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Abstract

Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases.
Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal
muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of
skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome
(miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum)
and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire
of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through
comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every
library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-
related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle
maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle
development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in
pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle
development.
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Introduction

Pork is an important source of protein for human
consumption, particularly in China where it tops the list of meat
consumed. In addition, the pig can be considered as a suitable
model for human diseases because it is similar with human in
size, physiology, pathology and genomics [1]. Muscle
development is a complex process, including not only
embryonic myogenesis but adult myofiber maturation. Most
research suggested that porcine primary myofibers mainly
formed at 35 to 64 dpc and secondary myofibers at 54 to 90
dpc [2]. However, Swatland et al. pointed out that fetal myofiber
hyperplasia ceased at slightly later at 70 days gestation and
the increase in number of myofibers seen in a transverse
section was caused by growth in length of myofibers [3].
Similarly, Zhao et al. discovered that myogenesis was almost
completed before 77 dpc [4], suggesting that the muscle fiber
formed at 35 to 77 dpc. Other research described that there
existed a third generation of fibers around birth in pigs and
might be part of mechanisms leading to the larger muscle mass

[5,6]. The total fiber number (TFN) does not increase after birth
and is fixed at the number formed during embryonic life.
Myofibers were classified according to their contractile and
metabolic properties as type 1, type 2 (2A and 2B) and an
intermediate type 2X. From late gestation through the first four
postnatal weeks, myofibers underwent a process of maturation
from type 1 to type 2 [4,6]. Hypertrophy is another process of
skeletal muscle maturation, involving an increase in muscle
mass and in the size, associated with increased myofibrillar
protein content. Signaling pathways such as insulin-like growth
factor I (IGF-I) and Ca2+/calmodulin-dependent transcriptional
pathways have been demonstrated to govern skeletal muscle
hypertrophy and atrophy [7]. Understanding the complex
mechanism underlying porcine muscle development might
contribute to swine industry as well as human muscular growth
and diseases.

Increasing evidence suggests that miRNAs serve as
biological regulators by mediating gene expression. It was
increasingly clear that miRNAs involve almost all aspects of
skeletal muscle development, including cell migration,
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proliferation, differentiation and apoptosis [8,9]. Despite the
significant role of miRNAs in the regulation of myogenesis, the
miRBase (release 18.0) lists only 257 distinct mature miRNA
sequences in pigs, significantly fewer than that in human. It’s
worth noting that many miRNAs are expressed in a tissue-
specific or stage-specific manner [10], and the best-
characterized muscle-specific miRNAs (myomiRs [11]) are
miR-1, miR-206 and miR-133 families which specifically
expressed in cardiac and skeletal muscles. Dicer was known to
be essential for miRNA biogenesis, whose elimination in the
skeletal muscles could lead to prenatal death, muscle mass
reduction or myofiber malformation [12], an outcome highlights
the significance of miRNAs in muscle development. Currently,
scientists tend to study the molecular mechanism of swine
skeletal muscle development through analysis of miRNA
transcriptome profiles [13,14], discovering and identifying more
miRNAs based on bioinformatics analysis. However, it is still
not enough for investigation in mapping a nearly complete
porcine miRNAome during skeletal muscle development.

The Landrace, one of the most popular pig breeds in most
countries in Europe, North America and Asia, was employed in
this investigation. Its miRNAome during skeletal muscle
development at ten developmental stages including five
prenatal stages (35, 49, 63, 77, 91 dpc, simplified as LR 1, 2, 3,
4, 5) and five postnatal stages (2, 28, 90, 120, 180 dpn,
simplified as LR 6, 7, 8, 9, 10) using Solexa sequencing. The
time points cover almost all morphological and physiological
changes of porcine skeletal muscle growth and development
[4]. Thus, this study will provide a thorough investigation of
miRNAome in porcine skeletal muscle to facilitate a better
understanding of their involvement in myogenesis.

Materials and Methods

Ethics statement
All animal procedures were performed according to

guidelines developed by the China Council on Animal Care and
protocols were approved by the Animal Care and Use
Committee of Guangdong Province, China. The approval ID or
permit numbers are SCXK (Guangdong) 2004-0011 and SYXK
(Guangdong) 2007-0081.

Sample preparation
Fifteen Landrace (LR) purebred sows with the same genetic

background were artificially inseminated with semen from the
same purebred boars. The pregnant sows were slaughtered at
five prenatal stages (35, 49, 63, 77, 91 dpc, days post coitum)
while the piglets and adult pigs were slaughtered at five
postnatal stages (2, 28, 90, 120, 180 dpn, days postnatal). The
longissimus dorsi muscle tissues collected per time point were
used as the experimental samples for sequencing. These
samples were snap-frozen in liquid nitrogen and stored at
-80°C.

Small RNA library construction and Solexa sequencing
Total RNA was extracted using miRNeasy Mini Kit

(Cat#217004, QIAGEN, GmBH, Germany) according to the

manufacturer’s protocol. For each developmental stage, equal
quantities of total RNA isolated from three individual pigs were
pooled. Total RNA integrity was measured on an Agilent 2100
Bioanalyzer system (Agilent) for quality control.16-35 nt RNA
fragments were excised, purified from a PAGE gel, and ligated
with 5′ and 3′ adaptors using T4 RNA ligase.
Reverse transcription followed by
PCR was used to create cDNA constructs based on the small 
RNA ligated with 3′ and 5′ adapters. Subsequently, the
amplified cDNA constructs were purified from agarose gel,
in preparation for sequencing analysis using the Illumina
Genome Analyzer (Illumina, CA, USA) according to the
manufacturer’s instructions.

Data analysis
The raw data were processed using Illumina 1G Genome

Analyzer Pipeline software and then submitted to data filtration.
Clean reads were obtained after filtering low-quality reads and
trimming the adaptor sequences. All of the clean reads were
initially searched against miRBase (version 18; http://
www.mirbase.org/) to identify known porcine miRNAs. Un-
mappable reads subsequently were annotated and classified
by reference to non-coding RNAs in the Ensemble (ftp://
ftp.ensembl.org/pub/release-69/fasta/sus_scrofa/ncrna/),
piRNA (http://pirnabank.ibab.ac.in/) and Rfam (version 10;
http://rfam.sanger.ac.uk/) databases. The mappable sequences
were achieved and used for further analysis. Meantime, many
unannotated sequences that cannot match any above
databases were analyzed by miRDeep [15] (http://
deepbase.sysu.edu.cn/miRDeep.php) to predict novel miRNA
candidates. Their hairpin structures were then analyzed using
RNAfold software (http://rna.tbi.univie.ac.at/cgi-bin/
RNAfold.cgi). Only with tipical stem-loop hairpins and the free
energy lower than -20 kcal/mol could the sequences be
considered to be potential novel miRNAs. After all annotation
steps, the sequencing libraries were used for size distribution
and saturation analysis. All the sequence data have been
submitted to the NCBI Sequence Read Archive (http://
www.ncbi.nlm.nih.gov/Traces/sra/) under accession
No.SRA073195.

STEM Clustering
STEM (Short Time-series Expression Miner v 1.1) herein

was used for clustering and visualizing possible profiles of
differentially expressed (DE) miRNAs’ change in expression
over time (less than 8 time points). The Maximum Unit Change
in Model Profiles between Time Points was adjusted to 1 and
the Maximum Number of Model Profiles to 50. MiRNA
expression profiles were clustered according to the correlation
coefficient. The statistical significance of the number of genes
assigned to each profile versus the number expected was
computed by algorithm suggested by Ernstet et al. [16] and the
default P-value was 1E-5. Statistically significant model profiles
which are similar to each other can be grouped together to
form clusters of profiles.

microRNAome during Skeletal Muscle Development
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Target Prediction and KEGG Orthology Analysis
Based on the sequences of the miRNAs, the targets of DE

miRNAs were predicted using the online database miRecords
[17] (http://mirecords.biolead.org/) and chosen when they were
predicted in at least databases integrated in miRecords. The
predicted target genes were subsequently submitted to KOBAS
[18] for KEGG Orthology analysis (http://kobas.cbi.pku.edu.cn/
home.do) using KEGG database. Given the P values in
KOBAS, pathways with statistically significant values (P<0.05)
were chosen. In addition, SPSS was used to divide the
pathways into categories by using the fuzzy theories to K-
means algorithm.

Stem-loop RT-PCR
To validate the sequencing results, nine miRNAs with

different expression levels were selected and Stem–loop RT-
PCR was performed using the Lightcycler480 (Roche) with
SYBR-Green detection (SYBR PrimeScript RT-PCR Kit,
TaKaRa Biotechnology Co. Ltd.) according to the
manufacturer’s instructions. The reverse transcriptase reaction
was performed using Reverse Transcription System Kit
(Promega) with the stem-loop primers listed in Table S7. Each
real-time PCR system contained 5 µl 2×SYBR Premix
DimerEraserTM (TaKaRa), 0.3 µl forward and reverse primers
respectively, 1 µl template cDNA, and dH2O up to the final
volume of 10 µl. The reactions were incubated at 95°C for 30 s,
followed by 40 cycles of 95°C for 10 s, 60°C for 20 s and 72°C
for 10 s. Mir-17-5p was chosen as internal control and all
reactions were run in triplicate. The experimental data were
analyzed using the 2-∆∆CT method.

Results

Overview of sequencing data
After trimming of adaptor sequences and removal of low

quality reads, 181,224,007 total clean reads were obtained
from ten libraries, of which almost 96% matched small RNA
databases mentioned in the Materials and Methods, namely
annotated reads (Table S1). Saturation plots of ten libraries
were created to assess the efficiency and accuracy of deep
sequencing for miRNA detection (Figure S1). Taking the LR1
library as an example, the deeper were sequenced, the more
unique small RNAs were found. However, the most of unique
small RNAs were unknown, for the number of annotated small
RNAs accounted for less than 20%. Furthermore, the number
of new sequences observed for known small RNAs and porcine
miRNAs (miRBase found) reached a plateau when the number
of sequenced reads was 9,500,000, suggesting that the library
capacity approached saturation. Similar plots of the other nine
libraries were shown in Figure S1. Therefore, the results
demonstrated that the deep sequencing data were able to
accurately represent the miRNA transcriptome profiles of
porcine skeletal muscle.

Of the annotated sequences, the most abundant size class in
the small RNA sequences distribution was 22 nt, followed by
21 and 23nt (Figure 1A and B), consistent with the known
21-23 nt range for mature miRNAs. In addition, the annotated
sequences were analyzed referencing the data from miRBase

(release 18.0, containing 228 precursors and 257 mature
miRNAs), resulting 247 (96%) mature miRNAs and 210 (92%)
precursor were identified. Next, the rest annotated sequences
were subjected to piwi-interacting RNA (piRNA) database,
Rfam (version 10) and non-coding RNA in Ensemble and the
results were summarized in Table S1. Most annotated small
RNAs were porcine miRNAs (ssc-miRNAs), accounting for
76.7% of the total sequence reads but a less proportion (8.7%)
of the unique sequence reads in ten small RNA libraries
(Figure 1C). The results indicated that the majority of small
RNAs were annotated miRNAs while other classes added
diversity. Together, all of the above results provide confidence
that the deep sequencing data were highly enriched for known
miRNA sequences, suggesting that the data are reliable for
analyzing miRNA expression profiles as well as for predicting
novel miRNAs.

Identification of potential novel miRNAs
Deep sequencing is a robust approach for discovering novel

miRNAs that are expressed at low levels. To find more
potential miRNAs, unannotated sequences longer than 18 nt
were searched against porcine genome and analyzed by
miDeep. According to criteria for novel miRNAs identification,
297 candidate novel miRNAs were predicted and named ssc-
miR-new-N (N=1 ~ 297). These novel miRNAs ranged from 20
to 23 nt in length, among which 22 nt sequences accounted for
the most (40%) followed by23 nt (25%), 21 nt (22%) and 20nt
(13%), consistent with typical length distribution of mature
miRNAs. Total reads of these novel miRNAs counted up from
ten libraries were at a relatively low level: 267 putative novel
miRNAs were sequenced below 100 times, 27 were below
1000 times (of which 3 were above 500 times), 2 were above
1000 times and only 1 were above 10000 times (Table S2).
Hairpin structures of the putative novel miRNAs were then
analyzed using RNAfold.

Characterization of miRNAome in different stages of
skeletal muscle

As presented in Table S3, 247 identified mature porcine
miRNAs have been substituted as 257 mature porcine miRNAs
(If the normalized expression of a given miRNA is zero, its
expression value will be modified to 0.01) that expressed at
different levels, ranging from single reads for the least
abundant to millions of reads for the most abundant. Previous
study has demonstrated that over 60% of miRNAs detected by
deep sequencing had no discernible activity, all of which
expressed below 100-1,000 reads per million (RPM) [19]. Thus,
the distribution of numbers for normalized miRNAs was
summarized in Table S3, from which we could find that the
number of miRNAs with mean expression value below 1000 is
197 (123 and 74, respectively), almost accounts for 77% of the
total number of miRNAs (48% and 29%, respectively) in the ten
libraries. However, the number of miRNAs expressed on
average over 1000 RPM is 60 (23%), among which 15 miRNAs
(6%) expressed over 10000 RPM. Moreover, we counted the
top most abundant 15 miRNAs in each library, accounting for
85% of the total counts of all unique miRNAs on average
(Figure S2), from which we obtained a common 27 miRNAs

microRNAome during Skeletal Muscle Development
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with the highest expression level in ten libraries (Table 1,
details see Table S4), suggesting that the majority of abundant
miRNAs are from fewer miRNAs [20]. Previous studies have
announced that there were more miRNAs with reported
myogenic function in muscle besides well-known myomiRs
(Table 2). Among the 27 miRNAs, we found 11 (40%) miRNAs
have a relationship with muscle development validated by
experiments. Almost all known myomiRs were identified with
the most abundance. The most abundant miRNA was ssc-
miR-1, which presented by more than 2,100,000 RPM in ten
libraries. The predominance of miR-1 is consistent with its well
established function during skeletal muscle development [21]
and reported role during porcine myogenesis [22]. Similarly,
two other myomiRs, miR-133 [21] and miR-206 [23], were
highly expressed and ranked the 4th and 6th respectively, while
two other miRNAs (miR-378 [24,25] and miR-143 [25]) ranked
the 2nd and 3rd have been identified to participate in the
proliferation and differentiation of muscle cells.

Identification of differentially expressed miRNAs
between different developmental stages

Besides high abundant miRNAs, differentially expressed
miRNAs may play important roles in biological processes. To
determine miRNAs involved in porcine myogenesis,
differentially expressed (DE) miRNAs between two libraries
were identified by comparing the normalized expression data of
the 257 mature miRNAs. In total, 183 DE miRNAs (│fold-
change (log2) │≥1; P-value < 0.01) were identified during
muscle development (Table 3). Based on previous studies on
porcine myogenesis, we speculated that muscle fiber formed at
35 to 77 dpc (LR1-4), underwent myofiber transformation at 77
dpc to 28 dpn (LR4-7) and further matured at 28 to 180 dpn
(LR7-10) [2–4,6], from which DE miRNAs were obtained and
compared. Figure 2 showed that the number of DE miRNAs
during myofiber formation was the least but still accounted for
almost 50% of total DE miRNAs, from which all of porcine
myomiRs (ssc-miR-1, -206, -133 a-3p/a-5p/b) were identified.
Notably, there were 53, 57 and 97 DE miRNAs identified from
every two data sets, among which 41 DE miRNAs (22% of 183

Figure 1.  Basic analysis of Sequencing data.  A–B. Sequence length distribution of known miRNAs (A) and small RNAs (B); C.
Count number distribution of Total Reads (left) and Unique Small RANs (right).
doi: 10.1371/journal.pone.0072418.g001
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DE miRNAs) were common, including the above mentioned
ssc-miR-133 family.

The variations in abundance might aid understanding of
functional miRNAs being involved in myogenesis [21,26]. In
addition to the best-studied myomiRs (miR-1, -206 and
miR-133 families), 11 other DE muscle-related miRNAs
(miR-378 [24], miR-148a [27], miR-26a [28,29], miR-27a/b
[30,31], miR-23a [32,33], miR-125b [34], miR-24 [35], miR-128
[36], miR-199a [37] and miR-424 [38]) with high abundance
(average RPM >1,000) and another 14 (miR-181a/b/c/d-5p
[26], miR-499-5p [11], miR-503 [38], miR-486 [39], miR-214
[40], miR-29a/b/c [41–43], miR-221/222 [44] and miR-208 [11]

with low abundance (average RPM <1,000) were detected in
myogenesis of pig.

MicroRNA target predictions and KEGG Orthology
analysis

To gain further insight into the biological functions of the
identified miRNAs, miRecords [17] was applied to predict target
mRNAs and KOBAS [18] was used for KEGG Orthology
analysis. To identify whether highly expressed miRNAs play
key roles in skeletal muscle development, the target genes of
25 miRNAs with the most abundance (not including let-7 family
for their ubiquitous expression) in ten libraries (Table 1) were

Table 1. The top most abundant 15 miRNAs in each library.

Rank  
Mature
miRNA

Total
normalizedexpression
(RPM)  

35 dpc
(LR1)

49 dpc
(LR2)

63 dpc
(LR3)

77 dpc
(LR4)

91 dpc
(LR5) 2 dpn (LR6)

28 dpn
(LR7)

90 dpn
(LR8)

120 dpn
(LR9)

180 dpn
(LR10)

1 ssc-miR-1 2103431.74 14168.38 79554.80 117686.25 126702.52 119640.12 142618.55 218084.74 310634.60 402667.63 571674.13
2 ssc-miR-378 1625963.19 19043.59 104583.43 93292.67 101497.98 121417.03 283735.95 329605.58 377885.10 79332.57 115569.27

3
ssc-
miR-143-3p

1176846.35 85966.88 97786.87 101871.98 126658.26 132892.15 150534.02 172399.50 96310.23 112916.20 99510.27

4
ssc-
miR-133a-3p

607495.75 2727.83 15804.31 26969.46 18529.50 53763.56 92575.68 73767.14 80230.65 160502.23 82625.41

5
ssc-
miR-30a-5p

531375.43 96303.29 82081.00 114727.74 91093.80 66594.81 29197.53 22315.70 10041.35 12723.78 6296.41

6 ssc-miR-206 486805.67 14430.69 58818.28 70883.78 80508.60 114389.28 53764.91 31347.29 18392.07 28534.43 15736.34
7 ssc-let-7f 317168.48 14823.77 51717.88 51980.72 53943.49 51279.82 19763.81 17837.04 12813.37 25372.54 17636.05

8
ssc-
miR-148a

253477.02 48633.91 62835.68 30149.73 58289.18 25638.64 12373.55 5875.23 4296.70 3018.60 2365.82

9 ssc-miR-10b 234732.07 55274.96 42326.43 30113.66 23607.22 21081.96 14529.22 14327.48 10202.41 13349.09 9919.64
10 ssc-miR-127 214267.02 11872.22 62283.84 56300.94 44626.90 20717.40 10194.69 4062.24 1229.49 2479.72 499.59

11
ssc-
miR-140*

187553.50 163247.38 4841.03 4036.55 4056.84 2828.27 1901.68 1341.56 893.49 2227.68 2179.02

12 ssc-miR-30d 172056.17 31767.19 29605.00 30624.26 20723.44 20029.29 15681.53 10186.79 4142.37 6753.67 2542.63

13
ssc-
miR-542-3p

155142.75 20257.32 32769.39 36970.07 30137.30 18650.10 6800.57 4061.40 1364.72 3414.29 717.59

14 ssc-miR-21 131742.03 32846.54 22577.72 16102.99 19634.04 12044.42 5700.21 5369.31 7447.14 6139.29 3880.37
15 ssc-let-7a 121288.75 12151.08 18169.62 17302.43 20377.25 19469.48 8340.53 7167.23 4962.23 8175.71 5173.18

16
ssc-
miR-30e-5p

87618.91 20876.82 14889.87 15178.98 11951.46 7061.26 5816.45 3735.71 1871.88 4270.27 1966.20

17 ssc-miR-101 75739.16 10927.72 10465.49 11372.56 10378.67 8792.07 9002.56 4594.39 2650.42 4438.02 3117.25
18 ssc-miR-10a 73489.75 54439.05 6034.88 3408.41 2594.58 1945.94 1289.80 1131.32 476.95 1178.30 990.51
19 ssc-miR-26a 70050.82 4336.72 5112.43 5343.07 6004.85 8431.37 9595.40 6413.11 5718.05 11470.45 7625.36
20 ssc-miR-103 64540.89 24347.45 11077.11 6324.15 6941.08 6807.53 3326.21 1585.72 1207.70 2095.07 828.87
21 ssc-miR-30c 58032.92 6600.70 4842.93 5957.25 4372.65 6574.03 8852.00 4789.69 4229.47 8277.57 3536.63

22
ssc-
miR-133b

57966.15 1095.91 3365.47 4991.24 4548.17 11303.05 11654.61 3570.98 3863.09 9805.15 3768.48

23 ssc-miR-411 35786.91 625.66 3329.22 5246.32 5586.72 11947.48 4728.62 369.80 137.92 3719.29 95.87

24
ssc-
miR-30e-3p

35683.28 5911.43 5695.56 3643.81 2647.77 2052.03 2131.20 4285.46 3967.09 1926.72 3422.21

25 ssc-miR-9-2 28464.42 27754.31 103.78 63.66 31.91 27.52 12.07 5.86 17.92 178.08 269.31
26 ssc-miR-9-1 28464.22 27754.31 103.40 63.33 32.18 27.79 11.86 5.86 18.09 178.67 268.70

27
ssc-
miR-30b-5p

28196.90 1534.35 1614.82 2019.87 1761.57 2834.33 5252.29 3199.22 2536.32 5126.60 2317.53

doi: 10.1371/journal.pone.0072418.t001
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Table 2. Information of miRNAs known to function in muscle development (muscle-related miRNAs).

Transcription Factors (TF) &
Signaling pathways microRNA (miR)   

TF - miR
Relationship Targets (including Potential Targets)

MiR - targets
Relationship Tissues &Cells

MyoD [62–64], MEF2
[62,65–67], SRF [62],
Myogenin [63], Myf5 [63],
MRF4 [63], Twist [65],
mTOR [68], SREBP [66]

miR-1 up-regulation

HDAC4 [21], Cx43 [69,70], G6PD [71],
Sox6 [72], Hand2 [62], KCNJ2 [69],
HSP60 [73], HSP70 [73], caspase-9
[73], c-Met [74], Pax7 [75], Pax3 [64],
IGF-1R [76], KLF4 [77]

down-regulation
C2C12, skeletal muscle, cardiac
muscle, smooth muscle,
Rhabdomyosarcoma

HMOX1 [78], Notch3 [67]  down-regulation Notch3 [67] down-regulation  

Myogenin [63], MyoD [63],
MEF2 [66], Myf5 [63], MRF4
[63], SREBP [66]

miR-133 up-regulation

SRF [21,79], KLF15 [79], nPTB [80],
UCP2 [81], RhoA [82], Cdc42 [82],
Nelf-A/WHSC2 [82], CTGF [83],
HSP60 [73], HSP70 [73], caspase-9
[73], Runx2 [84], dynamin 2 [85]

down-regulation
C2C12, skeletal muscle, cardiac
muscle, Rhabdomyosarcoma

HMOX1 [78]  down-regulation  down-regulation  

Myogenin [63], MyoD
[63,64,86], Myf5 [63], MRF4
[63], MEF2C [67]

miR-206 up-regulation

Cx43 [70], HDAC4 [87], DNA
polymerase [88], Fstl1 [86], Utrn [86],
c-Met [74], Pax7 [89], Pax3 [64],
Hmgb3 [90], Otx2 [91], TIMP3# [92],
VEGF# [93]

down-regulation
C2C12, skeletal muscle,
Rhabdomyosarcoma, laryngeal
squamous cell carcinoma (LSCC)

TGF-β [87], BMP2 [94],
HMOX1 [78], Notch3 [67]

 down-regulation Notch3 [67] down-regulation  

MyoD [24] miR-378 up-regulation MyoR [24], BMP2* [53], MAPK1* [53] down-regulation C2C12, skeletal muscle*

IGF1 [95]  down-regulation IGF1R [95] down-regulation cardiac muscle

 miR-155  MEF2A [96], OLFML3* [97] down-regulation
skeletal muscle*, vascular smooth-
muscle

KDM2B (Ndy1/FBXL10/
JHDM1B) [98]

let-7/miR-101 down-regulation EZH2 [98] down-regulation skeletal muscle

 let-7b  GHR [99] down-regulation  
STAT3 [100] miR-124a up-regulation   embryonic stem cell (ESC)

mTOR [34] miR-125 down-regulation IGF-II [34], Cbx7 [101], SP7 [102] down-regulation
skeletal muscle, smooth muscle,
ESC

 miR-126  Spred-1 [58], VCAM-1 [58], IRS-1 [57] down-regulation cardiac muscle, ESC
 miR-128a  PPARγ [36], Runx1 [36], Pax3 [36] down-regulation skeletal muscle
 miR-130a  GAX [103], HOXA5 [103] down-regulation vascular endothelial cells (ECs)
 miR-135  Smad5 [84], JAK2# [104] down-regulation C2C12, Hodgkin lymphoma
SRF [105], myocardin [105] miR-143/145 up-regulation SRF [25], myocardin [25], Nkx2-5 [25] down-regulation smooth muscle
 miR-144  IRS1 [106] down-regulation Type II diabetes mellitus
 miR-148a  ROCK1 [27] down-regulation skeletal muscle
 miR-15a  DLK1 [107] down-regulation 3T3-L1 preadipocytes
 miR-15a/16  cyclin D1 [108] down-regulation skeletal muscle
 miR-181  Hox-A11 [26], Cbx7 [101] down-regulation skeletal muscle, ESC
 miR-199a  Hif-1α [37], Sirt1 [37] down-regulation cardiac muscle
 miR-204  Runx2 [109] down-regulation smooth muscle
 miR-208a  Thrap1 [110], myostatin [110] down-regulation cardiac muscle

 miR-208b/499  
Sox6 [11], Purβ [11], Sp3 [11], HP-1β
[11]

down-regulation muscle

TGF-β/BMPs signaling
[111], p38 [112], MKP-1
[112]

miR-21 up-regulation PTEN [113], PDCD4 [111] down-regulation
skeletal muscle, cardiac muscle,
smooth muscle

Hif1a [114] miR-210 up-regulation   cardiac muscle
Myogenin [115], MyoD [115] miR-214 up-regulation Ezh2 [115], N-Ras [40] down-regulation C2C12, skeletal muscle, ESC
Ras-MAPK pathway [44] miR-221 up-regulation p27 [44], Mdm2 [116] down-regulation skeletal muscle, mesenchymal cells
Ras-MAPK pathway [44] miR-222 up-regulation p27 [44], β1-syntrophin [117] down-regulation skeletal muscle

NFATc3 [118] miR-23a  
MAFbx/atrogin-1 [33], MuRF1
[33,118], Myh1/2/4 [32]

down-regulation skeletal muscle
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predicted and total 2325 target genes were found. The
predictions were then applied to analyze the KEGG Orthology
using the KEGG database. Thirty one significantly enriched
pathways (P-value < 0.01) were picked out (Figure 3A).
Particularly, the highly-expressed miRNAs involved in Wnt [45],
MAPK [46], ErbB [47], TGF-beta [48] signaling pathways and
Focal adhesion [49], which are known to be closely involved in
the regulation of myogenesis. Furthermore, some pathways
concerned with diseases such as Melanoma, cancers and
Hypertrophic cardiomyopathy (HCM) were actively regulated by
miRNAs in muscle tissues [50].

To identify whether different biological processes responding
to different stages of muscle development, KEGG Orthology
analyses were performed using predicted targets of DE
miRNAs at 35 to 77 dpc (LR 1-4), 77 dpc to 28 dpn (LR4-7)
and 28 to 180 dpn (LR7-10). Figure 3B illustrated that most
pathways with reported function in regulating myogenesis were
significantly enriched (P<0.01) in the above three
developmental stages, including Wnt, MAPK, Neurotrophin,
TGF-beta, ErbB, Insulin, Calcium, GnRH, T cell receptor
signaling pathways and Focal adhesion as well as Adherens
junction. In particular, two well-known signaling pathways that
Wnt and MAPK were both highly enriched in all of the three
stages. Comparing these pathways among the three stages,
Wnt, the most differently expressed signaling pathway, was
significantly enriched throughout the muscle development, with

the highest expression at 28 to 180 dpn, the second at 77dpc
to 28 dpn, and the least at 35 to 77 dpc. However, MAPK
signaling pathway expressed at the same level in all stages.
Other pathways such as TGF-beta and Calcium signaling

Table 3. The numbers of differentially expressed miRNAs
between libraries.

 Numbers of differentially expressed miRNAs

The comparison
between adjacent
libraries Total DE miRNAs    

Total DE miRNAs-
up

Total DE miRNAs-
down

LR2/1 75 38 37
LR3/2 9 2 7
LR4/3 15 4 11
LR5/4 20 15 5
LR6/5 61 7 54
LR7/6 74 5 69
LR8/7 47 8 39
LR9/8 118 116 2
LR10/9 105 1 104

LR, Landrace; DE, differentially expressed(P<0.01│log2fold-change│>2); up, up
regulation; down, down regulation
doi: 10.1371/journal.pone.0072418.t003

Table 2 (continued).

Transcription Factors (TF) &
Signaling pathways microRNA (miR)   

TF - miR
Relationship Targets (including Potential Targets)

MiR - targets
Relationship Tissues &Cells

TGF-β [35] miR-24 down-regulation   skeletal muscle

C/EBPα [119] miR-26a up-regulation
GSK-3β [119], Ezh2 [29], Smad1 [28],
Smad4 [28]

down-regulation skeletal muscle, smooth muscle

Pitx2 [31] miR-27a/b down-regulation MSTN [30], Pax3 [31], myostatin [30] down-regulation skeletal muscle
NF-kappa-B-YY1 [41,43],
CKD [42], TGF-beta-Smad3
signaling [120]

miR-29 down-regulation
HDAC4 [87], YY1 [41,42], Smad3 [87],
Smad4 [121], MMP-2 [43], COL1A1
[122], ELN [122], Rybp [123]

down-regulation
C2C12, skeletal muscle, cardiac
muscle, Aneurysm

 miR-30  CTGF [83] down-regulation cardiac muscle

 miR-31  Myf5 [124] down-regulation
skeletal muscle, Duchenne
muscular dystrophy

 miR-320  PFKm [125] down-regulation muscle
 miR-322/424  Cdc25A [38] down-regulation skeletal muscle
 miR-351  E2f3 [126] down-regulation skeletal muscle
SRF [39], MRTF-A [39],
MyoD [39]

miR-486 up-regulation PTEN [39], Foxo1 [39], Pax7 [89] down-regulation skeletal muscle

 miR-489  Dek [127] down-regulation skeletal muscle
 miR-494  mtTFA [128], Foxj3 [128] down-regulation skeletal muscle
 miR-503  Cdc25A [38,129], CCNE1 [129] down-regulation skeletal muscle
 miR-546  Mybbp1a [130] down-regulation skeletal muscle
 miR-669a/669q  MyoD [131] down-regulation skeletal muscle
 miR-696  PGC-1α [132] down-regulation skeletal muscle
STAT3 [100] miR-9 up-regulation   ESCs
 miR-92a up-regulation integrin α5 [133] down-regulation muscle, Ecs

*. Identified in pig
#. Potential target
doi: 10.1371/journal.pone.0072418.t002
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pathways showed more differences in different stages, and
Insulin, GnRH and ErbB signaling pathways were just the
opposite. Notably, almost all pathways showed s similar
expression pattern in two waves of myofiber maturation:
myofiber transformation and hypertrophy, suggesting their
closer relationship in terms of myogenic regulation.

Furthermore, we refined a more detailed KEGG Orthology
analysis using predicted targets of DE miRNAs in Table 3
between two time points contributing to describing the different
developmental phases of myogenesis. The significant
pathways (P<0.05) related to muscle development were listed
in Table 4, most of which have been identified according to the
most abundant miRNAs (Figure 3A). Further analysis of these
pathways suggested three clusters of enrichment by using
SPSS, setting values for statistic significance (*P<0.05 and
**P<0.01 were assigned 1 and 1.5, respectively, using 0 where
no significance was detected) : A) with universal enrichment,
including Adherens junction, Focal adhesion, Adipocytokine,
GnRH, Insulin, Notch, p53, Phosphatidylinositol, TGF-beta,
VEGF and Wnt signaling pathways; B) with more enrichment
during prenatal myogenesis, including Axon guidance, Gap
junction, Melanogenesis and Neurotrophin signaling pathways;
C) with more enrichment during postnatal myogenesis,

including Calcium, Chemokine, ErbB, Hedgehog, mTOR, T cell
receptor and MAPK signaling pathways (Table 4).

Clustering miRNA expression
We used the Short Time-series Expression Miner (v 1.1,

STEM) [51] to cluster temporal profiles of miRNA expression
during muscle fiber formation at 35 to 77 doc (LR1-4) as well
as fiber further maturation at 77 dpc to 180 dpn (LR4-10). After
that a total of 57 out of 87 DE miRNAs (65.5% of 87 DE
miRNAs; Table S5) observed at 35 to 77 dpc were significantly
clustered into three kinds of expression patterns (11.5% of 26
clusters; Figure 4A), while 112 out of 166 DE miRNAs (67.5%
of 166 DE miRNAs; Table S5) observed at 77 dpc to 180 dpn
were significantly clustered into two kinds of expression
patterns (4% of 50 clusters; Figure 4B, the default P-value was
1E-5). Figure 4C showed miRNA expression profiles for the
five clusters found to be significant out of 76 possible clusters
successively. The cardinality of each cluster was ranged from 7
DE miRNAs in cluster 3 to 80 in cluster 4 (Table S6). Visual
examination of these clusters suggested that down-regulated
DE miRNAs were distributed both Cluster 1 and 3 while Cluster
2 included DE miRNAs that showed more gradual increase,
which peaked at 63 to 77 dpc during myofiber formation. STEM

Figure 2.  Comparison of differentially expressed (DE) miRNAs among three data sets.  The number marked in the
overlapping areas shows the common DE miRNAs.
doi: 10.1371/journal.pone.0072418.g002
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also clustered biphasic responding DE miRNAs in Cluster 4
and down-regulated DE miRNAs in Cluster 5 during myofiber
further maturation from 77 dpc to 180 dpn.

Similar expression pattern could be associated with
functional correlation to a certain extent. Notably, in addition to
porcine myomiRs (miR-1, -206, -133 a-3p/a-5p/b), three other
miRNAs (miR-128, -208b and -378) reported to be related to
muscle development in other mammals were also included in
up-regulation Cluster 2, suggesting their roles in the regulation
of porcine embryonic myogenesis at 35 to 77 dpc. However,
Cluster 5 illustrated that ssc-miR-206 and other four muscle-
related miRNAs (ssc-miR-126, -148a/b and -15b) continued to
decline while ssc-miR-133b and eleven other muscle-related
miRNAs (ssc-miR-125b, -128,-181a/b, -199a, -214, -23a, -24,
-424, -503 and -7) in Cluster 4 presented a down and then up
trend from 77 dpc to 180 dpn, suggesting their different roles
played in adult fiber maturation. Moreover, parts of these
miRNA expression profiles during 10 developmental stages
were illustrated in Figure 5, providing the possibility for further
research into miRNAs that had similar expression profiles with
muscle-related miRNAs.

Validation of the Sequencing data
Stem-loop quantitative RT-PCR was applied to validate the

sequencing data. Choosing an appropriate set of endogenous
control (EC) miRNA genes is crucial, for EC genes are widely
used to normalize the miRNA q-PCR data, which are expected
to express constantly at all stages of development of one or

more tissues. Although U6 snRNA is one of the most widely
used internal control, Gu et al. demonstrated that the U6 gene
was the least stable gene compared with other candidate EC
genes in all tissues (including muscle tissues) comparing with
miR–17, -103, -107 and -23a [52]. Hence, the optimal EC gene
from above candidates was studied by calculating the standard
deviation (Stdev.) of four genes in all samples when the fifth
was supposed to be an EC gene (Figure S3). As a
consequence, miR-17-5p was actually the most stable gene
(Stdev. = 0.1), while the U6 gene was the least stable gene
(Stdev. = 4.9), consistent with the previous study [52]. Stem-
loop quantitative RT-PCR was then performed on 9 random
miRNAs with different expression levels (miR-1, -206,
-133a-3p, -133a-5p, -133b, -378, -214, -744 and let-7f) to
validate the sequencing data (Figure 6). Stem-loop RT-PCR
primers were presented in Table S7. The Pearson correlation
coefficient of the Real-time PCR and the Solexa sequencing
was calculated and the r values ranged from 0.84 to 0.95,
indicating that there was a high consistency between the two
methods.

Discussion

Since pigs are important farm animals and are suitable
models for studying human diseases, we herein presented the
systematical porcine miRNAome at ten important
developmental stages of skeletal muscle using Solexa
sequencing. A total of 247 known and 297 potential novel

Figure 3.  KEGG Orthology analysis of the most abundant miRNAs.  A. 31 significantly enriched KEGG pathways were
achieved using the target genes of the most abundant 25 miRNAs (not including let-7 family) in ten libraries; B. comparison of
KEGG pathways significantly enriched during skeletal muscle development at 35 to 77dpc (LR 1-4), 77dpc to 28 dpn (LR 4-7) and
28 to 180 dpn (LR 7-10). P-value < 0.01.
doi: 10.1371/journal.pone.0072418.g003
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miRNAs were identified. 247 known porcine miRNAs were
substituted as 257 mature porcine miRNAs in miRBase 18.0 for
further analysis. Similar to the work of McDaneld et al. [14], this
study aimed at studying the mechanism of skeletal muscle
development in swine through analysis of miRNA transcriptome
profiles at designed different developmental stages. In addition,
we both focused on the changes in abundance of myomiRs
(miR-1, -206 and -133) during swine skeletal muscle
development. Contrarily, different developmental stages were
used to study muscle development in the two investigations.
Moreover, the proliferating satellite cells were employed in the
previous work, which might be complement each other and
contribute to revealing the expression profiles and biological
function of miRNA during swine skeletal muscle development
more comprehensively. Unlike the previous work, the present
study paid more attention to the most abundant miRNAs, but
not limited to the well-studied myomiRs, which have been
proven to play important roles during swine skeletal muscle
development, consistent with the conclusion that functional
miRNAs tend to be highly expressed [19]. The sequencing data
was then verified by stem–loop quantitative RT-PCR.
Moreover, the abundance of the top 15 miRNAs were found to
be the majority of total reads in each library (Figure S2). KEGG
Orthology analysis of the most abundant 25 common miRNAs
(excluding let-7 family) from 10 libraries indicated that their
involvement in the regulation of canonical myogenesis-related
pathways and diseases (Figure 5). Intriguingly, 11 of the 25
common miRNAs were reported to function as muscle-related

miRNAs including the well-known myomiRs (miR-1, -206 and
-133 family). Therefore, it is reasonable to hypothesize that the
functional miRNA, in terms of mediating target suppression to
regulate myogenesis and muscle diseases, tended to express
abundantly.

Currently, differently expressed (DE) miRNAs were thought
to be closely related to almost all aspects of muscle
development. In this study, a total of 183 DE miRNAs between
different libraries were identified. Ssc-miR-1 was the most
abundant miRNA in ten libraries, consistent with the well-
established function of miR-1 during skeletal muscle
development [21]. Interestingly, the second abundant DE
miRNA was miR-378, a new candidate miRNA for myogenesis
in pigs by down-regulating porcine BMP2 or MAPK1 [53].
Another DE miRNA (miR-148a), whose average abundance
before birth was eight times higher than that in postnatal, might
be a part of mechanism implicated in differences between
embryonic myogenesis and adult myofiber maturation.
Exceptions were some previously reported muscle-related
miRNAs such as miR-181c/d-5p, miR-29b/c, miR-221/222 and
miR-208, all of which expressed at a very low level (average
RPM <100). In addition to highly expressed myomiRs, the
expression of muscle-related miRNAs was varied in pigs,
suggesting that highly expressed muscle-related miRNAs that
have been validated in other species should be the first priority
in studying porcine skeletal muscle development, followed by
the muscle-related miRNAs expressed at lower levels.

Table 4. KEGG Orthology enriched for target genes of DE miRNAs between different libraries.

Pathway LR2/1 LR3/2 LR4/3 LR5/4 LR6/5 LR7/6 LR8/7 LR9/8 LR10/9

 up down up down up down up down up down up down up down up down up down
Adherens junction * **  *   * *  *  **  * **   **
Adipocytokine signaling pathway    * *    * *    ** *    
Axon guidance * ** * ** * ** * ** * **  ** ** ** **   **
Calcium signaling pathway  * **       *  **  * **   **
Chemokine signaling pathway            *   *   *
ErbB signaling pathway  **     ** *  **  ** * ** **   **
Focal adhesion ** **  * ** *  ** ** **  ** ** ** **   **
Gap junction  **  **  ** * **  **  *  ** **   *
GnRH signaling pathway  ** ** * * * **  * *  **  ** **   **
Hedgehog signaling pathway  *          *  * *   *
Insulin signaling pathway  **  **  ** **   **  **  ** **   **
MAPK signaling pathway ** **  *      **  **  ** **   **
Melanogenesis ** ** ** ** * ** ** **  ** ** ** * ** **   **
mTOR signaling pathway  *        **  *   *   *
Neurotrophin signaling pathway ** ** **  * ** ** *  **  ** ** ** **   **
Notch signaling pathway       **            
p53 signaling pathway *    *     *    * *   *
Phosphatidylinositol signaling system   *   *    **   **  *   *
T cell receptor signaling pathway  **        *  **   **   **
TGF-beta signaling pathway ** *  ** *   *  **  ** ** ** **   **
VEGF signaling pathway          *         
Wnt signaling pathway ** **  **  * ** *  ** * ** ** ** **   **

Asterisk indicated the significant enrichment of KEGG pathways (* p valued <0.05; **p value < 0.01)
doi: 10.1371/journal.pone.0072418.t004
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Next, target prediction and KEGG Orthology analysis of
stage-specific DE miRNAs might suggest that myofiber
formation and maturation were controlled by multiple signal
pathways in different ways, suggesting that different molecular
regulation mechanism underlined different biological
processes. In particular, the two waves of myofiber maturation:
myofiber transformation and hypertrophy showed a closer
relationship in myogenic regulation, providing a possibility to
undergo subsequent STEM clustering by combining them.
Furthermore, a more detailed KEGG Orthology analysis of DE
miRNAs between two time points identified a list of pathways
participating in the regulation of myogenesis and related
diseases, suggesting that DE miRNAs were tightly related with
biological processes at different stages of muscle development.
For example, Wnt signaling pathway involved in embryonic
myogenesis and in regulating the homeostasis of adult muscle

[45], resulting its universal enrichment from embryonic to adult
myofiber maturation. Calcium signaling, though with less
attention, was considered potential mediators of postnatal
muscle development and hypertrophy [54], giving some
indication for more enrichment during postnatal myogenesis.
An exception was Notch signaling pathway, though it was
classified to the category with universal enrichment, only
expressed highly during late embryogenesis. However,
previous studies have showed its crucial role not only for
embryogenesis but for muscle maintenance and repair in the
adult [55]. One reason might explain the difference is that there
is still plenty of unknown information about miRNA, resulting
insufficiency of its functional annotation. In general, integrated
analysis of sequencing results and biological pathway
information might add insight into the vital roles played by
miRNA during skeletal muscle development. However,

Figure 4.  Clustering of miRNA expression profiles.  A–B. Each box corresponded to a model expression profile and only
colored profiles reached statistical significance. The upper-left number in the box gave information about the order of profile (upper
left) and the p-value significance (bottom left). A. 26 clusters of 87 DE miRNAs during myofiber formation, the first three of which
showed statistically significant; B. 50 clusters of 166 DE miRNAs during myofiber maturation, the first two of which showed
statistically significant. C. Five significant clusters of miRNA profiles during myofiber formation (cluster 1-3) and myofiber maturation
(cluster 4-5) were displayed as time course plots of log 2miRNA expression ratios to controls.
doi: 10.1371/journal.pone.0072418.g004
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comprehensive information about miRNA is still lacking, such
as insufficiency of functional analysis, which requires more
research focusing on combination of bioinformatic analysis of
miRNAome and subsequently experimental validation.

We hypothesized that miRNAs with similar expression
patterns might be function-related. STEM clustering results
suggested that ssc-miR-378 functioned as a new candidate
miRNA for porcine myogenesis because of its expression
profile similar to ssc-miR-1 and -133a-3p (Figure 5A).
Interestingly, recently studies have validated that ssc-miR-378
regulated myogenesis by directly targeting the BMP2 or
MAPK1 in pig, suggesting that the STEM clustering was
reliable for analyzing miRNA expression profiles as well as for
predicting of candidate myogenic miRNAs. We focused on
either highly expressed DE miRNAs or muscle-related miRNAs
to ensure the accuracy of prediction. Consequently, 18
candidate miRNAs were selected, including ssc-miR-378, -127,
-128, -411, 23b, -27b, -10a, -140*, -9-1/-2, -148a/b, -126,
542-3p, 30a-5p/d/e-5p and miR-103 (Figure 5). MiR-127, which
is located within a CpG island with little research on
myogenesis, showed similar expression pattern to ssc-
miR-206, up regulated at 35 to 77 dpc and down regulated at
77 dpc to 180 dpn (Figure 5B), providing the possibility for
further investigation concerning the function of ssc-miR-127
during muscle development. miR-128 was reported to

participate in the regulation of adipogenesis, osteogenesis and
myogenesis [36] and herein, together with ssc-miR-411, up
regulated at 35 to 77 dpc and fluctuated at 77 dpc to 180 dpn
(Figure 5C), might behave in a similar manner as ssc-
miR-133b during porcine muscle development. MiR-23b was
found to interact with TGF bata signaling by down-regulating
Smads in fetal hepatocytes [56], while miR-27b was involved in
myogenic differentiation [31] as well as fast-specific and
glucocorticoid-dependent myostatin expression [30], both of
which were highly expressed at 35 dpc and down-regulated
thereafter (Figure 5D), suggesting their roles played in porcine
embryonic myogenesis. Like ssc-miR-23b and 27b, it is
reasonable to hypothesize that ssc-miR-10a, -140* and -9-1/-2
might act on earlier embryonic myogenesis, for they highly
expressed at 35 dpc then decline dramatically. MiR-148a has
been identified as a novel myogenic miRNA that mediated
myogenic differentiation via targeting ROCK1 [27], while
miR-126 attenuated insulin signaling [57] and governed
vascular integrity and angiogenesis [58], suggesting their
interactions with signaling pathways were required for muscle
normal development and maintenance. Similarly, ssc-
miR-148b, -542-3p and -30 family (a-5p/d/e-5p) showed similar
expression patterns with ssc-miR-148a and -126, highly
expressed and down-regulated at 77 dpc to 180 dpn (Figure
5E), making it possible that they belong to the candidate

Figure 5.  Expression profiles of candidate myogenic miRNAs.  Based on STEM results, DE miRNAs that had similar
expression profiles with muscle-related miRNAs were selected and clustered into six distinctive types of expression patterns during
muscle development.
doi: 10.1371/journal.pone.0072418.g005
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myogenic miRNAs. MiR-103/107 family was validated to
attenuate miRNA biosynthesis by targeting Dicer [59], regulate
insulin sensitivity through down-regulating caveolin-1 [60] and
affect cellular migration by modulating CDK5R1 expression
[61], allowing us to hypothesize that these miRNA-mediated
mechanism may affect myogenesis when the microRNA family,
especially ssc-miR-103, down-regulated during both myofiber
formation (at 35 to 77 dpc) and maturation (at 77 dpc to 180
dpn) (Figure 5F). In summary, STEM clustering of miRNA
temporal expression contributed to determining candidate
myogenic miRNAs in an effective way.

In this study, 297 novel miRNAs were identified. Analysis of
the evolutionary conservation of these novel miRNAs revealed
that none is conserved in mammals. Therefore, it is reasonable
to hypothesize that pig-specific miRNAs may exist. However, it
is the first time that more than 200 novel miRNAs were
detected from miRNAome of porcine skeletal muscle attributing
to high-throughput deep sequencing technology. Although few
of these novel miRNAs might play any roles in establishing and

maintaining phenotype of muscle tissue during individual
development for their extremely low expression, there are still
several highly expressed novel miRNAs that need further
validation. In particular, a functional validation of novel and
species-specific miRNAs is a challenge for understanding the
critical roles played by miRNAs during muscle development
and for providing the valuable information for pig meat quality
improvement.

Supporting Information

Figure S1.  Saturation plots of ten libraries.
(TIF)

Figure S2.  Counts characteristics of the unique miRNAs in
each library. Starting from the miRNA with the highest counts
(x-axis), the black bar represents the accumulative proportion
of miRNAs in total counts of each library. The red horizontal

Figure 6.  Validation of the sequencing data using Real-time PCR method.  The fold changes in abundance of night random
miRNAs in 10 libraries were normalized by comparing with the LR1.The r value indicates the Pearson Correlation Coefficient
between the two methods.
doi: 10.1371/journal.pone.0072418.g006
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line represents the proportion of individual miRNA versus the
total 257 miRNAs.
(TIF)

Figure S3.  Determination of the optimal endogenous
control (EC) pig genes for normalization. Based on standard
deviation, the stability of 5 candidate EC genes was measured.
The pairwise difference between all tested genes was
compared using t-test, and the significance was labeled with
asterisk (**p value < 0.001).
(TIF)

Table S1.  Annotations of sequenced small RNAs. Table
S1-1 Number of small RNA reads. Table S1-2 Summary of
reads matching noncoding RNA. Table S1-3 Summary of small
RNA matching noncoding RNA databases.
(XLS)

Table S2.  Summary of predicted novel miRNAs. Table S2-1
Predicted chromosomal positions and counts of novel miRNAs.
Table S2-1 Predicted chromosomal positions and counts of
novel miRNAs.
(XLS)

Table S3.  Summary of reads distribution of 257 known
porcine miRNAs. Table S3-1 Expression profiles of 257
miRNAs in ten libraries. Table S3-2 Raw reads distribution.
Table S3-3 The distribution of numbers for normalized
miRNAs.

(XLS)

Table S4.  Summary of top 15 most abundant miRNAs in
10 libraries.
(XLS)

Table S5.  Expression profiles of DE miRNAs during LR 1-4
and LR 4-10.
(XLS)

Table S6.  Information about five significant clusters.
(XLS)

Table S7.  Primers for miRNA RT-qPCR.
(XLS)
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