strategy we employ here is to load the short reads into R using the Rsamtools package and then count the number of reads
overlapping some annotation object, which is usually something like a collection of genes downloaded from the UCSC. Once transformed, a test can be
performed to look for statistically significant differences in expression level.

   cat reference.fa junctions.fa >reference_and_junctions.fa

   bowtie-build reference_and_junctions.fa junction_lib

   bowtie -p 8 --sam --best junction_lib sample.fa aligned_reads.sam
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Summarization of reads

Compressing aligned reads using SAMtools

In order to be able to load millions of aligned reads into memory in R, we need to create a binary compressed version of our human readable SAM
output. This file will contain all the same information, but have a much smaller memory footprint as well as being quickly searchable. To create such
files, we first need to install SAMtools(http://samtools.sourceforge.net/) . Next we need to construct an index of the reference, using the fasta file. This
is done by executing:

Which creates a file reference.fa.fai. Next we convert SAM to BAM. BAM files contain all the same information as SAM files, but are compressed to be
more space efficient and searchable.

Finally we need to create an index of the reads so they can be quickly searched. In order to do this we first need to sort the BAM file.

This will create aligned_reads_sorted.bam, which we now index.

Which creates the index file aligned_reads_sorted.bam.bai.

If you don't have the original fasta file for the reference because you downloaded a prebuilt index from the BOWTIE website (or because you lost the
fasta file after making your own), you can rebuild the source fasta file by running the following.

Working with BAM files in R

Our goal is to use R to summarize the reads by genes for each sample. To this end, we will use our newly created compressed representation of the

   samtools faidx reference.fa

   samtools import reference.fa.fai aligned_reads.sam aligned_reads.bam

   samtools sort aligned_reads.bam aligned_reads_sorted

   samtools index aligned_reads_sorted.bam

   bowtie-inspect reference_name>reference.fa

http://seqanswers.com/wiki/SAMtools
http://samtools.sourceforge.net/


short reads (the sorted, indexed, BAM file).

Fetching gene information

The first thing we need to do is to define the location of genes in chromosome coordinates. To do this, we use the GenomicFeatures
(http://www.bioconductor.org/packages/2.6/bioc/html/GenomicFeatures.html) package. This package allows us to download gene information from the
UCSC genome browser using the following commands:

Various genomes and gene IDs are available, but as an example we will use the latest human genome and ENSEMBL gene IDs. The variable "txdb" now
contains all the information we need, but in order to do anything with it we need to do some processing.

This produces a GRangesList object which is a list of GRanges objects, where each GRanges object is a gene and the entries are the genomic
coordinates of its transcripts. We are going to work out which reads overlap which genes using the countOverlaps function to overlap this object with
the object containing the short reads.

Although we are choosing to summarize by including all reads that fall within a gene here, the procedure will work the same for any GRanges or
GRangesList object. For example, if you wished to only include reads that overlap exons, you could create a different GRangesList object.

Summarizing reads in R

First we load the aligned_reads_sorted.bam file into R.

Checking compatibility of annotations and reads

Before we try and compare the reads to the annotation, we first need to do a few checks to make sure that everything will work OK. If your RNA-seq
data did not come with strand information, than we cannot know which strand the read was transcribed from. However, the mapping process will map it

   library(GenomicFeatures)
   txdb=makeTranscriptDbFromUCSC(genome='hg19',tablename='ensGene')

   tx_by_gene=transcriptsBy(txdb,'gene')

   ex_by_gene=exonsBy(txdb,'gene')

   library(Rsamtools)
   reads=readBamGappedAlignments("aligned_reads_sorted.bam")

http://www.bioconductor.org/packages/2.6/bioc/html/GenomicFeatures.html


to one strand or the other (in theory, both are equally likely), thus the reads will have a strand artificially allocated to them. When we count the number
of reads overlapping a gene (or other feature), only those reads that map to the strand the gene is on will count and roughly half our reads will be lost.
To avoid this we need to set the reads strand value to "*" (unknown).

Furthermore, it will often be the case that the chromosome names used by the alignment software (which are ultimately determined by the
chromosome names in the fasta file for the reference genome) will differ from those given in the annotation. In order for the comparison function to
work, these names need to be converted to the same naming convention. It is easy to check if the names match by listing all the chromosomes for
both reads and annotations. Remember, our annotation data is stored in "tx_by_gene" and our short reads are stored in "reads".

If the chromosome names are the same (or are the same for the ones you care about), then no name conversion is needed. If on the other hand they
differ, we need to change either the reads or the annotations naming convention. It turns out that it is usually easier to change the names of the reads,
but the procedure is the same regardless. This is best illustrated by an example. Suppose you have this situation:

So we need to convert the read chromosome names "NO.1-Length" to the annotation name "chrNO".

If you are not familiar with regular expressions, refer to the help file for gsub in R. new_read_chr_names will now contain the read chromosome names,
converted to the same format as the annotation object tx_by_genes.

   #The annotations have chromosomes called
   names(seqlengths(tx_by_gene))
   #The reads have chromosomes called
   as.character(unique(rname(reads)))

   #The annotations have chromosomes called
   > names(seqlengths(tx_by_gene))
   [1] "chr1" "chr10" "chr11" "chr12" "chr13"
   [6] "chr13_random" "chr14" "chr15" "chr16" "chr17"
   [11] "chr17_random" "chr18" "chr19" "chr1_random" "chr2"
   [16] "chr3" "chr3_random" "chr4" "chr4_random" "chr5"
   [21] "chr5_random" "chr6" "chr7" "chr7_random" "chr8"
   [26] "chr8_random" "chr9" "chr9_random" "chrM" "chrUn_random"
   [31] "chrX" "chrX_random" "chrY" "chrY_random"

   #The reads have chromosomes called
   >as.character(unique(rname(reads)))
   [1] "10.1-129993255" "11.1-121843856" "1.1-197195432" "12.1-121257530"
   [5] "13.1-120284312" "14.1-125194864" "15.1-103494974" "16.1-98319150"
   [9] "17.1-95272651" "18.1-90772031" "19.1-61342430" "2.1-181748087"
   [13] "3.1-159599783" "4.1-155630120" "5.1-152537259" "6.1-149517037"
   [17] "7.1-152524553" "8.1-131738871" "9.1-124076172" "MT.1-16299"
   [21] "X.1-166650296" "Y.1-15902555"

   new_read_chr_names=gsub("(.*)[T]*\\..*","chr\\1",rname(reads))



Now we can fix both the chromosome name and strand problem simultaneously, by building a GenomicRanges object from each of the read objects. If
you have unstranded RNA-seq data and need to convert chromosomes, we run:

If we just want to convert chromosome names.

If we just want to make each read be ambiguous with respect to strand.

Note that if you mapped reads to an exon-junction library, every exon junction will have its own "chromosome". If you wish these junctions reads to be
included in the summarization, you will have to convert each of them to genomic coordinates. As each read comes from two distinct genomic locations
(either side of the exon junction), you will have to make a decision about how you are going to assign each read a genomic coordinate.

Counting the number of reads

Finally, we get the number of reads that overlap with each gene (or whatever else you're interested in).

"counts" will now contain a numeric vector, where the ith entry is the number of reads that overlap the ith gene in "tx_by_gene".

Differential Expression Testing

As our aim is to compare conditions, we will have more than one lane of reads, possibly several for each condition. Using the procedure outlined in the
previous section, we can count the number of reads that overlap a feature of interest, such as genes, in each experimental condition, for each replicate.
Next we combine them into a table of counts.

   reads=GRanges(seqnames=new_read_chr_names,ranges=IRanges(start=start(reads),end=end(reads)), 
     strand=rep("*",length(reads)))

       reads=GRanges(seqnames=new_read_chr_names,ranges=IRanges(start=start(reads),end=end(reads)), 
     strand=strand(reads))

   reads=GRanges(seqnames=rname(reads),ranges=IRanges(start=start(reads),end=end(reads)),
   strand=rep("*",length(reads)))

   counts=countOverlaps(tx_by_gene,reads)

   toc=data.frame(condition1_rep1=counts1.1,condition1_rep2=counts1.2,
     condition2_rep1=counts2.1,condition2_rep2=counts2.2,stringsAsFactors=FALSE)
   rownames(toc)=names(tx_by_gene)



etc. for as many conditions and replicates as are available. Here the convention is countsn.m is the vector containing the number of reads from replicate
m of condition n that overlap the genes given by tx_by_gene.

Normalization

It has been shown that a small number of highly expressed genes can consume a significant amount of the total sequence. As this can change between
lanes and experimental condition, along with library size, it is necessary to perform some kind of between sample normalization when testing for
differential expression. The choice of normalization is not independent of the test used to determine if any genes are significantly differentially
expressed (DE) between conditions. For example, quantile normalization produces non-integer counts, making tests based on the assumption of count
data such as the widely used Poisson or Negative Binomial models inapplicable. We choose to use the scaling factor normalization method as it
preserves the count nature of the data and has been shown to be an effective means of improving DE detection [1].

To perform the normalization and the test for differential expression, we will use the R package edgeR
(http://www.bioconductor.org/packages/2.6/bioc/html/edgeR.html) [2], although there are other options available. We can now calculate the
normalization factors using the TMM method [1].

Statistical testing

Next, we have to create a DGE object used by edgeR. The scaling factor calculated using the TMM method is incorporated into the statistical test by
weighting the library sizes by the normalization factors (which are then used as an offset in the statistical model).

The group variable identifies which columns in the table of contents come from which experimental condition or "group". To perform the statistical test
for significance, we first estimate the common dispersion parameter

Finally, we calculate the p-values for genes being DE

   library(edgeR)
   norm_factors=calcNormFactors(as.matrix(toc))

   DGE=DGEList(toc,lib.size=norm_factors*colSums(toc),group=rep(c("Condition1","Condition2"),c(2,2)))

   disp=estimateCommonDisp(DGE)

   tested=exactTest(disp)

http://www.bioconductor.org/packages/2.6/bioc/html/edgeR.html


Gene Set testing (GO)

To accurately test sets of genes for over representation amongst DE genes using RNA-seq data, we need to use a method which takes into account the
biases particular to this technology. The goseq package (http://www.bioconductor.org/packages/2.6/bioc/html/goseq.html) is one such method for
accounting for certain RNA-seq specific biases when performing GO (and other gene set based tests) analysis [3]. First we must format the output of
edgeR to be read by goseq. We call any gene with a Benjamini-Hochberg FDR of less than .05 DE.

Next, we calculate a probability weighting function, correcting for length bias, a technical bias present in all forms of RNA-seq data (see [3] for a
details).

If we'd instead wanted to correct for total read count bias, we would calculate the pwf using the number of counts from each gene as follows:

Finally, we calculate the p-value for each GO category being over represented amongst DE genes.

Example 1: Differential Expression and GO Term Analysis: Li Prostate cancer data set

This section provides an easy to follow example to illustrate the analysis pipeline outlined above.

Description

This data set compares prostate cancer LNcap cell lines with and without treatment by the testosterone like hormone androgen [4]. The sequencing was
done using the Illumina GA I and produced 36 bp, single end, unstranded reads. The output from the machine are 7 files (each from a different
sequencing lane):

untreated1.fa

   library(goseq)
   genes = as.integer(p.adjust(tested$table$p.value, method = "BH") < 0.05)
   names(genes) = row.names(tested$table)

   pwf=nullp(genes,'hg19','ensGene')

   pwf=nullp(genes,bias.data=rowsum(counts[match(names(genes),rownames(counts))]))

   GO.pvals=goseq(pwf,'hg19','ensGene')

http://www.bioconductor.org/packages/2.6/bioc/html/goseq.html


untreated2.fa

untreated3.fa

untreated4.fa

treated1.fa

treated2.fa

treated3.fa

Note that this data set is slightly unusual in that the quality scores are missing from the reads. Therefore, we will have to keep this in mind when doing
the analysis.

Quality Control

It's published data, so that's a pretty good quality control one would hope...

Sequence alignment

Building the reference

The first step in the pipeline is to align all the reads to a reference. As this data is taken from human LNcap cells, the latest build of the human genome
is an obvious choice. We have installed BOWTIE (version 0.10.0) using all the standard options. There is a prebuilt copy of the human index available
from the BOWTIE website, however, to illustrate building a genome from scratch we instead download the .fa files for the genome from the UCSC. We
create a working directory containing the 7 RNA-seq data files and the file chromFA.tar.gz downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/. The file chromFA.tar.gz contains the sequence of all human chromosomes, including the
unallocated contigs. To make a BOWTIE index we need to concatenate them into a single file. We will exclude all the contigs from our fasta file.

We only want chr1-22.fa, chrX.fa, chrY.fa and chrM.fa, so delete everything else:

   tar -zxvf chromFA.tar.gz

   rm chr*_*.fa

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/


Now we concatenate the desired files (it is useful to have the reference both in one chromosome per file and one file per genome formats, although the
BOWTIE index can be made from either).

We build the BOWTIE index and name it hg19.

And move the BOWTIE index files to the appropriate location for BOWTIE to find them.

Aligning the reads

Having constructed the BOWTIE index for the human genome, we now proceed to map the reads from each lane. We want to use the --best and --sam
flags. At this point we recall that our data lacks quality information for the reads. Therefore, we use the -v 3 option which ignores quality scores when
aligning reads to the genome.

The for loop is just for convenience and is equivalent to writing:

BOWTIE will output 7 SAM files containing the aligned reads. To count the fraction of aligned reads we run the following command at the shell (this
information is also reported directly by BOWTIE, but it is useful to be able to calculate it yourself if need be).

   cat chr*.fa>hg19.fa

   bowtie-build hg19.fa hg19

   mv *.ebwt $BOWTIE_INDEXES

   for src_fastafile in *treated*.fa
   do
     bowtie -v 3 -p 8 --best --sam hg19 ${src_fastafile} ${src_fastafile%%.fa}.sam
   done

   bowtie -v 3 -p 8 --best --sam hg19 untreated1.fa untreated1.sam
   bowtie -v 3 -p 8 --best --sam hg19 untreated2.fa untreated2.sam
   bowtie -v 3 -p 8 --best --sam hg19 untreated3.fa untreated3.sam
   bowtie -v 3 -p 8 --best --sam hg19 untreated4.fa untreated4.sam
   bowtie -v 3 -p 8 --best --sam hg19 treated1.fa treated1.sam
   bowtie -v 3 -p 8 --best --sam hg19 treated2.fa treated2.sam
   bowtie -v 3 -p 8 --best --sam hg19 treated3.fa treated3.sam

   awk '$3!="*"' untreated1.fa|wc -l
   wc -l untreated1.fa



The first command prints the number of reads that have mapped in the BOWTIE output file, the second outputs 4 times the number of reads in the
input file (because the fasta format is for 4 lines per read).

We will ignore those reads that cross exon-exon boundaries and continue with the analysis.

Summarization of reads

Converting to BAM

In order to summarize our aligned reads into genes, we first have to convert the SAM output of BOWTIE into the compressed, index BAM format. First
we need to create an index for the human genome in the samtools format. For this we need the fasta file for the reference (which should be the same
that was used to create the index for aligning the reads), which we already have, but we will reconstruct it from the BOWTIE index anyway.

Now we construct the samtools index. The following command produces a .fai file which we can use to convert the SAM files to BAM files.

Next, we convert all 7 SAM files to BAM files.

Again, the bash for loop is just for convenience, the above is equivalent to running the following for all 7 files:

   bowtie-inspect hg19>hg19.fa

   samtools faidx hg19.fa

   for SAM in *.sam
   do
     #Convert to BAM format
     samtools import hg19.fa.fai ${SAM} ${SAM%%.sam}.bam
     #Sort everything
     samtools sort ${SAM%%.sam}.bam ${SAM%%.sam}_sorted
     #Create an index for fast searching
     samtools index ${SAM%%.sam}_sorted.bam
     #Delete temporary files
     rm ${SAM%%.sam}.bam
   done

   samtools import hg19.fa.fai untreated1.sam untreated1.bam
   samtools sort untreated1.bam untreated1_sorted
   samtools index untreated1_sorted.bam
   rm untreated1.bam



Processing in R

Next we need to load the sorted, indexed, BAM files into R. As we have unstranded RNA-seq, we need to make the strand designator for each read
ambiguous (which is done by setting it to "*"). After starting R we run,

Having loaded the files into R, we next need to create an annotation object. Since we are using hg19, we can readily download one from the UCSC
using the GenomicFeatures package. We choose to use the ENSEMBL gene annotation.

We want to compare genes for differential expression, so we will summarize by gene and we choose to count all reads that fall within the body of the
gene (including introns) as counting towards a genes count.

Finally, we count the number of reads that fall in each gene for each lane and record the results in a table of counts.

Differential Expression testing

Having finally obtained a table of counts, we now want to compare the treated and untreated groups and look for any statistically significant differences

   library(Rsamtools)
   #Create a list of bam file object containing the short reads
   bamlist=list()
   src_files=list.files(pattern="*_sorted.bam$")
   for(filename in src_files){
     #Since we do not know which strand the reads were originally transcribed,
     #so set the strand to be ambiguous
     tmp=readBamGappedAlignments(filename)
     bamlist[[length(bamlist)+1]]=GRanges(seqnames=rname(tmp),
       ranges=IRanges(start=start(tmp),end=end(tmp)),
       strand=rep("*",length(tmp)))
   }
   names(bamlist)=src_files

   library(GenomicFeatures)
   txdb=makeTranscriptDbFromUCSC(genome="hg19",tablename="ensGene")

   tx_by_gene=transcriptsBy(txdb,"gene")

   #Initialize table of counts
   toc=data.frame(rep(NA,length(tx_by_gene))
   for(i in 1:length(bamlist)){
     toc[,i]=countOverlaps(tx_by_gene,bamlist[[i]])
   }
   #Fix up labels
   rownames(toc)=names(tx_by_gene)
   colnames(toc)=names(bamlist)



in the number of counts for each gene. We will do this using the negative binomial model used by edgeR.

Normalization

We calculate appropriate scaling factors for normalization using the TMM method with the first lane as the reference.

The counts themselves are not changed, instead these scale factors are used as an offset in the negative binomial model. This is incorporated in the
DGE list object required by edgeR.

Statistical Test

Next we calculate a common dispersion parameter which represents the additional extra Poisson variability in the data.

Which allows us to calculate p-values for genes being differentially expressed.

Gene Ontology testing

In order to test for over represented GO categories amongst DE genes, we first have to pick a cutoff for calling genes as differentially expressed after
applying multiple hypothesis correction. We choose the ever popular cutoff for significance of .05

Now we calculate the probability weighting function, which quantifies the length bias effect.

   library(edgeR)
   norm_factors=calcNormFactors(as.matrix(toc))

   DGE=DGEList(toc,lib.size=norm_factors*colSums(toc),group=gsub("[0-9].*","",colnames(toc)))

   disp=estimateCommonDisp(DGE)

   tested=exactTest(disp)

   library(goseq)
   #Apply benjamini hochberg correction for multiple testing
   #choose genes with a p-value less than .05
   genes=as.integer(p.adjust(tested$table$p.value,method="BH") <.05)
   names(genes)=row.names(tested$table)



Finally, we calculate the p-values for each GO category being over represented amongst DE genes.

Example 2 Differential Expression: Di Arabidopsis pathogen data

These files are from an Arabidopsis study using three replicates each from infected and mock infected plants. This is the data set underlying the
NBPSeq R package.

Quality Control

As of Version 0.94. if you are on Windows use the Linux version and double-click run_fastqc.bat

   pwf=nullp(genes,"hg19","ensGene")

   GO.pvals=goseq(pwf,"hg19","ensGene")

 Donwnload the six fastq.gz files from here: http://www.ebi.ac.uk/ena/data/view/SRP004047&display=html

 Download FastQC and open the files in FastQC one by one.
 You can open the files by using File->Open. 

 You will see a very wiggly line for the first library. If you just look at the peaks and note the sequence you will see the pattern
 AAGAGCTCGTATGC starting at the green plateu towards the right. This is an illumina adapter sequence, which you will also see in the
 overrepresented counts tab.

http://www.ebi.ac.uk/ena/data/view/SRP004047&display=html


Mapping Reads

Download the Arabidopsis genome release from here

Using bowtie an index needs to be built

Alternatively, you can download the provided index file from the bowtie website if you work with one of the supported organisms.

 ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/other_datasets/CURRENT/arabidopsis.seq.gz
 It doesn't include mitochondrial or chlorplast sequences but is good enough for the tutorial purpose

 unzip all read files 

 Unix systems
 bowtie-build arabidopsis.seq arabidopsis

 Windows
 C:\Prog\bowtie-0.12.7\bowtie-build.exe arabidopsis.seq arabidopsis

http://seqanswers.com/wiki/File:FastQC.png
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/other_datasets/CURRENT/arabidopsis.seq.gz


Now you can map reads using bowtie. Bowtie has many options and you better check them. Here we tell it to use two processors (-p 2) to report SAM
based alignements -S for all (-a) aligment having maximally one mismatch (-v 1). We further restrict this based on the fact that only each read
providing more than one valid alignment should be discarded (-m 1)

This needs to be repeated for all 6 libraries.

Output SRR074262.fastq

1. reads processed: 9619406
2. reads with at least one reported alignment: 5034111 (52.33%)
3. reads that failed to align: 4132070 (42.96%)
4. reads with alignments suppressed due to -m: 453225 (4.71%)

Reported 5034111 alignments to 1 output stream(s)

Output SRR074263.fastq

1. reads processed: 4199495
2. reads with at least one reported alignment: 2298490 (54.73%)
3. reads that failed to align: 1701822 (40.52%)
4. reads with alignments suppressed due to -m: 199183 (4.74%)

Reported 2298490 alignments to 1 output stream(s)

Output SRR074264.fastq

1. reads processed: 4810892
2. reads with at least one reported alignment: 2730242 (56.75%)
3. reads that failed to align: 1852040 (38.50%)
4. reads with alignments suppressed due to -m: 228610 (4.75%)

 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074262.fastq aligned_074262
 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074263.fastq aligned_074263
 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074264.fastq aligned_074264
 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074284.fastq aligned_074284
 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074285.fastq aligned_074285
 bowtie -p 2 -S -a -m 1 -v 1 arabidopsis SRR074286.fastq aligned_074286

 C:\Prog\bowtie-0.12.7\bowtie.exe -p 2 -S -a -m 1 -v 1 arabidopsis SRR074262.fastq aligned_074262
 

http://seqanswers.com/wiki/Bowtie


Reported 2730242 alignments to 1 output stream(s)

Output SRR074284.fastq

1. reads processed: 4763394
2. reads with at least one reported alignment: 2622118 (55.05%)
3. reads that failed to align: 1908441 (40.06%)
4. reads with alignments suppressed due to -m: 232835 (4.89%)

Reported 2622118 alignments to 1 output stream(s)

Output SRR074285.fastq

1. reads processed: 8217239
2. reads with at least one reported alignment: 4515790 (54.96%)
3. reads that failed to align: 3206578 (39.02%)
4. reads with alignments suppressed due to -m: 494871 (6.02%)

Reported 4515790 alignments to 1 output stream(s)

Output SRR074286.fastq

1. reads processed: 3776979
2. reads with at least one reported alignment: 2014498 (53.34%)
3. reads that failed to align: 1506142 (39.88%)
4. reads with alignments suppressed due to -m: 256339 (6.79%)

Reported 2014498 alignments to 1 output stream(s)

Summarizing Reads

If you want to use HTSeq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) and are on Fedora or CentOS you will have to go
through some extra effort, as HTSeq uses python 2.6 and Fedora and CentOS only come with python 2.4 installed. (Before you do any of the following
ask your sysadmin if this is ok)

here are some suggestions http://stackoverflow.com/questions/1465036/install-python-2-6-in-centos My favorite one is to use EPEL (see below), buy
YMMV.

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://stackoverflow.com/questions/1465036/install-python-2-6-in-centos


Then continue as detailed on the website but type

instead of

---

Now we are ready to download the gff file ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff

This file does not contain RNA genes and transposable elements.

Now the parent ID probably works for some use cases of HTSeq. If you needed a true GTF file you could use the perl script mentioned here
(http://seqanswers.com/forums/showthread.php?t=2605) at the bottom If we named it celeste_script.pl here would be what to execute. (The reason
we can't use -i Parent is that otherwise an exon might belong to two splice variants e.g. AT1G01040.1 and AT1G01040.2 and not be counted as we
want to use intersection-strict)

and now finally

Now we start getting something we can use

 rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm
 yum install python26
 yum install python26-numpy
 yum install python26-numpy-devel

 python26 setup.py build
 python26 setup.py install

 python setup.py build
 python setup.py install

 cat TAIR10_GFF3_genes.gff |perl celeste_script.pl > TAIR10_GTF.gtf 

 htseq-count -m intersection-strict -s no aligned_074262 TAIR10_GTF.gff > counts_074262
 htseq-count -m intersection-strict -s no aligned_074263 TAIR10_GTF.gtf > counts_074263
 htseq-count -m intersection-strict -s no aligned_074264 TAIR10_GTF.gtf > counts_074264
 htseq-count -m intersection-strict -s no aligned_074284 TAIR10_GTF.gtf > counts_074284
 htseq-count -m intersection-strict -s no aligned_074285 TAIR10_GTF.gtf > counts_074285
 htseq-count -m intersection-strict -s no aligned_074286 TAIR10_GTF.gtf > counts_074286

 head counts_074262

ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
http://seqanswers.com/forums/showthread.php?t=2605
http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm


 AT1G01010       75
 AT1G01020       73
 AT1G01030       33
 AT1G01040       109
 AT1G01046       0
 AT1G01050       41
 AT1G01060       10
 AT1G01070       2
 AT1G01073       0
 AT1G01080       281

 head counts_074263

 AT1G01010       35
 AT1G01020       34
 AT1G01030       18
 AT1G01040       52
 AT1G01046       0
 AT1G01050       51
 AT1G01060       5
 AT1G01070       19
 AT1G01073       0
 AT1G01080       212

 head counts_074264

 AT1G01010       80
 AT1G01020       46
 AT1G01030       45
 AT1G01040       50
 AT1G01046       0
 AT1G01050       69
 AT1G01060       13
 AT1G01070       35
 AT1G01073       0
 AT1G01080       226

 head counts_074284

 AT1G01010       45
 AT1G01020       50
 AT1G01030       33
 AT1G01040       65
 AT1G01046       0
 AT1G01050       50
 AT1G01060       0
 AT1G01070       7
 AT1G01073       0
 AT1G01080       178

 head counts_074285



Analysis of differentially expressed genes

start R

using DeSEQ (now refer to the vignette (http://www.bioconductor.org/packages/2.8/bioc/vignettes/DESeq/inst/doc/DESeq.pdf) )

In R:

 AT1G01010       35
 AT1G01020       43
 AT1G01030       26
 AT1G01040       72
 AT1G01046       0
 AT1G01050       51
 AT1G01060       3
 AT1G01070       6
 AT1G01073       0
 AT1G01080       531

 head counts_074286

 AT1G01010       61
 AT1G01020       27
 AT1G01030       36
 AT1G01040       25
 AT1G01046       0
 AT1G01050       25
 AT1G01060       16
 AT1G01070       20
 AT1G01073       0
 AT1G01080       128

 R
 

 library(DESeq)
 setwd("where the data is")
 c1<-read.table("counts_074284",row.names=1) 
 c2<-read.table("counts_074286",row.names=1)
 c3<-read.table("counts_074262",row.names=1)
 c4<-read.table("counts_074263",row.names=1)
 c5<-read.table("counts_074264",row.names=1)
 c6<-read.table("counts_074285",row.names=1)
 counts<-cbind(c1,c2,c3,c4,c5,c6)
 counts<-counts[-c(32679:32683),]  #remove the more general lines
 colnames(counts)<-c("P1","P2","P3","M1","M2","M3")

http://www.bioconductor.org/packages/2.8/bioc/vignettes/DESeq/inst/doc/DESeq.pdf


How many genes are significant?
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 design <- rep (c("P","Mo"),each=3)
 de  <-  newCountDataSet(counts, design)
 de  <-  estimateSizeFactors( de)
 # de  <-  estimateVarianceFunctions(  de  ) # This function has been removed. Use 'estimateDispersions' instead.  
 de <- estimateDispersions( de )
 res  <-  nbinomTest(  de,  "P",  "Mo")

 sum(na.omit(res$padj<0.05))
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