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RMarsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine due
to bioactive constituents of polyoxypregnane glycosides, such as tenacissosides, marsdenosides and
tenacigenosides. Genomic information regarding this plant is very limited, and rare information is available
about the biosynthesis of polyoxypregnane glycosides. To facilitate the basic understanding about the
polyoxypregnane glycoside biosynthetic pathways, de novo assembling was performed to generate a total of
73,336 contigs and 65,796 unigenes, which represent the first transcriptome of this species. These included 27
unigenes that were involved in steroid biosynthesis and could be related to pregnane backbone biosynthesis.
The expression patterns of six unigenes involved in polyoxypregnane biosynthesis were analyzed in leaf and
stem tissues by quantitative real time PCR (qRT-PCR) to explore their putative function. Furthermore, a total of
15,295 simple sequence repeats (SSRs) were identified from 11,911 unigenes, of which di-nucleotide motifs
were the most abundant.

© 2014 Published by Elsevier Inc.
C

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
U
N
C
O

R
R
E1. Introduction

Marsdenia tenacissima (Roxb.) Wight et Arn. is a perennial climber
belonging to the Asclepiadaceae family, which is widely distributed in
tropical to subtropical areas in Asia, mainly in the Guizhou and Yunnan
Provinces of China. The dried stems ofM. tenacissima, known as “Tong-
guang-teng” or “Tong-guang-san”, are used in Chinese folkmedicine for
the treatment of asthma, cancer, tracheitis, tonsillitis, pharyngitis,
cystitis, and pneumonia [1,2]. Clinical studies have shown that the aque-
ous extractions ofM. tenacissima are beneficial for treating patientswith
various cancers [3–5]. Polyoxypregnane glycosides are the major bioac-
tive constituents in the stem of M. tenacissima [6]. More than 40
polyoxypregnane glycosides have been isolated from M. tenacissima,
mainly tenacissosides [7], marsdenosides [8–11] and tenacigenosides
[12–14], and all of which have aglycones derived from tenacigenin B.
Two other polyoxypregnane glycosides with aglycones of sarcogein
and drevogenin P were also detected from M. tenacissima [15] (Fig. 1).
The main biosynthetic pathway of phytosterol has been studied exten-
sively and is well understood [16–20], but the biosynthesis of steroidal
derivatives as secondarymetabolites is still largely unknown, especially
pregnane and their glycosides.
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Pregnane glycosides are C-21 steroidal compounds conjugated with
sugars [21]. In plants, pregnane derivatives are intermediates in
cardenolide glycoside biosynthesis where cholesterol is a direct precur-
sor [22,23]. The biosynthesis of cardenolide glycosides has been suffi-
ciently elucidated [24], and most of the enzymes and genes involved
in this pathway are well characterized [25–33]; however, there are
some genes whose functions are still not clear, such as cholesterol
monooxygenase (side chain-cleaving enzyme), Δ5-Δ4-ketosteroid
isomerase and pregnane 14β-hydroxylase [24]. Comparing themolecu-
lar structures with cardenolide glycosides [24], we explored the
putative biosynthetic pathway of polyoxypregnane glycosides in
M. tenacissima (Fig. 1). Clearly, pregnanes must be modified by hydrox-
ylation, acylation and glycosylation at C-atoms in its backbone for the
formation of polyoxypregnane glycosides. Currently, only enzymes
that catalyze those modifications at C-atoms in the side chain of sterols
have been identified and characterized, includingmodifications at C-21
[32], C-22 [34–37] and C-24 [38–41]; however, little is known about the
molecularmechanismof themodification of C-atoms in the backbone of
sterols in plants (Fig. 1).

Moreover, cholesterol and other phytosterols, such as campesterol
and sitosterol, are biosynthesized via cycloartenol and catalyzed by
cycloartenol synthase (CAS) in higher plants (cycloartenol pathway),
contributing to membrane sterol biosynthesis. New evidence has sug-
gested that another route (the lanosterol pathway) catalyzed by
lanosterol synthase (LAS) might contribute to the biosynthesis of not
only phytosterols but also steroids as secondary metabolites [42].
rg/10.1016/j.ygeno.2014.07.013
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Fig. 1. The putative biosynthetic pathway of polyoxypregnane glycosides inM. tenacissima. Enzymes found in this study are surrounded by boxes; enzymes which are not found or hypo-
thetical are surrounded by dashed boxes. Enzymes involved in the pathways are: SCCE, cholesterol monooxygenase (side-chain-cleaving enzyme); 3β-HSD, 3β-hydroxysteroid dehydro-
genase; KSI, Δ5-Δ4-ketosteroid isomerase; 5β-POR, progesterone 5β-reductase; P14βH, pregnane 14β-hydroxylase (hypothetical). This putative biosynthetic pathway is modified
according to Kreis and Müller-Uri [24].

Fig. 2.Overview of theM. tenacissima transcriptome assembly and the length distribution
of the CDS. (Blue) Length distribution of contig sequences. (Yellow) Length distribution of
unigenes. (Red) Length distribution of the coding sequence (CDS). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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to cholesterol have been postulated [43], most enzymes and their genes
have not been identified or characterized.

RNA-seq has been widely used for de novo transcriptome sequenc-
ing inmanymedicinal plants. The objective of the present study is to an-
alyze the transcriptome of M. tenacissima using Illumina paired-end
sequencing technology on a HiSeq 2000 platform to discover candidate
genes that encode enzymes involved in polyoxypregnane glycoside bio-
synthesis. Based on RNA-seq, many simple sequence repeat (SSR)
markers were found, which will facilitate marker-assisted breeding of
this plant.

2. Results and discussion

2.1. Illumina sequencing and de novo assembly

To obtain a comprehensive M. tenacissima transcriptome, cDNA li-
braries were generated from an equal mixture of RNA extracted from
fresh leaves or stems andwere paired-end sequenced using an Illumina
HiSeq 2000 platform. After quality assessment and data cleaning,
63,175,764 high-quality reads were generated, comprising a total
length of 6,317,576,400 nucleotides. Among these clean reads, 95.15%
of reads had Q20 bases (base quality more than 20) and 46.83% GC-
content. Based on high-quality reads, we obtained 73,336 contigs with
lengths ranging from 201 bp to 15,808 bp with an average of 1123 bp;
43.77% of contigs were longer than 1000 bp (Fig. 2). After all the clean
reads were assembled using the Trinity assembling program, de novo
Please cite this article as: K. Zheng, et al., Genomics (2014), http://dx.doi.o
assembly yielded 65,796 unigenes with an average of 1087 bp, and
27,347 unigenes (41.56%) were longer than 1000 bp (Fig. 2). The se-
quences of all unigenes are shown in the NCBI SRA database. Of the
rg/10.1016/j.ygeno.2014.07.013
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total number of unigenes identified, 63.66% (41,883) were identified as
having a CDS. The size distribution showed that 68.40% of CDS (28,650)
ranged from 201 to 1000 bp and that the percentage of CDS longer than
1000 bp was 31.60% (13,233) (Fig. 2). The high-quality reads produced
in this study have been deposited in the NCBI SRA database (accession
number: SRA140234).
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2.2. Functional annotation

To obtain complete annotations, all of the assembled unigenes were
similarity searched against four public protein databases (NCBI Nr,
SwissProt, KEGG and COG). A total of 42,258 unigenes (64.23%) were
annotated in the public databases Nr, SwissProt, KEGG and COG. Of
these, 8299 unigenes were annotated as common in the four public da-
tabases. Unigenes thatwere annotated as unique in public databases are
as follows: 8596 unigenes in the Nr database, 27 unigenes in the
SwissProt database, 2 unigenes in the COG database and 45 unigenes
in the KEGG database.

The results showed that approximately 75% of unigenes over
1000 bp in length had BLAST matches against the Nr database, whereas
only 60% of unigenes with lengths shorter than 1000 bp generated
BLAST matches. The same tendency was also observed in BLAST results
against the SwissProt database. The statistical analysis of the E-value fea-
tures that were distributed in the Nr databases revealed that 36.16% of
the mapped unigenes showed significant homology (E-value b 10−50)
and 18.78% showed high similarity (E-value b 10−100) to the available
plant sequences. In contrast, the E-value and similarity distributions of
the SwissProt database were 50.48% and 10.30%, respectively. Further-
more, identified unigeneswere compared to sequences fromArabidopsis
thaliana, Glycine max, Medicago truncatula, and Vitis vinifera. These re-
sults revealed that the transcriptome sequences of M. tenacissima
showed high similarity to V. vinifera (34.23%), A. thaliana (12.14%),
G. max (11.29%), andM. truncatula (8.86%).
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Fig. 3.Gene ontology classification of theM. tenacissima transcriptome. 16,642 unigeneswith BL
(biological process, cellular component, molecular function). The scale on the y-axis indicates

Please cite this article as: K. Zheng, et al., Genomics (2014), http://dx.doi.o
F

2.3. Gene ontology classification

A total of 16,642 unigenes were characterized using gene ontology
(GO) analysis based on Nr annotation, including biological process, cel-
lular component, and molecular function. Under the biological process
category, metabolic process (8427, 49.56%), cellular process (7687,
46.19%), and response to stimulus (3297, 19.81%) were prominently
represented. In the cellular component group, unique sequences related
to cell (11,279, 67.77%), cell part (11,279, 67.77%), organelle (8418,
50.56%), and organelle part (2331, 14.01%)were well-represented cate-
gories. For the molecular function category, catalytic activity (8228,
49.44%) and binding (8606, 48.47%) represented themajority of unique
sequences (Fig. 3). These GO annotations provide comprehensive infor-
mation on specific biological processes, molecular functions, and cellu-
lar structures of M. tenacissima transcripts and may lead to the
identification of novel genes involved in secondarymetabolite synthesis
pathways (Additional file 1).
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2.4. Functional classification by COG

All unigenes were also subjected to a search against the COG data-
base for functional prediction and classification. In total, 17,587
unigenes were assigned to one or more of the 25 COG classification cat-
egories. Among the 25 COG categories, the largest cluster was predicted
as general function (5749, 32.69%), followed by replication, recombina-
tion and repair (2752, 15.65%), transcription (2722, 15.48%), signal
transduction mechanisms (2185, 12.42%), posttranslational modifica-
tion, protein turnover and chaperones (2047, 11.64%), carbohydrate
transport and metabolism (1886, 10.72%), translation, ribosomal
structure and biogenesis (1760, 10.01%), amino acid transport and me-
tabolism (1434, 8.15%), and function unknown (1416, 8.05%). The
remaining categories account for only a small proportion of COG
classifications.
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ASTXmatches against the plant NR databasewere classified into threemain GO categories
the number of unigenes in the same category.
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t1:1Table 1
t1:2Q1Transcripts involved in pregnane derivatives biosynthesis inMarsdenia tenacissima.

t1:3Gene name EC number Unigene
numbers

t1:4Mevalonate pathway and farnesyl diphosphate biosynthesis
t1:5ACAT, acetyl-CoA acetyltransferase 2.3.1.9 17
t1:6HMGCS, hydroxymethylglutaryl-CoA synthase 2.3.3.10 1
t1:7HMGCR, 3-hydroxy-3-methylglutaryl-CoA
t1:8reductase

1.1.1.34/1.1.1.88 3

t1:9MVK, mevalonate kinase 2.7.1.36 1
t1:10PMVK, phosphomevalonate kinase 2.7.4.2 3
t1:11MVD, mevalonate pyrophosphate decarboxylase 4.1.1.33 2
t1:12IDI, isopentenyl diphosphate isomerase 5.3.3.2 1
t1:13FPS, farnesyl diphosphate synthase 2.5.1.1/2.5.1.10 5
t1:14SQS, squalene synthase 2.5.1.21 2
t1:15SQLE, squalene epoxidase 1.14.13.132/1.14.99.7 4
t1:16
t1:17Cholestenol biosynthesis
t1:18LAS, lanosterol synthase 5.4.99.7 1
t1:1914-SDM, sterol 14α-demethylase (CYP51) 1.14.13.70 3
t1:2014SR, Δ14-sterol reductase 1.3.1.70 3
t1:214-MSO, C4-methylsterol oxidase 1.14.13.72 3
t1:22EBP, cholestenol Δ-isomerase 5.3.3.5 1
t1:23DHCR24, Δ24-sterol reductase 1.3.1.72 1
t1:24SC5DL, sterol C5 desaturase/lathosterol oxidase 1.14.21.6 2
t1:25DHCR7, 7-dehydrocholesterol reductase 1.3.1.21 2
t1:26
t1:27Pregnane derivatives biosynthesis
t1:283β-HSD, 3β-hydroxysteroid dehydrogenase 1.1.1.145 8
t1:29KSI, Δ5-Δ4-ketosteroid isomerase
t1:30(delta 5-delta 4-steroid isomerase)

5.3.3.1 4

t1:315β-POR, progesterone 5β-reductase 1.3.1.3 4
t1:32SOAT, sterol O-acyltransferase = Acyl-CoA
t1:33cholesterol acyltransferase = Acyl-CoA
t1:34cholesterin acyltransferase

2.3.1.26 14

t1:35Sterol 3-O-glucosyltransferase 2.4.1.173 40

4 K. Zheng et al. / Genomics xxx (2014) xxx–xxx
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2.5. Functional classification by KEGG

To identify active biological pathways in M. tenacissima, a total of
16,778 unigenes had significant matches in the KEGG database with
corresponding enzyme commission (EC) numbers from BLASTX align-
ments and were assigned to 124 KEGG pathways (Additional file 2).
Metabolic pathways had the largest number of unigenes (3478,
20.73%) followed by biosynthesis of secondary metabolites (1555,
9.27%), carbohydrate, starch and sucrose metabolism (335, 2.00%), nu-
cleotide and purine metabolism (334, 1.99%) and translation and RNA
transport (319, 1.90%). Among them, approximately 6814 unigenes
were assigned to metabolic pathways, followed by carbohydrate
metabolism (2007, 11.96%), amino acid metabolism (1320, 7.87%),
lipidmetabolism (827, 4.39%), energymetabolism (590, 3.52%), and nu-
cleotide metabolism (569, 3.39%). Furthermore, it is worth noting that
827 unigenes were assigned to lipid biosynthetic pathways, the most
represented categories of which were glycerophospholipid metabolism
(196, 1.17%), fatty acid metabolism (104, 0.62%), glycerolipid metabo-
lism (92, 0.55%), linoleic acid metabolism (67, 0.40%), and steroid bio-
synthesis (27, 0.16%), which could be related to pregnane backbone
biosynthesis (Fig. 4). In addition to metabolism pathways, genes corre-
sponding to genetic information processing (3359) and cellular pro-
cesses (561) were highly represented categories. There were 27
unigenes (0.16), associated with steroid biosynthesis.

2.6. Candidate gene encoding enzymes involved in pregnane backbone
biosynthesis

Like cardenolides, pregnanes are steroids and supposed to be derived
from the mevalonate pathway via triterpenoid and phytosterol interme-
diates. Previous studies have shown that heterologous expression of the
A. thaliana HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) gene in
Digitalis minor could increase the content of cardenolide and phytosterol
[31]. Based on the KEGG pathway annotation, we found that all of
the gene encoding enzymes involved in the mevalonate pathway and
farnesyl diphosphate biosynthesis in this study, including ACAT (acetyl-
CoA acetyltransferase), HMGCS (hydroxymethylglutaryl-CoA synthase),
HMGCR,MVK (mevalonate kinase), PMVK (phosphomevalonate kinase),
MVD (mevalonate pyrophosphate decarboxylase), IDI (isopentenyl
diphosphate isomerase), FPS (farnesyl diphosphate synthase), SQS
U
N
C
O

R
R

Fig. 4. Pathway assignment based on the KEGG. C

Please cite this article as: K. Zheng, et al., Genomics (2014), http://dx.doi.o
E

(squalene synthase), and SQLE (squalene epoxidase) (Table 1; Additional
file 3). This result might help us further understand polyoxypregnane
glycoside biosynthetic mechanisms and increase their level of accumula-
tion by overexpressing these genes inM. tenacissima.

Cholesterol is the direct precursor for pregnane biosynthesis,
which comes from the lanosterol pathway [42]. Most gene encoding en-
zymes involved in cholestenol and pregnane backbone biosynthesis
were found in this study, including LAS (lanosterol synthase), 14-SDM
lassification based on metabolism categories.

rg/10.1016/j.ygeno.2014.07.013
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(sterol 14α-demethylase), 14SR (Δ14-sterol reductase), 4-MSO (C4-
methylsterol oxidase), EBP (cholestenol Δ-isomerase), DHCR24 (Δ24-
sterol reductase), SC5DL (sterol C5 desaturase/lathosterol oxidase),
DHCR7 (7-dehydrocholesterol reductase), 3β-HSD (3β-hydroxysteroid
dehydrogenase), and 5β-POR (progesterone 5β-reductase), suggesting
that the biosynthesis of polyoxypregnane glycosides in M. tenacissima
might be similar to cardenolides biosynthesis in Digitalis, both of
which share similar early enzymatic steps in their biosynthetic
pathway. The functions of these genes, and the relationship between
their expression levels and polyoxypregnane glycoside accumulation,
will be studied in the future.

Some gene encoding enzymes involved in cholesterol and
pregnane backbone biosynthesis were not found in this study
(Table 1) because they are only isolated and characterized in animals
or microorganisms, such as NSDHL (sterol-4α-carboxylate 3-
dehydrogenase, decarboxylating), 3-KSR (3-keto-steroid reductase),
SCCE (cholesterol monooxygenase, side chain-cleaving enzyme),
KSI (Δ5-Δ4-ketosteroid isomerase), and P14βH (pregnane 14β-
hydroxylase). To search for these genes inM. tenacissima transcriptome,
we compared all unigenes with Stenotrophomonas maltophilia
NSDHL (P-001970132.1), Homo sapiens 3-KSR (NP-057455.1), Rattus
norvegicus SCCE (AAA40989.1), Comamonas testosteroni KSI
(AAA25871.1) and Oryctolagus cuniculus cholesterol-7α-hydroxylase
gene (AAA74382.1). The most similar unigenes only had 23–31% iden-
tity to genes identified in the other species mentioned (data not
shown), suggesting that these genes have little similarity with those
in animals or microorganisms and cannot be cloned by homology-
based cloning methods.

The mitochondrial CYP-dependent side chain cleaving enzyme
(SCCE) catalyzing the reaction converts sterols into pregnenolone [23].
No evidence of such a P450 (CYP11A in animals) has yet been found in
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Fig. 5. Phylogenetic analysis of sterol 3-O-glucosyltransferase genes fromM. tenacissima (bold l
netic tree constructed based on the deduced amino acid sequences. Amino acid sequences we
MEGA5.10with the Poisson correctionmethod. Bootstrap values obtained after 1000 replication
were retrieved from NCBI GenBank using the following accession numbers (source organism
senticosus, sterol 3-O-glucosyltransferase); BAC22616 (Panax ginseng, sterol 3-O-glucosyltran
(Cicer arietinum, sterol 3β-glucosyltransferase-like); AEX55299 (Lotus japonicas, sterol glucos
(V. vinifera, sterol 3β-glucosyltransferase-like); CAB06081 (Avena sativa, sterol glucosyltrans
UDP-glucuronosyltransferase); XP_003624116 (M. truncatula, sterol 3β-glucosyltransfer
(Physcomitrella patens, UDP-glucuronosyltransferase); ABC96116 (Withania somnifera, sterol gl

Please cite this article as: K. Zheng, et al., Genomics (2014), http://dx.doi.o
plants [44]; therefore, more attention was given to possible interaction
partners, such as acyl-CoA-binding protein (ACBP) and peripheral-type
benzodiazepine receptor (PBR) [45,46]. In the mitochondrial envelope,
ACBPs bind to PBR and stimulate the transport of cholesterol into themi-
tochondria [47]. Unigenes annotated toACBP and PBRwere also found in
M. tenacissima transcriptome in this study (Table 1), which will help us
elucidate their function in polyoxypregnane biosynthesis.
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2.7. Candidate gene encoding enzymes that catalyze pregnane modifications

For the synthesis of different polyoxypregnane glycosides in
M. tenacissima, the pregnane backbone must be modified by hydrox-
ylation, acylation and glycosylation, catalyzed by hydroxylases,
acyltransferases and glucosyltransferases, respectively. The main agly-
cone of polyoxypregnane glycosides in M. tenacissima is tenacigenin B,
which has five hydroxyl groups at 3-, 8-, 11-, 12-, 14-C in the backbone
of pregnane, respectively (Fig. 1). There must be some pregnane hy-
droxylases (that belong to cytochrome P450, CYP) that catalyze these
hydroxylation reactions. Some steroid hydroxylases have been found
that hydroxylate different C-atoms, such as cholesterol-7α-hydroxylase
(CYP7A1), steroid 17α-hydroxylase (CYP17) and CYP90B1 [48,49,37].
Though homologs of those genes do not exist in the M. tenacissima
transcriptome, we did find 208 unigenes annotated to the CYP family
(Additional file 4), which will help us to identify pregnane hydroxylase
inM. tenacissima. Moreover, 14 and 40 unigenes that were annotated as
sterol O-acyltransferase and sterol 3-O-glucosyltransferase, respective-
ly, were also found in this study (Table 1), some ofwhichwere distantly
related to genes from other plant species (Fig. 5, Additional file 5),
indicating that these unigenes might encode enzymes that catalyze
acylations and glycosylations in M. tenacissima.
E

etters) and characterized sterol 3-O-glucosyltransferase genes from other plants. Phyloge-
re aligned using the ClustalW program, and evolutionary distances were computed using
s are indicated on the branches. Bar=0.2 amino acid substitutions/site. Protein sequences
and proposed function, if any, are given in parentheses): AHA50081 (Eleutherococcus
sferase); XP_003604991 (M. truncatula, sterol 3β-glucosyltransferase); XP_004506587
yltransferase 1); NP_850529 (A. thaliana, sterol 3β-glucosyltransferase); XP_002265023
ferase); CBI17676 (V. vinifera, UDP-glucuronosyltransferase); EMJ08818 (Prunus persica,
ase); ESW11746 (Phaseolus vulgaris, UDP-glucuronosyltransferase); XP_001780556
ucosyltransferase); XP_001767105 (P. patens).

rg/10.1016/j.ygeno.2014.07.013
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2.8. Expression patterns of five unigenes related to polyoxypregnane
glycoside biosynthesis

The candidate genes SQS, SQLE, CAS, 4-MSO, 3β-HSD and 5β-POR
were selected for further analysis, and their expression patterns in
leaves and stems were analyzed by qRT-PCR. The expression patterns
of these genes are shown in Fig. 6. Among them, the gene expression
levels of CAS, SQS, SQLE, 4-MSO and 3β-HSD were higher in leaves than
in stems; conversely, the expression level of the 5β-POR gene was
36.50% higher in stems than in leaves. Higher expression levels in leaves
of CAS, SQS, SQLE, 4-MSO and 3β-HSD genes indicate that leaves are the
main organs for synthesizing the precursors of polyoxypregnane, and
higher expression levels of the downstream enzyme 5β-POR in stems
suggest that polyoxypregnane is modified and stored in stems, which
is themajormedicinal part ofM. tenacissima and contains high contents
of polyoxypregnane glycosides. The analysis of the expression patterns
of these genes in leaves and stemswill be helpful to further understand
the mechanism of polyoxypregnane glycoside biosynthesis.
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2.9. EST-SSR discovery: distribution and frequencies

To develop new molecular markers, using MISA software, all of the
15,296 microsatellites were detected in 11,911 unigenes. Of all the
SSR-containing unigenes, 2573 sequences contained more than 1 SSR,
and 989 SSRs were present in compound form. On average, we found
2.14 SSR per 10 Kb in this study. Microsatellites included 8217
(53.72%) dinucleotide motifs, 5094 (33.31%) trinucleotide motifs, 1394
(9.11%) tetranucleotide motifs, 313 (2.05%) pentanucleotide motifs
and 277 (1.81%) hexanucleotide motifs. The length of SSRs was also an-
alyzed; themajoritywere between 18 bp to 27 bp. SSRswith six tandem
repeats (4386, 28.68%) were the most common, followed by five tan-
dem repeats (3273, 21.40%), seven tandem repeats (2563, 16.76%),
and four tandem repeats (1526, 10.21%) (Table 2). The information of
SSRs derived from all unigenes is shown in Additional file 6. The most
abundant repeat type was AT/AT (26.34%), followed by AG/CT
(21.02%), AAG/CTT (8.49%), and AAT/ATT (6.43%). Based on those
SSRs, 27,189 primer pairs were successfully designed using Primer 3
(Additional file 6). The unique sequence-derived markers generated in
this study represent a valuable genetic resource for SSR mining and fu-
ture applications in research and molecular marker-assistant breeding
in this plant.
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Fig. 6. Expression patterns of six genes related to the biosynthesis of polyoxypregnane gly-
cosides in leaves and stems. Bars represent the mean (±SD). SQS: squalene synthase,
SQLE: squalene epoxidase, CAS: cycloartenol synthase, 4-MSO: C4-methylsterol oxidase,
3β-HSD: 3β-hydroxysteroid dehydrogenase, and 5β-POR: progesterone 5β-reductase.
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3. Conclusion

Based on the analysis of the M. tenacissima transcriptome, valuable
gene candidates for the biosynthesis of polyoxypregnane glycosides
were identified andwill likely facilitate functional studies aiming to pro-
duce larger quantities of this compound for cancer treatment. These
data not only enrich genomic resources for the species but also benefit
research on genetics, functional genomics, and gene expression.

4. Materials and methods

4.1. Plant material and RNA extraction

One-year-old M. tenacissima seedlings were grown in the experi-
mental station of the Yunnan Agricultural University, Kunming, China
[latitude: 25°7′ 60″ N, longitude: 102°45′ 10″ E, altitude: 1895 m].
Sampleswere collected from fresh leaves and stems,whichwere imme-
diately frozen in liquid nitrogen and stored at−80 °C until further pro-
cessing. Total RNA was extracted using the TRIzol Kit (Promega, USA),
and RNA quality was measured using Agilent's Bioanalyzer and agarose
gel electrophoresis. To obtain complete gene expression information,
equal amounts of total RNA from leaves and stemswere pooled together
for cDNA preparation.

4.2. cDNA library construction and sequencing

For constructing an mRNA library, poly (A) RNA was purified from
20 mg total RNA using Sera-mag Magnetic Oligo (dT) Beads (Illumina).
Then, the mRNA was fragmented using a fragmentation buffer. The
mRNA fragmentswere transcribed into first-strand cDNA using random
hexamer primers. Second-strand cDNA was synthesized using DNA po-
lymerase I and RNase H. The cDNA fragments were purified and
enriched with PCR for end reparation and the addition of poly (A) and
were connected with sequencing adaptors. After resolution by agarose
gel electrophoresis, suitable fragments were selected for PCR amplifica-
tion. Lastly, the cDNA fragments were sequenced using Illumina HiSeq
2000 at Gene Denovo Corporation (Guangzhou, China).

4.3. Illumina read processing and assembly

The raw reads obtained from the sequencing machine were pre-
processed by trimming adaptors and discarding low-quality reads
(reads containingmore than 50% baseswith Q-value≤ 20). The remain-
ing high-quality sequences were then used for de novo transcriptome
assembly using the short reads assembling program Trinity. The assem-
bly was performed using the default parameters.

4.4. Functional annotation and predicted CDS

For functional annotations, the generated unigenes were compared
with a series of public databases, such as the non-redundant protein da-
tabase (Nr, http://www.ncbi.nlm.nih.gov/) and the Swiss-Prot database
(http://www.expasy.ch/sprot), using BLASTx (E-value b 10−5) and
BLAST (E-value b 10−10), respectively. The unigenes were also aligned
to the Cluster of Orthologous Groups (COG) of protein database
(http://www.ncbi.nlm.nih.gov/COG/) and Kyoto Encyclopedia of
Genes and Genomes database (KEGG, http://www.genome.jp/kegg)
[50] using BLASTx with an E-value b 10−10. Through the comparison
against the KEGG database, we can further study the complex biological
behaviors of genes and obtain pathway annotation for unigenes. A Perl
script was used to retrieve KO (KEGG ontology) information from the
BLAST results to establish pathway associations between unigenes and
KEGG. The gene ontology (GO) (http://www.geneontology.org) [51]
database annotates genes as belonging to one of three functional cate-
gories: biological process, molecular function, or cellular component.
The functional categories of these unigenes were further identified
rg/10.1016/j.ygeno.2014.07.013
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t2:1 Table 2
t2:2 Distribution of identified SSRs using the MISA software.

t2:3 Motif Repeat numbers Total %

4 5 6 7 8 9 10 11 12

t2:4 Di- 0 0 2884 1905 1393 1117 647 249 22 8217 53.72
t2:5 Tri- 0 2888 1465 658 83 0 0 0 0 5094 33.31
t2:6 Tetra- 1009 348 37 0 0 0 0 0 0 1394 9.11
t2:7 Penta- 276 37 0 0 0 0 0 0 0 313 2.05
t2:8 Hexa- 277 0 0 0 0 0 0 0 0 277 1.81
t2:9 Total 1526 3273 4386 2563 1476 1117 647 249 22
t2:10 % 10.21 21.40 28.68 16.76 9.65 7.30 4.23 1.63 0.14
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using the GO Database, and GO trees were generated using the WEGO
tool (http://wego.genomics.org.cn/cgibin/wego/index.pl) [52].

The CDSs (coding DNA sequences) of all unigenes were predicted
by using BLASTX and ESTScan. First, we performed BLASTx alignment
(E-value b 10−5) between unigenes and protein databases such as Nr,
SwissProt, KEGG and COG. The best alignment results were used to de-
termine the sequence direction of unigenes. Unigenes with sequences
that producedmatches in only one database were not searched further.
When a unigene would not align to any database, ESTScan was used to
predict coding regions and determine sequence direction.

4.5. Real-time PCR analysis

To assay the expression levels of mRNA of putative key genes in the
stems and leaves of M. tenacissima, qRT-PCR was performed using an
Applied Biosystems 7500 Fast Real-Time PCR system with three repli-
cates using FSQ-301 (Toyobo, Japan). Total RNA was treated with 4×
DN Master Mix (with gDNA remover added) at 37 °C for 5 min to re-
move DNA. The reverse transcription reaction was performed using
the 5× RT Master Mix II according to the manufacturer's instructions.
For quantitative RT-PCR, reactions (20 μL) consisted of 2 μL of first-
strand cDNA, 0.4 μM primers, 10 μL of SYBR® Premix Ex Taq™ (2×)
(Fermentas), and 7.6 μL of ddH2O. PCR cycling conditions were as
follows: 95 °C for 2 min followed by 40 cycles of 95 °C for 15 s and
then 60 °C for 40 s. A melting curve was performed from 65 °C to
95 °C to check the specificity of the amplified product. Primer sequences
are listed in Additional file 7. Based on the transcriptome sequencing
and annotation, almost all of the putative unigenes involved in the
polyoxypregnane glycosides biosynthetic pathway were identified. To
further analyze the expression patterns of these genes in leaf and
stem tissues, five essential genes were selected for verification by qRT-
PCR: squalene synthase (SQS), squalene epoxidase (SQLE), cycloartenol
synthase (CAS), C4-methylsterol oxidase (4-MSO), 3β-hydroxysteroid
dehydrogenase (3β-HSD) and progesterone 5β-reductase (5β-POR).
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
as an internal control gene. The relative expression levels of the selected
genes were normalized to GAPDH and calculated using the 2−ΔΔCT
method [53].

4.6. EST-SSR detection and primer design

The potential SSR markers with motifs ranging from di- to hexa-nu-
cleotides were detected among the 65,796 unigenes by using the MISA
tool (http://pgrc.ipk-gatersleben.de/misa/). The minimum of repeat
units were set as follows: six for di-, five for tri-, and four for tetra-,
penta- and hexa-nucleotides. The maximum interruption distance be-
tween two SSRs was specified as 100 bases. The primers for the identi-
fied SSR loci were designed using Primer 3 (http://primer3.ut.ee/).
Among all the designed primers, GC content ranged between 40% and
60%, and the expected PCR product sizes ranged from 100 to 280 bp.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2014.07.013.
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