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the Single-molecule long-read 
sequencing of Scylla paramamosain
Haifu Wan1, Xiwei Jia1, pengfei Zou1, Ziping Zhang2 & Yilei Wang  1

Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional 
value. to the best of our knowledge, few full-length crab transcriptomes are available. in this study, 
a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, 
eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was 
constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read 
sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 
79005 high-quality unique transcripts were obtained after error correction and sequence clustering 
and redundant. Additionally, a total of 52544 transcripts were annotated against protein database 
(NCBI nonredundant, Swiss-Prot, KOG, and KEGG database). A total of 23644 long non-coding RNAs 
(lncRNAs) and 131561 simple sequence repeats (SSRs) were identified. Meanwhile, the isoforms 
of many genes were also identified in this study. Our study provides a rich set of full-length cDNA 
sequences for S. paramamosain, which will greatly facilitate S. paramamosain research.

Scylla paramamosain is an important aquaculture crab and has great economical and nutritional value. According 
to the statistics result, it had been estimated that the aquaculture production of S. paramamosain reached approxi-
mately 157,712 tons in China in 2018 (China Fishery Statistical Yearbook 2019). Up to date, the genome informa-
tion for most crustaceans is not available. However, the application of second-generation sequencing technologies 
that do not need genome data has greatly accelerated the research of the crustacean. In crab and shrimp, the 
high-throughput sequencing technology has been applied in Eriocheir sinensis1–21, Portunus trituberculatus22–29, 
S. paramamosain30–33, S. olivacea34, Carcinus maenas35,36, Gecarcinus lateralis37–41, P. sanguinolentus42, Charybdis 
feriatus43, Litopenaeus vannamei44–48, Macrobrachium rosenbergii49–52, M. nipponense53,54, Exopalaemon carini-
cauda55–57, Oratosquilla oratoria58–60, Homarus americanus61, and so on. Many genes related with reproduction, 
growth, and immunity of crab and shrimp have been obtained through the transcriptome data.

However, the length of sequencing reads obtained using the second-generation sequencing technologies was 
usually short (usually 100–250 bp), which needs further bioinformatics analysis to assemble using the software 
such as Trinity to obtain the transcript sequence62. But it had been estimated that many repetitive elements exist 
in the crustacean genome DNA63,64, which could influence the assembled result, such as the undesirable N50 
length of assembled unigenes and the majority of non-full-length transcript sequences.

The third-generation sequencing technology is also called the single-molecule real-time sequencing tech-
nology which include smart sequencing and nanopore sequencing developed by Pacific Biosciences and 
Oxford Nanopore Technologies, respectively. Compared to the second-generation sequencing technologies, 
the third-generation sequencing technology has many advantages, such as (1) the longer sequencing length, 
(2) the obtainment of full-length transcripts, (3) the direct sequencing without the need for fragmentation 
or post-sequencing assembly, (4) the analysis of alternative splicing65. But up to date, the application of the 
third-generation sequencing technology in crustacean is scare.

In this study, a RNA library consisted of multiple tissues of S. paramamosain (gill, hepatopancreas, muscle, 
cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir and hemocyte) was 
constructed and sequenced using the third-generation sequencing technology (Pacbio) for the first time, which 
would not only further enrich the genetic information and promote the application of proteomic techniques in S. 
paramamosain, but also pave the way for the application of the third-generation sequencing technology in other 
crustacean.
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Results
the quality examination of pooled RnA used for library construction and the evaluation of 
sequencing result. The quality of pooled total RNA extracted from twelve tissues was examined before 
library construction. The examined result indicated that the RNA was high quality and was appropriate for fol-
lowing experiment. The evaluation of sequencing result was carried out using 3 methods and the results were as 
follows: (1) The analysis result of BUSCO software revealed that 876 (82.2%) complete single-copy and dupli-
cated BUSCOs, 34 (3.2%) fragmented BUSCOs (Benchmarking Universal Single Copy Orthologs), 156 (14.6%) 
missing BUSCOs (Fig. 1) (2) the aligned ratio of published transcriptome data sequenced by second-generation 
technology with that sequenced by Pacbio technology in this study was more than 77% (3) the sequences of pub-
lished genes (relish, dorsal, TGF-beta type I receptor and amine oxidase) were consistent with sequencing result 
performed by Pacbio technology.

functional annotation of transcripts. The identified transcripts were blasted against protein database 
(Nr, Swiss-prot, KOG, and KEGG) and the result indicated that a total of 52,544 transcripts (66.5%) were anno-
tated. Of which 52,262 transcripts were annotated in Nr database, 41,054 transcripts in Swiss-prot database, 
37,117 transcripts in KOG database, and 27,777 transcripts in KEGG database. The venn diagram was shown in 
Fig. 2. GO analysis result indicated that 13,441 transcripts were annotated in biological process, 7,288 transcripts 
in molecular function, and 8,055 transcripts in cellular component. The detail information of GO annotation was 
shown in Fig. 3.

According to the annotated results, the species distribution of transcripts BLASTx matches against the Nr 
protein database was performed and the result indicated that the top 10 species all belong to invertebrate, which 
included Hyalella Azteca, S. paramamosain, Zootermopsis nevadensis, Thermobia domestica, Daphnia magna, 
Limulus Polyphemus, Diaphorina citri, Lingula anatine, E. sinensis, and L. vannamei. The detailed information of 
species distribution was shown in Fig. 4.

Identification of long non-coding RNAs (lncRNAs). In this study, the coding potential of the unan-
notated transcripts was analyzed with three different bioinformatics softwares, Coding Potential Calculator 
(CPC), Coding-Non-Coding Index (CNCI), and Protein family (Pfam). The predicted result revealed that 24,201 
LncRNAs were identified with the software of CPC, 23,644 LncRNAs with the software of CNCI and 26,147 
LncRNAs with the software of Pfam, among which 23,154 common LncRNAs were predicted by three different 
bioinformatics software (Fig. 5).
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Figure 1. The evaluation of sequencing result analyzed by BUSCO software.
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Figure 2. The venn diagram of annotated result in 4 different databases.
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Identification of simple sequence repeats (SSRs). A total of 131,561 SSRs were identified across 
all the transcripts, with 28,267 transcripts containing more than one SSR. Most of the SSRs identified were 
di-nucleotide repeats (58.53%), followed by the tri-nucleotide repeats (30.35%), tetra-nucleotide repeats (8.96%), 
penta-nucleotide repeats (1.82%) and Hexa-nucleotide (0.34%). In the di-nucleotide repeats, tri-nucleotide 
repeats, tetra-nucleotide repeats, the motif of AC/GT, AAT/ATT and AAAT/ATTT was the most dominant style, 
respectively. The detailed information was shown in Fig. 6A,B.

the analysis of alternative splicing in transcriptome. The analysis result of alternative splicing indi-
cated that there were seven different types existing in transcriptome, including 247 skipping exon (SE), 580 alter-
native 5′ splice site (A5), 600 alternative 3′ splice site (A3), 160 mutually exclusive exon (MX), 1780 retained 
intron (RI), 38 alternative first exon (AF), and 40 alternative last exon (AL), among which retained intron was the 
main type of alternative splicing, accounting for more than 5% (Fig. 7). The isoform analysis result indicated that 
the isoform number of some genes was more than ten (Fig. 8). For example, a total of 22 different isoforms of LIM 
domain-binding protein 3 were identified in this study and the sequence analysis result was shown in Fig. 9 (an 
example of RI). Additionally, 7 different isoforms of ferritin were identified and the sequence analysis result was 
shown in Fig. 10 (an example of A5).

the validation of sequencing result with several published full-length genes. In order to validate 
the accuracy of sequencing result, several published genes, for example, relish (GI number MH047674.1), dorsal 
(GI number MH047675.1), TGF-beta type I receptor (GI number MH187960.1), and amine oxidase (GI number 
MG878093.1) were blasted against sequencing result using the blast software and the results indicated that the 
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Figure 3. The GO annotation result.
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Figure 5. The venn diagram of LncRNAs prediction result by three softwares.
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sequences of several published full-length genes were completely identical to the sequencing result except dorsal 
gene, which indicated the accuracy of sequencing result. The detailed blast results were shown in Supplemental File.

Discussion
The obtainment of full-length gene is the first step to study gene function, but it can’t obtain on a large scale and 
is time consuming, labor intensive and expensive through rapid amplification of cDNA ends (RACE) technology 
in general. With the development of technology, the second-generation sequencing technologies are developed 
such as Illumine, Roche 454, Solexa, SOLID, the sequencing reads length of which is usually short. Though, part 
of full-length transcripts could be obtained through the transcriptome data sequenced by second-generation 
sequencing technologies on a large scale, majority of assembled transcripts is short and is not full-length. The 
third-generation sequencing technology is the most advanced technology, which could obtain full-length tran-
scripts on a large scale. In this study, a total of 79005 high-quality unique transcripts is obtained, among which 
50% transcripts is full-length, which is more efficient than RACE and the second-generation sequencing technol-
ogy30,32,33,48. These full-length transcripts identified in this study will facilitate further study of S. paramamosain.

It is well known that the sequencing length of the third-generation sequencing technology could reach  as long 
as 2 Mb, avoiding the influence of the complex repeat motif. In this study, the longest transcript is 14701 bp and 
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Figure 7. The statistics of alternative splicing events in the transcriptome of S. paramamosain shown in 
pie chart. Note: A3 represents alternative 3′ splice site, A5 represents alternative 5′ splice site, AF represents 
alternative first exon, AL represents alternative last exon, MX represents mutually exclusive exon, RI represents 
retained intron, SE represents skipping exon.
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the N50 (an important parameter used for evaluating the quality of assembly) is 3160 bp, which is longer than that 
in S. paramamosain studies that used the second-generation sequencing technologies. For instance, in the gonad 
transcriptome, gill transcriptome, and hemocyte transcriptome of S. paramamosain, the N50 of assembled uni-
genes is only 477 bp, 1601bp, and 1488 bp, respectively30–32, which is far shorter than that in this study and indi-
cates that the result of the third-generation sequencing technology is better than that of the second-generation 
sequencing technology.

Alternative splicing is an important way of regulating gene expression and plays vital roles in a variety of bio-
logical processes including sex differentiation and immunological resistance. In the study of E. sinensis, the two 
splice isoforms of the gene fruitless are obtained and could play important roles in sex-specific character develop-
ment66. In the study of L. vannamei, a total of 6 sex-lethal splice isoforms are cloned used RACE technology and 
the different isoform may play different roles during embryo development67. In the study of S. paramamosain, 
the gene of down syndrome cell adhesion molecule (Dscam) is cloned and the bioinformatics result reveals  that it 
could encode as high as 36,736 unique isoforms to bind different pathogen to protect the crab from the pathogen 
infection68. However, in crustacean, the identification of alternative splicing on a large scale is scare because of the 
absence of genome information which makes the study of alternative splicing in crustacean difficult. Because of 
the longer sequencing length, the third-generation sequencing technology could obtain the full-length of tran-
scripts, which provides the basis for the research of alternative splicing in S. paramamosain. In this study, the 
constructed sequencing library was consistent of 12 different tissues, therefore, more isoforms were identified 
comparing to the result that obtained using single tissue constructed sequencing library, which also indicated that 
different isoforms may play different roles in different tissues and the function of these isoforms needed further 
research. For example, a total of 6 different ferminazation-1 transcripts were identified in this study and their pre-
dicted protein sequences were completely identical to the protein sequences obtained through gonad transcrip-
tome data in our laboratory (unpublished data). However, only 3 different ferminazation-1 transcripts (fem-1a, 
fem-1b, fem-1c) were identified in E. sinensis transcriptome data sequencing using second-generation sequencing 
technology, which indicated the third-generation sequencing technology is more efficient than second-generation 
sequencing technology in identifying isoforms.

It has been reported that the transcripts sequenced using the third-generation sequencing technology has 
more annotation rate than the second-generation sequencing technology in L.vannamei48. In published arti-
cles about S. paramamosain transcriptome, the annotation rate of transcripts was 59%, 15.7% and 48.38%, 
respectively30–32. In this study, the annotation rate of obtained transcripts was 66.5%, which was higher than 
that previously obtained using the second-generation sequencing technology and consistent with the result in L. 
vannamei48.

Previous studies have shown that raw data error rate of the third-generation sequencing technology is rela-
tively high, but the raw data error rate could be corrected by the data of second-generation sequencing technol-
ogy69. In this study, the raw data has been corrected by the transcriptome data sequenced using Illumina platform 
in our laboratory (unpublished result), which ensure the reality of the sequencing result. The consistent blast 
result of several published genes, relish, dorsal, TGF-beta type I receptor, amine oxidase with sequencing result also 
indicate the reliability of sequencing result in this study.

LncRNAs are non-coding RNAs that are longer than 200 nucleotides long and play vital roles in many phys-
iological processes70. However, the identification of LncRNAs in S. paramamosain using the third-generation 
sequencing technology has never been reported. In this study, a total of 23154 common LncRNAs predicted by 
three softwares are obtained, which will facilitate the function study of these LncRNAs in S. paramamosain. In 
spite of the identification of LncRNAs through the third-generation sequencing technology in this study, the 
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classification and false rate of identified LncRNAs could not be done because of the absence of genome data of S. 
paramamosain.

Materials and Methods
Samples. Healthy sexually adult male (n = 4) and female (n = 4) S. paramamosain (weight = 250 ± 10 g) were 
purchased from a local agricultural market in Xiamen, China. A total of 12 different tissues (gill, hepatopancreas, 
muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir and hemocyte) 
were collected. The total RNA was extracted using the E.Z.N.A.®. Total RNA Kit II (Omega, Norcross, GA, USA) 
following the protocol provided by the manufacturer. The integrity of the RNA was determined with the Agilent 
2100 Bioanalyzer and agarose gel electrophoresis. The purity and concentration of the RNA were determined with 
the Nanodrop micro-spectrophotometer (Thermo Fisher, USA).

SMRT library construction, sequencing, and quality control. mRNA was enriched by Oligo (dT) 
magnetic beads. Then the enriched mRNA was reverse transcribed into cDNA using Clontech SMARTer PCR 
cDNA Synthesis Kit (Takara, Shiga, Japan). PCR cycle optimization was used to determine the optimal amplifi-
cation cycle number for the downstream large-scale PCR reactions. Then the optimized cycle number was used 
to generate double-stranded cDNA, followed by size selection using the Blue Pippin TM Size-Selection System 
to generate three libraries (1–2 kb, 2–3 kb, 3–6 kb). Then large-scale PCR was performed for the different size 
libraries for the next SMRT bell library construction. Different input amount of cDNA of size-selected samples 
was used to DNA damage repaired, end repaired, and ligated to sequencing adapters. The SMRT bell template was 
annealed to sequencing primer and bound to polymerase, and sequenced on the PacBio sequel platform by Gene 
Denovo Biotechnology Company (Guangzhou, China).

Data processing. The raw sequencing reads of cDNA libraries were classified and clustered into transcript 
consensus using the SMRT Link v5.0.1 pipeline71 supported by Pacific Biosciences. Briefly, CCS (circular con-
sensus sequence) reads were extracted out of subreads BAM file. Then CCS reads were classified into full-length 
non-chimeric (FL), non-full-length (nFL), chimeras, and short reads based on cDNA primers and polyA tail 
signal. Short reads were discarded. Subsequently, the full-length non-chimeric (FLNC) reads were clustered by 
Iterative Clustering for Error Correction (ICE) software to generate the cluster consensus isoforms. Then non 
full-length reads were used to polish the above obtained cluster consensus isoforms by Quiver software to finally 
obtain the FL polished high quality consensus sequences (accuracy ≥ 99%). The final transcriptome isoform 
sequences were filtered by removing the redundant sequences with software CD-HIT-v4.6.7 using a threshold of 
0.99 identities.

the evaluation of sequencing result and functional annotation of transcripts. The evaluation 
of sequencing result was performed through 3 different methods: (1) The protein sequences predicted from the 
sequencing result were analyzed by BUSCO v2.0 using arthropoda database to evaluate the completeness of 
sequencing result. (2) The published transcriptome data (SRR8792478, SRR8792479, SRR5814909, SRR5814910, 
SRR5814911, SRR5814912, SRR5814913, SRR5814914, SRR5814915, SRR5814916, SRR5814917) downloaded 
from NCBI database and the transcriptome results sequenced by our laboratory were aligned to sequencing result 
with bowtie2 software to evaluate the sequencing result. (3) Several recently published genes (relish: MH047674.1, 
dorsal: MH047675.1, TGF-beta type I receptor: MH187960.1 and amine oxidase: MG878093.1) were compared 
with the sequencing result to validate the accuracy of sequencing result. Basic annotation of transcripts includes 
protein functional annotation, pathway annotation, COG/KOG functional annotation and Gene Ontology (GO) 
annotation. To annotate the transcripts, transcripts were blasted against the NCBI non-redundant protein (Nr) 
database (http://www.ncbi.nlm.nih.gov), the Swiss-Prot protein database (http://www.expasy.ch/sprot), the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg), and the COG/KOG data-
base (http://www.ncbi.nlm.nih.gov/COG) with BLASTx program (http://www.ncbi.nlm.nih.gov/BLAST/) at an 
E-value threshold of 1e–5 to evaluate sequence similarity with genes of other species. GO annotation was ana-
lyzed by Blast2GO software72 with Nr annotation results of transcripts. Transcripts ranking the first 20 highest 
score and no shorter than 33 HSPs (High-scoring Segment Pair) hits were selected to conduct Blast2GO analysis. 
Then, functional classification of transcripts was performed using WEGO software73.

characterization of long non-coding RnAs. CNCI v2.074, pfam75 and CPC v1.076 were used to assess the 
protein-coding potential of transcripts without annotations by default parameters for potential long non-coding 
RNAs. To better annotate lncRNAs in evolution level, the software Infernal (http://eddylab.org/infernal/) was 
used in sequence alignment. The lncRNAs were classified by secondary structures and sequence conservation.
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Figure 10. The sequence analysis of different isoforms of ferritin. Note: COGENT003937 represents the super-
transcripts constructed with different isoforms of ferritin, the others represent the different isoforms.
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Alternative splicing detection. To analyze alternative splicing events of transcript isoforms, COding 
GENome reconstruction Tool (Cogent) was firstly used to partition transcripts into gene families based on k-mer 
similarity and reconstructed each family into a coding reference genome based on De Bruijn graph methods. 
Then SUPPA tool was used to analyze alternative splicing events of transcript isoforms.

Identification of SSRs. The SSR identification was analyzed employing the software of MISA v1.0 (http://
pgrc.ipk-gatersleben.de/misa/) 64 with default parameters in the whole transcriptome. The primers used for PCR 
were designed using primer3 with default parameters. The overall analysis pipeline was shown in Fig. 11.
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